首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The matter-gravity system is examined in a path integral approach for the case of conformal matter coupled to a Friedman-Robertson-Walker space time. In particular the case of gravitational potentials of interest in cosmology for which the universe tunnels from a small radius is examined. It is observed that in the presence of such gravitational horizons the universe evolves in a complex time and it is shown how a classical time and temperature emerge. Correspondingly, one will have compensating quantum and thermal fluctuations for the matter and gravity system and it is noted that the unstable mode of gravity corresponding to the universe tunneling into existence will be compensated by an analogous mode for matter corresponding to its creation. This last point is examined in a simple De Sitter model with conformal matter and a relation is found between the cosmological constant, the number of matter fields and the self coupling of matter responsable for its instability.  相似文献   

2.
We report a design solution for a highly reliable, low-noise and extremely efficient cryogenically cooled transmit/receive unit for a large antenna system meant for radio-astronomical observations and deep-space communications in the X band. We describe our design solution and the results of a series of laboratory and antenna tests carried out in order to investigate the properties of the cryogenically cooled low-noise amplifier developed. The transmit/receive unit designed for deep-space communications (Mars missions, radio observatories located at Lagrangian point L2, etc.) was used in practice for communication with live satellites including “Radioastron” observatory, which moves in a highly elliptical orbit.  相似文献   

3.
This paper discusses an approach for designing missions to Phobos that do not require a critical maneuver in proximity of the moon. A low-energy transfer is designed that utilizes the aspherical mass distribution of Phobos to capture a spacecraft into a distant retrograde orbit (DRO) for the mission duration. The process for generating stable DROs in the Mars–Phobos system is discussed along with the method for generating and surveying a set of ballistic capture trajectories (BCTs) for DROs with altitudes between 0.5 and 14 km above Phobos. Statistical analysis of the BCT set reveals options for designing a mission to the desired DRO. This approach can be used in any three-body system when a significant perturbation is present, such as Phobos’ aspherical co-rotating gravity field.  相似文献   

4.
The distribution of observations giving the smallest errors for specific purposes is found in the general case by a numerical procedure. Examples consider the minimum error ellipse for the recovery of a distant asteroid, a main belt object and the position in the target plane for a close approach to the Earth. The observations should be performed only on a few critical nights and inefficient times avoided. The methods are of interest for the optimum strategies for surveys and the determination of initial orbits.  相似文献   

5.
S.J. Peale  P. Cassen 《Icarus》1978,36(2):245-269
The possible contributions of tidal heating to lunar thermal history are investigated. Analytic determinations of tidal dissipation in a homogeneous, incompressible Moon and in a two-layer Moon with a soft core and rigid mantle are given as a function of position in the Moon and as a function of Earth-Moon separation. The most recent information on the historical values of the lunar obliquity is employed, and we present results for the constant values of orbital eccentricity of e = 0.0 and e = 0.055. For a simplified orbital evolution and a dissipation factor Q = 100, the total increase in the mean lunar temperature for the homogeneous case does not exceed several tens of degrees. For the two-layer models the local dissipation may be enhanced over that of the homogeneous Moon by a factor of 5 for a core radius of 0.5 lunar radii and by a factor of 100 for a core radius of 0.95 lunar radii. The corresponding factors for the total dissipation are 3 and 15 for the two values of core radii, respectively. We conclude that tidal contributions to lunar thermal history are probably not important. But under special circumstances the enhanced dissipation in a two-layer Moon could have led to a spectacular thermal event.  相似文献   

6.
We present a method for computing the spectrum of the integral equation for radiation transfer in a cylinder. This method, as in the previous articles in this series, is based on a Hankel transformation applied to the equation. Calculating the spectrum then reduces to solving the equation for the auxiliary function for each eigenvalue separately. The corresponding eigenfunction is then found by an additional integration. We find asymptotic expressions for the eigenvalues and the eigenfunctions for a cylinder with a large optical radius when there is scattering in a spectral line, with complete redistribution over frequency when the absorption coefficient obeys a power law. We also derive equations determining the quantities entering into these expressions. For the simplest kernel of the equation all quantities can be expressed in terms of Bessel functions and roots of a transcendental equation.Translated from Astrofizika, Vol. 38, No. 1, pp. 75–88, January–March, 1995.  相似文献   

