首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Through a set of observations including satellite, cruise and mooring data during May-July 1997 the transition between the downwelling and upwelling regimes off Galicia has been characterized. The poleward flow, typical of downwelling, was associated with a series of mesoscale eddies and interacted with coastal freshwater inputs. The poleward flow along the continental slope was separated into an offshore branch and a nearshore branch by a well-defined equatorward flow and both associated with a prominent salinity maximum. With the onset of upwelling-favorable winds, equatorward flow was established over the entire shelf. At the same time, a buoyant, warm surface layer spread out over the shelf from the Rías as water previously forced in by southerly winds was flushed out by the upwelling winds. The completed transition to summertime coastal upwelling took place after the cruise but was evident in satellite images. A conceptual model is used to demonstrate that the coastal orientation with respect to the upwelling winds enhances offshore flow outside the Rías and displaces the poleward flow offshore after several days of upwelling.  相似文献   

2.
《Continental Shelf Research》2005,25(9):1003-1022
The coastal upwelled waters of the Guajira coast, the most northerly peninsula of South America, were studied on the basis of historical data bases, remotely sensed data, and three oceanographic cruises. The Guajira Peninsula is the locus of particularly strong upwelling because it protrudes into the Caribbean Low-Level Wind Jet and its west coast parallels the direction of the strongest winds. The year-round upwelling varies with the wind forcing: strongest in December–March and July, and weakest in the October–November rainy season. The east–west temperature, salinity and density front that delimits the upwelling lies over the shelf edge in the east of the peninsula but separates from the south-westward trending topography to the west. A coastal westward surface jet geostrophically adjusted to the upwelling flows along the front, and an eastward sub-surface counterflow is trapped against the Guajira continental slope. The undercurrent shoals toward the western limit of the upwelling, Santa Marta, beyond which point it extends to the surface. Some of the westward jet re-circulates inshore with the counterflow but part continues directly west to form an upwelling filament. Much of the mesoscale variation is associated with upwelling filaments, which expel cooler, chlorophyll-rich coastal upwelling waters westward and northward into the Caribbean Sea. Freshwater plumes from the Magdalena and Orinoco rivers influence the area strongly, and outflow from Lake Maracaibo interacts directly with upwelled waters off Guajira. Another important factor is the Aeolian input of dust from the Guajira desert by episodes of offshore winds.  相似文献   

3.
A three-dimensional baroclinic nonlinear numerical model is employed to investigate the summer upwelling in the northern continental shelf of the South China Sea (NCSCS) and the mechanisms of the local winds inducing the coastal upwelling, associated with the QuikSCAT wind data. First, the persistent signals of the summer upwelling are illustrated by the climatological the Advanced Very High-Resolution Radiometer (AVHRR) Sea Surface Temperature (SST) image over 1985–2006 and field observations in 2006 summer. Then, after the successful simulation of the summer upwelling in the NCSCS, four numerical experiments are conducted to explore the different effects of local winds, including the wind stress and wind stress curl, on the coastal upwelling in two typical strong summer upwelling regions of the NCSCS. The modeled results indicate that the summer upwelling is a seasonal common phenomenon during June–September in the NCSCS with the spatial extent of a basin-scale. Typical continental shelf upwelling characteristics are clearly shown in the coastal surface and subsurface water, such as low temperature, high salinity and high potential density in the east of the Hainan Island, the east of the Leizhou Peninsula and the southeast of the Zhanjiang Bay (noted as the Qiongdong-QD), and the inshore areas from the Shantou Coast to the Nanri Islands of the Fujian Coast (noted as the Yuedong-YD). The analysis of the QuikSCAT wind data and modeled upwelling index suggests that the local winds play significant roles in causing the coastal upwelling, but the alongshore wind stress and wind stress curl have different contributions to the upwelling in the Qiongdong (QDU) and the coastal upwelling in the Yuedong (YDU), respectively. Furthermore, model results from the numerical experiments show that in the YD the stable alongshore wind stress is a very important dynamic factor to induce the coastal upwelling but the wind stress curl has little contribution and even unfavorable to the YDU. However, in the QD the coastal upwelling is strongly linked to the local wind stress curl. It is also found that not only the offshore Ekman transport driven by the alongshore wind stress, the wind stress curl-induced Ekman pumping also plays a crucial effect on the QDU. Generally, the wind stress curl even has more contributions to the QDU than the alongshore wind stress.  相似文献   

