首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One-dimensional (1D) velocity models are still widely used for computing earthquake locations at seismological centers or in regions where three-dimensional (3D) velocity models are not available due to the lack of data of sufficiently high quality. The concept of the minimum 1D model with appropriate station corrections provides a framework to compute initial hypocenter locations and seismic velocities for local earthquake tomography. Since a minimum 1D model represents a solution to the coupled hypocenter-velocity problem it also represents a suitable velocity model for earthquake location and data quality assessment, such as evaluating the consistency in assigning pre-defined weighting classes and average picking error. Nevertheless, the use of a simple 1D velocity structure in combination with station delays raises the question of how appropriate the minimum 1D model concept is when applied to complex tectonic regions with significant three-dimensional (3D) variations in seismic velocities. In this study we compute one regional minimum 1D model and three local minimum 1D models for selected subregions of the Swiss Alpine region, which exhibits a strongly varying Moho topography. We compare the regional and local minimum 1D models in terms of earthquake locations and data quality assessment to measure their performance. Our results show that the local minimum 1D models provide more realistic hypocenter locations and better data fits than a single model for the Alpine region. We attribute this to the fact that in a local minimum 1D model local and regional effects of the velocity structure can be better separated. Consequently, in tectonically complex regions, minimum 1D models should be computed in sub-regions defined by similar structure, if they are used for earthquake location and data quality assessment.  相似文献   

2.
A 1-D velocity model for the Marche region (Central Italy) was computed by inverting P- and S-wave arrival times of local earthquakes. A total of 160 seismic events with a minimum of ten observations, a travel time residual ≤0.8 s and an azimuthal gap lower than 180° have been selected. This “minimum 1-D velocity model” is complemented by station corrections, which can be used to take into account possible near-surface velocity heterogeneities beneath each station. Using this new P-wave velocity model and the program HYPOELLIPSE (Lahr 1999), the selected local events were relocated. Earthquake locations in this study are of higher quality with respect to the original ones. The obtained minimum 1-D velocity model can be used to improve the routine earthquake locations and represents a further step towards more detailed seismotectonic studies of the area.  相似文献   

3.
We investigate how focal solutions and hypocenter locations may depend on the ray tracing algorithm and the strategy of velocity inversion. Using arrival times from a temporary seismological network in the south-western Alps, a local earthquake tomography has been performed by Paul et al. [Paul, A., Cattaneo, M., Thouvenot, F., Spallarossa, D., Béthoux, N., and Fréchet, J., 2001. A three-dimensional crustal velocity model of the south-western Alps from local earthquake tomography. J. Geophys. Res. 106, 19367–19390.] with the method developed by Thurber [Thurber, C.H., 1993. Local earthquake tomography: velocity and Vp/Vs-Theory, in Seismic Tomography: Theory and practice, Iyer, H.M., and Irahara eds., Chapman and Hall, New York, 563–583.]. Another inversion of the same data set is performed here using a different tomography code relying on a shooting paraxial method and cubic interpolation of velocities. The resulting images display the same main features, although Thurber's code appears to be more robust in regions with scarce ray coverage and strong velocity contrasts. Concerning hypocenter location in Piemont units, one major result is the concentration of hypocenters at the boundary between the mantle wedge of the Ivrea body and the European crust. Forty-six focal mechanisms are shown that were computed using both the take-off angles in the minimum 1-D model and in the 3-D velocity structures resulting from the two inversions. The sets of focal solutions are very similar, proving the reliability and the coherency of the focal solutions. The widespread extension in the core of the western Alps is confirmed whereas a few compressive solutions are found east of the Piemont units. These results constrain the sharp change of stress tensor and evidence a decoupling of strain beneath the east of Dora Maira massif up to beneath the north of Argentera massif. On a geodynamical point of view seismicity and focal mechanism distribution are compatible with the present day models published for the western Alps, where the major feature is the lithospheric thickening [Schmid, S.M., and Kissling, E., 2000. The arc of the western Alps in the light of geophysical data on deep crustal structure. Tectonics, 19, 62–85.], implying widespread extension in the core of the western Alps [Sue, C., Thouvenot, F., Fréchet, J., and Tricart, P., 1999. Widespread extension in the core of the western Alps revealed by earthquake analysis. J. Geophys. Res., 104, 25611–25622.]. However the existence of compressive events dealing at depth with the boundary of Ivrea body allows to postulate that this geological structure is still tectonically active. Even if field work has not shown this so far, the Insubric line appears to extend toward the south at depth, as a blind fault, and to play a key role in the dynamics of the south-western Alps.  相似文献   