7.
The nearest neighbor distance distribution law is generalized to fractal stellar media. The asymptotics of the distribution law for the magnitude of a large random force has been derived for them. An expression for the effective mean interparticle distance in such a medium has been found. The derived asymptotics for a power-law change in conditional density is shown to coincide closely with the results obtained within the framework of a general approach. We conclude that the large random forces in a fractal stellar medium are entirely attributable to the nearest neighbors (clumps) located in a sphere with an effective radius determined from a generalized Holtsmark distribution.  相似文献   

8.
Wim J. Weber 《Solar physics》1981,69(1):119-130
If a solar flare originates from the dissipation of magnetic energy, available in abundance in a larger region, this dissipation must take place very rapidly. A local topological change in the magnetic field structure may be sufficient to start the dissipation process. Such a change in topology might be obtained by fast reconnection in a smaller region, such as e.g. in the Sweet-Parker model, as a result of current-driven microinstabilities.Among the candidates satisfying the requirements to obtain large enough currents, such as magnetically neutral or current sheets and MHD shocks, the latter are shown to be most probable. In a fast MHD shock the (thermal) results of turbulence do in fact destroy the conditions for turbulence. However, in this work we show numerically that the nonlinear steepening mechanism of such a shock is able to restore the driving current for a large range of parameters and over a long time. This is still true if the most difficult threshold for turbulence, being that for Langmuir turbulence, is to be achieved. The critical parameter, not only for the occurrence of turbulence but also for the restoration of the driving current, is the shock thickness.  相似文献   

9.
10.
The X-ray luminosity function of low-mass binaries constructed from the observations of point like X-ray sources in galactic bulges can be explained in terms of the main evolutionary relations for the rate of mass transfer onto a compact object. The observed scatter of luminosities for individual low-mass X-ray sources in our Galaxy is shown to be satisfactorily described by a symmetric quasi-Lorentz curve with a dispersion proportional to the mean luminosity. Such a form of the mean luminosity function for individual sources does not affect the power-law pattern of the luminosity function for the entire population of sources that is expected for a power-law dependence of the mass transfer rate in a close binary on the mass of the Roche lobe—filling optical component.  相似文献   

11.
The problem of instability arising in a composite system consisting of an infinitely conducting hydromagnetic fluid interacting through gravitational forces with one or more than one neutral gas, is investigated, allowing for a possible relative streaming between the component fluids. Instability criteria are derived for special cases of a two-component (static or relatively streaming) system and for a three-component system consisting of two gases contra-streaming in the presence of a stationary background gas. It is found that for a static system only one unstable mode exists for wave numbers less than a critical value given by the square root of the sum of the squares of the Jeans's wave numbers for individual gases. However, for a configuration, where components are endured with characteristic streaming speeds, there are present simultaneously more than one unstable modes.  相似文献   

12.
In this study we present the results from realistic N -body modelling of massive star clusters in the Magellanic Clouds. We have computed eight simulations with   N ∼ 105  particles; six of these were evolved for at least a Hubble time. The aim of this modelling is to examine in detail the possibility of large-scale core expansion in massive star clusters, and search for a viable dynamical origin for the radius–age trend observed for such objects in the Magellanic Clouds. We identify two physical processes which can lead to significant and prolonged cluster core expansion – mass-loss due to rapid stellar evolution in a primordially mass-segregated cluster, and heating due to a retained population of stellar mass black holes, formed in the supernova explosions of the most massive cluster stars. These two processes operate over different time-scales and during different periods of a cluster's life. The former occurs only at early times and cannot drive core expansion for longer than a few hundred Myr, while the latter typically does not begin until several hundred Myr have passed, but can result in core expansion lasting for many Gyr. We investigate the behaviour of each of these expansion mechanisms under different circumstances – in clusters with varying degrees of primordial mass segregation, and in clusters with varying black hole retention fractions. In combination, the two processes can lead to a wide variety of evolutionary paths on the radius–age plane, which fully cover the observed cluster distribution and hence define a dynamical origin for the radius–age trend in the Magellanic Clouds. We discuss in some detail the implications of core expansion for various aspects of globular cluster research, as well as the possibility of observationally inferring the presence of a significant population of stellar mass black holes in a cluster.  相似文献   