4.
An 8-year database of sea surface temperature (SST), 7 years of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color images, wind fields, and numerical model results are analyzed to identify regions and periods of coastal upwelling on the western and southern shelves of the Gulf of Mexico. On the seasonal scale, it is found that on the Tamaulipas, Veracruz, and southwestern Texas–Louisiana shelves there are upwelling favorable winds from April to August, when southeasterly winds are dominant and cold SST anomalies associated with upwelling are observed along their coasts. However, during summer, values of chlorophyll-a concentration are lower than those in autumn and winter, which are high due to advection of old bloom biological material from upstream. During winter, there is a cold front on the Tamaulipas shelf produced by advection of cold water from the Texas–Louisiana shelf and not due to upwelling. On the eastern Campeche Bank, persistent upwelling is observed due to favorable winds throughout the year with cold SST and large chlorophyll-a content along the inner shelf from May to September. On the Tamaulipas shelf, the summer upwelling delays the annual SST peak until September, while in most of the Gulf SST peaks in August. This difference is due to the end of the upwelling favorable wind conditions and the September seasonal current reversal.  相似文献   

5.
The Río de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28°S) during austral winter and 32°S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds.  相似文献   

6.
Mesoscale circulation along the Sakhalin Island eastern coast   总被引:1,自引:1,他引:0  
The seasonal and interannual variability of mesoscale circulation along the eastern coast of the Sakhalin Island in the Okhotsk Sea is investigated using the AVISO velocity field and oceanographic data for the period from 1993 to 2016. It is found that mesoscale cyclones with the horizontal dimension of about 100 km occur there predominantly during summer, whereas anticyclones occur predominantly during fall and winter. The cyclones are generated due to a coastal upwelling forced by northward winds and the positive wind stress curl along the Sakhalin coast. The anticyclones are formed due to an inflow of low-salinity Amur River waters from the Sakhalin Gulf intensified by southward winds and the negative wind stress curl in the cold season. The mesoscale cyclones support the high biological productivity at the eastern Sakhalin shelf in July– August.  相似文献   

7.
The role of wind-driven upwelling in stratifying a semiarid bay in the Gulf of California is demonstrated with observations in Bahía Concepción, Baja California Sur, Mexico. The stratification in Bahía Concepción is related to the seasonal heat transfer from the atmosphere as well as to cold water intrusions forced by wind-driven upwelling. During winter, the water column is relatively well-mixed by atmospheric cooling and by northwesterly, downwelling-favorable, winds that typically exceed 10 m/s. During summer, the water column is gradually heated and becomes stratified because of the heat flux from the atmosphere. The wind field shifts from downwelling-favorable to upwelling-favorable at the beginning of summer, i.e., the winds become predominantly southeasterly. The reversal of wind direction triggers a major cold water intrusion at the beginning of the summer season that drops the temperature of the entire water column by 3–5 °C. The persistent upwelling-favorable winds during the summer provide a continuous cold water supply that helps maintain the stratification of the bay.  相似文献   