4.
The very active Taal Volcano lies in the southern part of Luzon Island only 60 km from Manila, the capital of the Philippines. In March 2008 we deployed a temporary seismic network around Taal that consisted of 8 three-component short period seismometers. This network recorded during the period from March to November 2008 about 1050 local events. In the early data processing stages, unexpected linear drifting of clock time was clearly identified for a number of stations. The drifting rates of each problematic station were determined and the errors were corrected before further processing. Initial location of each event was derived by manually picked P-/S-phases arrival times using HYPO71 and a general velocity model based on AK135. Since the velocity structure beneath Taal is essentially unknown, we used travel times of 338 well-located events in order to derive a minimum 1D velocity model using VELEST. The resulting locations show that most events occurred at the shallow depth beneath the Taal Volcano, and two major earthquake groups were noticed, with one lying underneath the western shore of Taal lake and the other one spread around the eastern flank of the Taal Volcano. Since there is no reported volcano activities during the operation period of our seismic array, we are still not confident to interpret these findings in terms of other natures of volcano at the current stage. However, our work represents an important pioneer step towards other more advanced seismic studies in Taal Volcano.  相似文献   

5.
At four sites in Turkey and Armenia the physico-chemical properties of thermal and mineral waters were monitored continuously during the Izmit and Düzce earthquakes that occurred along the North Anatolian fault in August and November 1999. The epicentral distances between the moment magnitude (Mw) 7.6 Izmit earthquake and the monitoring locations were 313, 488, 1,161, and 1,395 km. At the most distant site, the specific electrical conductivity of mineral water from a flowing artesian well dropped co-seismically and postseismically by 7%. No changes were observed at the other sites, although the estimated earthquake strains and peak ground accelerations are much higher. A similar pattern was observed after the Düzce earthquake, which happened three months after the Izmit event. The response of a hydrogeological system seems to depend on the site characteristics rather than on the nature of the earthquake. A hydrogeological model for the sensitive observation site farthest from the Izmit earthquake explains the observations in terms of a changed mixing ratio between two fluid components. Passing seismic waves may trigger a local pore-pressure increase according to the mechanism of advective overpressure. The preconditions for this mechanism, free gas bubbles in the aquifer in combination with a trap for rising bubbles, is probably not fulfilled by the other groundwater systems. Electronic Publication  相似文献   

6.
A combination of numeric hydrodynamic models, a large-clast inverse sediment-transport model, and extensive field measurements were used to discriminate between a tsunami and a storm striking Anegada, BVI a few centuries ago. In total, 161 cobbles and boulders were measured ranging from 1.5 to 830?kg at distances of up to 1?km from the shoreline and 2?km from the crest of a fringing coral reef. Transported clasts are composed of low porosity limestone and were derived from outcrops in the low lying interior of Anegada. Estimates of the near-bed flow velocities required to transport the observed boulders were calculated using a simple sediment-transport model, which accounts for fluid drag, inertia, buoyancy, and lift forces on boulders and includes both sliding and overturning transport mechanisms. Estimated near-bed flow velocities are converted to depth-averaged velocities using a linear eddy viscosity model and compared with water level and depth-averaged velocity time series from high-resolution coastal inundation models. Coastal inundation models simulate overwash by the storm surge and waves of a category 5 hurricane and tsunamis from a Lisbon earthquake of M 9.0 and two hypothetical earthquakes along the North America Caribbean Plate boundary. A modeled category 5 hurricane and three simulated tsunamis were all capable of inundating the boulder fields and transporting a portion of the observed clasts, but only an earthquake of M 8.0 on a normal fault of the outer rise along the Puerto Rico Trench was found to be capable of transporting the largest clasts at their current locations. Model results show that while both storm waves and tsunamis are capable of generating velocities and temporal acceleration necessary to transport large boulders near the reef crest, attenuation of wave energy due to wave breaking and bottom friction limits the capacity of storm waves to transport large clast at great inland distances. Through sensitivity analysis, we show that even when using coefficients in the sediment-transport model which yield the lowest estimated minimum velocities for boulder transport, storm waves from a category 5 hurricane are not capable of transporting the largest boulders in the interior of Anegada. Because of the uncertainties in the modeling approach, extensive sensitivity analyses are included and limitations are discussed.  相似文献   