13.
For both asteroids and meteor streams, and also for comets, resonances play a major role for their orbital evolutions but on different time scales. For asteroids both mean motion resonances and secular resonances not only structure the phase space of regular orbits but are mainly at the origin for the inherent chaos of planet crosser objects.For comets and their chaotic routes temporary trapping into orbital resonances is a well known phenomenon. In addition for slow diffusion through the Kuiper belt resonances are the only candidates for originating a slow chaos.Like for asteroids, resonances with Jupiter play a major role for the orbital evolution of meteor streams. Crossing of separatrix like zones appears to be crucial for the formation of arcs and for the dissolution of streams. In particular the orbital inclination of a meteor stream appears to be a critical parameter for arc formation. Numerical results obtained in an other context show that the competition between the Poynting-Robertson drag and the gravitational interaction of grains near the 2/1 resonance might be very important in the long run for the structure of meteor streams.  相似文献   

14.
An analysis is made to calculate input impedance of a loop antenna for radiation of the VLF whistler mode in the magnetosphere. The magnetosphere is assumed to be represented by a cold, uniform and collisionless magnetoplasma medium. Assuming a uniform current distribution of a circular loop, oriented at an arbitrary angle with respect to the Earth's magnetic field line, several closed-form expressions for the loop impedance have been derived. It is found that the loop input reactance is in substantial agreement with the self-inductance of a loop in free space and that the radiation resistance for a small loop can be as large as ~10 2 Ω. It is also found that a second order quasi-static theory is quite valid for determining the input impedance for small loops radiating VLF whistlers in the magnetosphere.  相似文献   

15.
The dispersion relation is derived for electrostatic dust-cyclotron (EDC) waves in a collisional plasma with dust grains having both positive and negative charges. The critical electric fields for excitation of two EDC modes in such a plasma are numerically calculated for a laboratory-type plasma.  相似文献   

16.
We present the results of our tests of an acousto-optical imaging spectrophotometer with a CCD detector for astronomical observations. The tunable acousto-optical filter, based on a paratellurite single crystal with a 13 Å pass band operates in the wavelength range 6300–11000 Å. We obtained image spectra for the planetary nebula NGC 7027 in the Hα line and for Saturn in the methane absorption band, as well as Hα and continuum images for the nuclear region of the Seyfert galaxy NGC 1068.  相似文献   

17.
A pictorial explanation for shear-Hall instability is suggested and shows that the shear flow is not necessary for the instability because its role can be played by the Hall effect of an inhomogeneous backgroundmagnetic field. Linear stability analysis for a simplemodel of magnetic field varying periodically in space confirms such a “double Hall” instability. Numerical computations show a considerable increase in Ohmic dissipation rate at the nonlinear stage of instability development. Field dissipation has a spiky character associated with magnetic reconnection in current sheets and X-points. Double Hall instability can be significant for magnetic field dissipation in neutron star crusts and, possibly, in the solar corona.  相似文献   

18.
19.
We found the equilibrium conditions for a self-gravitating toroidal vortex by taking thermal pressure into account. These conditions are shown to significantly differ from those for a disk or a sphere. The evolution of a thin vortex turns it into a compact vortex that loses mechanical stability for low masses at a polytropic index γ<4/3 but retains stability for sufficiently high masses and densities determined by the velocity circulation in the vortex.  相似文献   

20.
A new approach is presented for the problem of planar optimal impulsive rendezvous of a spacecraft in an inertial frame near a circular orbit in a Newtonian gravitational field. The total characteristic velocity to be minimized is replaced by a related characteristic-value function and this related optimization problem can be solved in closed form. The solution of this problem is shown to approach the solution of the original problem in the limit as the boundary conditions approach those of a circular orbit. Using a form of primer-vector theory the problem is formulated in a way that leads to relatively easy calculation of the optimal velocity increments. A certain vector that can easily be calculated from the boundary conditions determines the number of impulses required for solution of the optimization problem and also is useful in the computation of these velocity increments. Necessary and sufficient conditions for boundary conditions to require exactly three nonsingular non-degenerate impulses for solution of the related optimal rendezvous problem, and a means of calculating these velocity increments are presented. A simple example of a three-impulse rendezvous problem is solved and the resulting trajectory is depicted. Optimal non-degenerate nonsingular two-impulse rendezvous for the related problem is found to consist of four categories of solutions depending on the four ways the primer vector locus intersects the unit circle. Necessary and sufficient conditions for each category of solutions are presented. The region of the boundary values that admit each category of solutions of the related problem are found, and in each case a closed-form solution of the optimal velocity increments is presented. Similar results are presented for the simpler optimal rendezvous that require only one-impulse. For brevity degenerate and singular solutions are not discussed in detail, but should be presented in a following study. Although this approach is thought to provide simpler computations than existing methods, its main contribution may be in establishing a new approach to the more general problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号