8.
Currents, coastal winds, coastal sea level, and coastal ocean temperatures were observed at a number of northern Baja California Pacific sites between October 1978 and October 1979. Coastal winds were weakly southward on average and fluctuated north-south throughout the year. Fluctuations were uncorrelated over alongshore separations of 200 km. Coastal winds differed considerably from the large-scale offshore wind estimate (Bakun's Index) both in strength and in variability. At 30°50′N the mean currents were weakly equatorward at 25 m depth and weakly poleward at 42 and 60 m in a water depth of 75 m. The seasonal mean flow was equatorward from October to April and poleward from April to October at the shallower level but poleward all year near bottom. The fluctuations on a time scale of days to weeks were about an order of magnitude stronger than the seasonal variation, were oriented predominantly alongshore, and were quasi-barotropic in nature. Empirical orthogonal analyses showed that almost 90% of the variability could be represented by a single empirical mode. The alongshore fluctuations were significantly correlated with coastal sea level from October to July but during the rest of the year correlation was insignificant, possibly as a result of offshore eddies approaching the shelf.Observations at 25- and 60-m depth at a second mooring 100 km south of the first indicated a mean alongshore divergence from April to July 1979, consistent with long-term mean geostrophic flow patterns for the area. In general, currents were correlated alongshore but a two-week event in May, which manifested itself differently at the two sites, was suggestive of the impingement of an eddy onto the continental shelf. Currents and winds were poorly correlated in general.Temperature variation at sites along 700 km of coast showed a strong seasonal variation with the winter cool period extended by spring upwelling. Days-to-weeks scale fluctuations were similar at the five northernmost sites and correlations alongshore were significant for separations of up to 400 km. No evidence of propagating events was found in coastal temperatures or in currents.  相似文献   

9.
Nearshore currents of the southern Namaqua shelf were investigated using data from a mooring situated three and a half kilometres offshore of Lambert's Bay, downstream of the Cape Columbine upwelling cell, on the west coast of South Africa. This area is susceptible to harmful algal blooms (HABs) and wind-forced variations in currents and water column structure are critical in determining the development, transport and dissipation of blooms. Time series of local wind data, and current and temperature profile data are described for three periods, considered to be representative of the latter part of the upwelling season (27 January–22 February), winter conditions (5–29 May) and the early part of the upwelling season (10 November–12 December) in 2005. Differences observed in mean wind strength and direction between data sets are indicative of seasonal changes in synoptic meteorological conditions. These quasi-seasonal variations in wind forcing affect nearshore current flow, leading to mean northward flow in surface waters early in the upwelling season when equatorward, upwelling-favourable winds are persistent. Mean near-surface currents are southward during the latter part of the upwelling season, consistent with more prolonged periods of relaxation from equatorward winds, and under winter conditions when winds were predominantly poleward. Within these seasonal variations in mean near-surface current direction, two scales of current variability were evident within all data sets: strong inertial oscillations were driven by diurnal winds and introduced vertical shear into the water column enhancing mixing across the thermocline, while sub-inertial current variability was driven by north–south wind reversals at periods of 2–5 days. Sub-inertial currents were found to lag wind reversals by approximately 12 h, with a tendency for near-surface currents to flow poleward in the absence of wind forcing. Consistent with similar sites along the Californian and Iberian coasts, the headland at Cape Columbine is considered to influence currents and circulation patterns during periods of relaxation from upwelling-favourable winds, favouring the development of a nearshore poleward current, leading to poleward advection of warm water, the development of stratification, and the creation of potentially favourable conditions for HAB development.  相似文献   

10.
Observations of the Hudson River plume were taken in the spring of 2006 in conjunction with the Lagrangian Transport and Transformation Experiment using mooring arrays, shipboard observations, and satellite data. During this time period, the plume was subjected to a variety of wind, buoyant, and shelf forcings, which yield vastly different responses in plume structure including a downstream recirculating eddy. During weak and downwelling winds, the plume formed a narrow buoyant coastal current that propagated downstream near the internal wave speed. Freshwater transport during periods when the downwelling wind was closely aligned with the coast was near the river discharge values. During periods with a cross-shore component to the wind, freshwater transport in the coastal current estimated by the mooring array is less than the river discharge due to a widening of the plume that leads to the internal Rossby radius scaling for the plume width to be invalid. The offshore detachment of plume and formation of a downstream eddy that is observed surprisingly persisted for 2 weeks under a variety of wind forcing conditions. Comparison between mooring, shipboard, and satellite data reveal the downstream eddy is steady in time. Shipboard transects yield a freshwater content equal to the previous 3 days of river discharge. The feature itself was formed due to a large discharge following a strong onshore wind. The plume was then further modified by a brief upwelling wind and currents influenced by the Hudson Shelf Valley. The duration of the detachment and downstream eddy can be explained using a Wedderburn number which is largely consistent with the wind strength index described by Whitney and Garvine (J Geophys Res 110:C03014 1997).  相似文献   