7.
The strong motion displacement records available during an earthquake can be treated as the response of the earth as the a structural system to unknown forces acting at unknown locations. Thus, if the part of the earth participating in ground motion is modelled as a known finite elastic medium, one can attempt to model the source location and forces generated during an earthquake as an inverse problem in structural dynamics. Based on this analogy, a simple model for the basic earthquake source is proposed. The unknown source is assumed to be a sequence of impulses acting at locations yet to be found. These unknown impulses and their locations are found using the normal mode expansion along with a minimization of mean square error. The medium is assumed to be finite, elastic, homogeneous, layered and horizontal with a specific set of boundary conditions. Detailed results are obtained for Uttarkashi earthquake. The impulse locations exhibit a linear structure closely associated with the causative fault. The results obtained are shown to be in good agreement with reported values. The proposed engineering model is then used to simulate the acceleration time histories at a few recording stations. The earthquake source in terms of a sequence of impulses acting at different locations is applied on a 2D finite elastic medium and acceleration time histories are found using finite element methods. The synthetic accelerations obtained are in close match with the recorded accelerations.  相似文献   

8.
The aftershock sequence of the September 30th, 1993 Killari earthquake in the Latur district of Maharashtra state, India, recorded by 41 temporary seismograph stations are used for estimating 3-D velocity structure in the epicentral area. The local earthquake tomography (LET) method of Thurber (1983) is used. About 1500P and 1200S wave travel-times are inverted. TheP andS wave velocities as well asV P/VSratio vary more rapidly in the vertical as well as in the horizontal directions in the source region compared to the adjacent areas. The main shock hypocentre is located at the junction of a high velocity and a low velocity zone, representing a fault zone at 6–7 km depth. The estimated average errors ofP velocity andV P/VSratio are ±0.07 km/s and ±0.016, respectively. The best resolution ofP and S-wave velocities is obtained in the aftershock zone. The 3-D velocity structure and precise locations of the aftershocks suggest a ‘stationary concept’ of the Killari earthquake sequence.  相似文献   

9.
There appears to be little correlation of earthquake epicentres with known surface geological features in South Australia. Seismic wave travel‐time residuals are used to derive corrections for the velocity and depth parameters for the simple uniform crustal model which approximates to that in South Australia. Local studies of Moho depth in the seismic zone and analysis of travel‐time station corrections from both local earthquake and teleseismic data suggest that lateral and vertical variations in the South Australian crust are small. Data presented in this paper appear to be consistent with a plate tectonic model derived from focal mechanism studies (Stewart & Mount, 1972) for the active South Australian seismic zones.  相似文献   

10.
A dense seismic network (~100 stations) was operated in the Koyna-Warna region from January 2010 to May 2010, that allow us to collect 400 high-quality local earthquake data of magnitude less than 4. In this region, the fault structure and tectonic setting that accommodate the induced seismicity is not well understood. To investigate the seismotectonics of the region, we have inverted 7826 P- and 7047 S-P arrival times for 3-D Vp and Vp/Vs tomographic models along with hypocenters parameters in the region. Although, Dixit et al. (2014) have performed 3-D local earthquake tomography with double-difference tomography code using catalog differential time data. In this paper, Simulps14 code on the same data set is applied. For better approach P arrival time and S-P travel times are inverted directly for Vp, Vp/Vs variations and earthquake locations. High Vp ~5.9 to 6.5 and low to high Vp/Vs ~1.69-1.74 imaged in the hypocenter region. These features interpreted as a fluid bearing rock mass under high pore pressure. It is also observed that below the trap basement form a local topography depression between the Koyna and Warna Reservoirs. To the South of the Warna reservoir, intense seismic activity defines a major cluster of ~ 5 km width at 3 to7 km deep, located under the trap, where the basement is deepening. Such regions are inferred to be associated with the seismically active faults zones. The obtain velocity anomalies are reliable down to a depth of 10 km. This is also confirmed by the analysis of three resolution parameters viz. Hit count, Derivative Weight sum (DWS) and Resolution Diagonal Elements (RDE).  相似文献   

11.
Saudi Arabia is characterized as largely aseismic; however, the tectonic plate boundaries that surround it are very active. To improve characterization of seismicity and ground motion hazard, the Saudi Arabian Digital Seismic Network (SANDSN) was installed in 1998 and continues to be operated by the Saudi Geological Survey (SGS) and King Abdulaziz City for Science and Technology (KACST). This article describes research performed to improve seismic hazard parameters using earthquake location and magnitude calibration of the high-quality SANDSN data. The SANDSN consists of 38 seismic stations, 27 broadband, and 11 short period. All data are telemetered in real time to a central facility at KACST in Riyadh. The SANDSN stations show low background noise levels and have good signal detection capabilities; however, some stations show cultural noise at frequencies above 1.0 Hz. We assessed the SANDSN event location capabilities by comparing KACST locations with well-determined locations derived from ground truth or global observations. While a clear location bias exists when using the global average iasp91 earth model, the locations can be improved by using regional models optimized for different tectonic source regions. The article presents detailed analysis of some events and Dead Sea explosions where we found gross errors in estimated locations. New velocity models we calculated that should improve estimated locations of regional events in three specific regions include (1) Gulf of Aqabah—Dead Sea region, (2) Arabian Shield, and (3) Arabian Platform. Recently, these models were applied to the SANDSN to improve local and teleseismic event locations and to develop an accurate magnitude scale for Saudi Arabia. The Zagros Thrust presents the most seismic hazard to eastern Saudi Arabia because of the frequent occurrence of earthquakes. Although these events are 200 km or further from the Arabian coast, wave propagation through sedimentary structure of the Gulf causes long-duration ground motions for periods between 3 and 10 s. Such ground motions could excite response in large engineered structures (e.g., tall buildings and long bridges) such as was experienced after the November 22, 2005 Qeshm Island earthquake off the southern coast of Iran.  相似文献   

12.
Several pieces of studies on the January 26, 2001, Bhuj earthquake (Mw 7.6) revealed that the mainshock was triggered on the hidden unmapped fault in the western part of Indian stable continental region that caused a huge loss in the entire Kachchh rift basin of Gujarat, India. Occurrences of infrequent earthquakes of Mw 7.6 due to existence of hidden and unmapped faults on the surface have become one of the key issues for geoscientific research, which need to be addressed for evolving plausible earthquake hazard mitigation model. In this study, we have carried out a detailed autopsy of the 2001 Bhuj earthquake source zone by applying three-dimensional (3-D) local earthquake tomography (LET) method to a completely new data set consisting of 576 local earthquakes recorded between November 2006 and April 2009 by a seismic network consisting of 22 numbers of three-component broadband digital seismograph stations. In the present study, a total of 7560 arrival times of P-wave (3820) and S-wave (3740) recorded at least 4 seismograph stations were inverted to assimilate 3-D P-wave velocity (Vp), S-wave velocity (Vs), and Poisson’s ratio (σ) structures beneath the 2001 Bhuj earthquake source zone for reliable interpretation of the imaged anomalies and its bearing on earthquake hazard of the region. The source zone is located near the triple junction formed by juxtapositions of three Indian, Arabian, and Iranian tectonic plates that might have facilitated the process of brittle failure at a depth of 25 km beneath the KRB, Gujarat, which caused a gigantic loss to both property and persons of the region. There may be several hidden seismogenic faults around the epicentral zone of the 2001 Bhuj earthquake in the area, which are detectable using 3-D tomography to minimize earthquake hazard for a region. We infer that the use of detailed 3-D seismic tomography may offer potential information on hidden and unmapped faults beneath the plate interior to unravel the genesis of such big damaging earthquakes. This study may help in evolving a comprehensive earthquake risk mitigation model for regions of analogous geotectonic settings, elsewhere in the world.  相似文献   