11.
The majority of water and sediment discharge from the small, mountainous watersheds of the US West Coast occurs during and immediately following winter storms. The physical conditions (waves, currents, and winds) within and acting upon the proximal coastal ocean during these winter storms strongly influence dispersal patterns. We examined this river–ocean temporal coherence for four coastal river–shelf systems of the US West Coast (Umpqua, Eel, Salinas, and Santa Clara) to evaluate whether specific ocean conditions occur during floods that may influence coastal dispersal of sediment. Eleven years of corresponding river discharge, wind, and wave data were obtained for each river–shelf system from USGS and NOAA historical records, and each record was evaluated for seasonal and event-based patterns. Because near-bed shear stresses due to waves influence sediment resuspension and transport, we used spectral wave data to compute and evaluate wave-generated bottom-orbital velocities. The highest values of wave energy and discharge for all four systems were consistently observed between October 15 and March 15, and there were strong latitudinal patterns observed in these data with lower discharge and wave energies in the southernmost systems. During floods we observed patterns of river–ocean coherence that differed from the overall seasonal patterns. For example, downwelling winds generally prevailed during floods in the northern two systems (Umpqua and Eel), whereas winds in the southern systems (Salinas and Santa Clara) were generally downwelling before peak discharge and upwelling after peak discharge. Winds not associated with floods were generally upwelling on all four river–shelf systems. Although there are seasonal variations in river–ocean coherence, waves generally led floods in the three northern systems, while they lagged floods in the Santa Clara. Combined, these observations suggest that there are consistent river–ocean coherence patterns along the US West Coast during winter storms and that these patterns vary substantially with latitude. These results should assist with future evaluations of flood plume formation and sediment fate along this coast.  相似文献   

12.
The influence of meteorological variation, i.e., typhoon and precipitation events, on the coastal upwelling off the eastern Hainan Island was studied based on observations taken during two upwelling seasons. The observations were made in August 2007 and July 2008, respectively. We found that, in principle, similar structure of sea surface temperature and bottom temperature prevailed in both observational periods, providing evidence that upwelling events occur frequently during the summer monsoon along the eastern Hainan shelf. Based on a simple momentum balance theory, we studied the balances between momentum fluxes, wind stress, and bottom stress. The results showed that the Burger number is S ≈ 1, indicating that the cross-shelf momentum flux divergence was balanced by the wind stress and the onshore return flow occurred in the interior of the water column. Hence, a conceptual model of the upwelling structure was built for further understanding of upwelling events. In addition, it was also observed that variations in the strength of upwelling are controlled by storm events, i.e., strong northerly winds change the structure of the thermocline on the shelf significantly. The strong mixing caused by wind reduces the strength of the thermocline, in particular in coastal seas. Based on our conceptual model, a frontal zone between mixed coastal water and offshore water develops which destabilizing the water column and hence decreases the upwelling strength. Freshwaters from the two main rivers in the Wenchang Bay are confined to the coastal area less than 20–30 m deep, as confirmed by our water mass analysis. Freshwater discharge stabilized the water column, inhibiting the upwelling as shown by the potential energy calculation. Consequently, estuarine water only inhibits the upwelling in the near coastal area. Therefore, it can be concluded that estuarine water does not have a significant impact on upwelling strength on the shelf.  相似文献   