13.
The crustal P-wave velocity structure beneath the Loess Plateau and surrounding regions, which is a transition zone between the Tibetan Plateau and the Huabei and Huanan Blocks of China, was tomographically imaged for the first time down to the depth of 80 km. The seismic sources comprised both local and regional earthquakes and the reconstruction was accomplished using a newly developed simultaneous inversion procedure, which solves for both the earthquake hypocentres and the 3-D velocity field. Special features of the procedure include a modified shortest path algorithm for the bent ray tracing, an analytic Jacobian matrix for solution updating, and a damped, minimum norm, constrained non-linear solver based on a CG approach. The velocity structure obtained is more complex than previously thought. The lateral velocity variations are consistent with the U-shaped seismic ring structure but the vertical variations along the Fenwei seismic belt are consistent with the mechanism of the Mountain-Basin generalized system formation. The velocity images of Loess Plateau, the transition zone may help to build a geodynamic mechanism for inland China, to explain the formation of ground fissures so prevalent in the Loess Plateau.  相似文献   

14.
A moderately sized pure, normal dip-slip earthquake occurred in the Roer Valley Graben (RVG) near Roermond, The Netherlands on 13 April 1992 at 1h 20m UTC. This contribution presents an overview of the locations, fault-plane solutions and magnitudes obtained for the mainshock and the aftershocks by the different scientific groups involved in their analysis. The observed maximum intensity of VII is compared with that of other earthquakes in the region to illustrate the relatively low level of damage caused by the mainshock.
Using SH and Lg waves recorded at seven local and regional broadband stations, we determine a seismic moment of 1.4 × 1017 Nm, a static stress drop of 9.7 MPa and an average displacement of 33 cm over a rupture surface of approximately 11 km2.
The seismotectonics of the region extending from the RVG to the city of Liège including the western part of the Rhenish Massif (WRM) and the eastern part of the Brabant Massif (EBM) is analysed based on the Roermond earthquake studies and data collected since 1985 by the Belgian seismic network. The geographical distribution of focal mechanism reveals four different seismotectonic regimes in this area. From stress tensor inversion we find that 3 coincides with the minimum horizontal stress component in the RVG, the WRM and possibly in the EBM, while in the Liège region 3 is approximately vertical. The minimum horizontal stress component shows a 30° rotation to the north in the WRM and the Liège region and possibly 50° in the EBM when compared with the minimum horizontal stress component in the RVG.  相似文献   

15.
The seismic response of existing earth dams in Iran is important after an earthquake both to provide emergency supplies and to society as well as to ensure structural safety in engineering terms. Better seismic capacity of earth dam results in less structural damage and reduced impacts following an earthquake disaster. Indirect as well as direct costs following earthquakes have gained much attention from both the engineering and socioec onomic research communities in the last few decades. This study is a valuable tool used to study the response of geotechnical structures to infrequent or extreme events such as earthquakes. The Avaj earthquake (2002, Iran) was applied to a series of model tests which was conducted to study the response of soil profiles under seismic loading. The acceleration records at different locations within the soil bed and at its surface along with the settlement records at the surface were used to analyze the soil seismic response. A combination of several software packages with a generated visual user interface computer code by authors named as “Abbas Converter” were employed to evaluate the variation of shear modulus and damping ratio with shear strain amplitude to assess their effects on site response. The proposed method was applied to the Korzan earth dam of Hamedan province in Iran. Site response analysis using the measured shear wave velocity, estimated modulus reduction, and damping ratio as input parameters produced good agreement with the computed site response in this study.  相似文献   

16.
The model of the Poisson point process is too vague for earthquake locations in space and time: earthquakes tend to cluster in middle distances and to repulse in large ones. The Poisson point model with variable density makes it possible to describe the tendency for clustering but does not reveal the periodicity of clusters. The author proposes the point-process model where locations of points are determined not by densities of point distribution, but by densities of interpoint differences distribution. In the model, a latent periodicity is revealed and used for prediction of a point process. In 1983, the point-process model prediction was made for the Kuril Islands for 1983–1987 and two signs of danger in time and location were determined. Then they were confirmed by strong earth-quakes. In 1989, a similar prediction was made for North Armenia. The Spitak earthquake in 1988 is clearly seen from the data of previous earthquakes.  相似文献   

17.
We refine the 1-D velocity model of the Central India Tectonic Zone (CITZ) using well-selected arrival times of P- and S-phases of 354 local earthquakes of magnitude (Mw) between 2.0 and 5.8, recorded by national seismic network from May 1997 to March 2016. Further, we have determined the source mechanisms of 26 selected local events using moment tensor inversion to characterize the dynamics beneath the CITZ. The best-fit simulation between observed and synthetic waveforms obtained the nodal and auxiliary planes of the each faults associated with the earthquake moment magnitude (Mw) for each event. Depth of the fault plane along the CITZ varies from 5 to 38 km. From this study, we found that the western part along the CITZ shows minimum focal depth and reaches maximum 38 kms at Jabalpur in the eastern part. This complex nature of earthquake dynamics occurrence along the CITZ. We propose that the curviplanar the CITZ dominated with sinistral curvature is subjected to compression along the longer ~E–W segments and transtension along shorter segments with ~NE–SW orientations. The occurrences of normal faulting, intrusion of mafic plutons and CLVD mechanisms for earthquakes are interpreted to be linked to the transtension zones and reverse mechanisms associated with the compressions along ~E–W segments.  相似文献   

18.
A tripartite earthquake response spectrum exhibits peak values of acceleration, velocity, and displacement in concert, each as a function of natural frequency of vibration. Because cokriging is a regionalized variable technique for multiple variable estimation, it was employed to jointly estimate peak values of acceleration, velocity, and displacement through a frequency discretization process. The objective of this application was to develop a technique for estimation of response spectra at uninstrumented locations. Because magnitudes of the three response variables differed, these data were normalized prior to cokriging. This process simply involved dividing each type of variable by its maximum value for a given frequency; hence, values of each type of variable ranged between zero and one. This allowed better accuracy in developing cross-variograms. Cokriging proved to be an efficient and accurate technique to use for the estimation of tripartite response spectra.  相似文献   

19.
A deterministic seismic hazard analysis was conducted to address the effect of local soil conditions on earthquake-induced strong ground motion in the Las Vegas Basin, Nevada (US). Using a large geological and geotechnical database, two response units were defined: a fine-grained unit, predominantly clay; and a coarse-grained unit, predominantly gravel. A moderate number of high-quality shallow shear wave velocity measurements were collected from which characteristic shear wave velocity profiles were developed for each response unit. An equivalent-linear one-dimensional site response model was used. The model was calibrated using a basin-wide, small-strain ground motion database. Calibration tests showed that ground motion projections become increasingly conservative with increasing ground-motion amplitude. Projections were overconservative for the coarse-grained response unit, likely due to the sparseness of the velocity database. For the earthquake response analyses, historical ground motions were used to model characteristic ‘bedrock’ motion for earthquakes on 10 faults judged to be critical. Response spectral envelopes were generated for each unit through Monte-Carlo simulations. For the fine-grained response unit, 95th percentile peak ground acceleration, peak spectral acceleration and predominant period were 310 cm/s2, 1100 cm/s2, and 0.29 s, respectively. With respect to codified design spectra, projections are lower at short periods and higher at long periods. Projections of peak spectral accelerations for the coarse-grained response unit, were more than double that of codified spectra; however, they are believed to be overconservative. Near-fault effects and basin-edge effects, though potentially important, were not considered in these analyses.  相似文献   

20.
A three-dimensional model of near-surface shear-wave velocity in the deep alluvial basin underlying the metropolitan area of Las Vegas, Nevada (USA), is being developed for earthquake site response projections. The velocity dataset, which includes 230 measurements, is interpolated across the model using depth-dependent correlations of velocity with sediment type. The sediment-type database contains more than 1 400 well and borehole logs. Sediment sequences reported in logs are assigned to one of four units. A characteristic shear-wave velocity profile b developed for each unit by analyzing closely spaced pairs of velocity profiles and well or borehole logs. The resulting velocity model exhibits reasonable values and patterns, although it does not explicitly honor the measured shear-wave velocity profiles. Site response investigations that applied a preliminary version of the velocity model support a two-zone ground-shaking hazard model for the valley. Areas in which clay predominates in the upper 30 m are predicted to have stronger ground motions than the rest of the basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号