13.
《Continental Shelf Research》1999,19(9):1221-1245
This paper presents some recent results of drifters released on the West Florida Shelf during 1996–1997 and compares with the numerical model results of the wind-driven circulation. Using satellite tracked surface drifters during the one year period from February 1996 to February 1997, a drifter free region, called the “forbidden zone”, is found over the southern portion of the West Florida Shelf. This finding is consistent with historical drift bottle data and with a recent numerical model study of the West Florida Shelf circulation response to climatological wind forcing. Direct drifter simulations by numerical model during March 1996 show a good agreement with both the in situ ADCP current observation and drifter observation. Three mechanisms are proposed for the observed Lagrangian features. The primarily dynamic mechanism is the along-shore wind forcing, which induces a coastal jet that tends to leave the coast and the bottom onshore and near surface offshore transports. The second one is the convergent coastal geometry and bottom topography for the southward flow in central shelf near Tampa Bay that enforces the coastal jet and the bottom and near surface transport. The last is a kinematic one, simply due to the short along-shore Lagrangian excursion, driven by the typical synoptic weather systems. Thus near surface shelf waters over the north may not reach the southern coast of the West Florida. Implication is that surface hazard such as oil spill that may occur outside of the southern West Florida shelf may not greatly impact the southern coastal region except Florida Keys. However, the biological and chemical patches over the north that may occur in the water column such as red tides still can easily reach the southern coastal region through the subsurface and bottom waters.  相似文献   

14.
A three-dimensional model based on the Princeton Ocean Model (POM) has been implemented to study the circulation of the west coast of India. The model uses a curvilinear orthogonal horizontal grid with higher resolution near the coast (3–9 km) and a terrain following sigma coordinate in the vertical. The model is able to simulate Lakshadweep High and Lakshadweep Low (LL) during the winter and summer monsoons, respectively. During winter, the downwelling processes noticed along the coast help in the formation of temperature inversions. The inversions can be seen even up to the depths of ~50 m, which agrees with the available ARGO data in the region. Model simulations show that coastal upwelling off Kerala is at its peak in July. The intensity of upwelling reduces along the coast towards north. During the existence of LL, there is a cyclonic eddy in the sub-surface waters over the South-Eastern Arabian Sea, with vertical extent up to the depths of 100–150 m and it is strengthened due to the presence of northward counter current in the shelf region. The southerly coastal jet formed along the southern coast as a result of upwelling is noticed a westward shift along with LL. The location of the eddy off Kerala is tilted towards the open ocean with depth and our experiments suggest that this flow can be understood as a first baroclinic mode.  相似文献   

15.
《Continental Shelf Research》1999,19(9):1143-1159
The Oder river discharge into the Pomeranian Bight of the Baltic Sea was investigated in a combined study using satellite data, numerical modelling and shipborne measurements. The aim was to understand the dynamical processes forming the freshwater distribution patterns during the prevailing winds. From an analysis of typical distribution patterns of the river discharge in relation to the main wind directions and in comparison to seasonal wind statistics, the two main transport directions were determined. The prevailing westerly winds produce an onshore transport and a downwind coastal jet which transports the river water along the Polish coast, in certain cases over a distance of 300 km to the Gdansk Bay. During a period of stable westerly winds in June 1994, the calculated time scale for a water transport over 250 km corresponded to the observed time of 12 d. In spring, the period of maximum river runoff, easterly winds dominate and transport occurs along the German coast into the Arkona Sea. The river water is guided by upwelling processes in front of the Polish coast. During occasional north-easterly winds stable plumes form in front of the Swine river mouth; this occurred in May 1991 for several days. The numerical model showed that the stability of the plume is caused by an interaction between the alignment of the coast, the large-scale circulation in the north, the buoyancy of the freshwater and the Coriolis effect. The underlying anticyclonic eddy is indicated by warm rings in a high resolution Landsat Thematic Mapper scene. From the different datasets the range of the spatial and temporal scales of a stable plume were determined. The volume varied between 0.14 and 0.9 km3, and the suspended matter and chlorophyll load between 1120 and 7200 t and 2.8 and 18 t, respectively. These values are important for ecological budget calculations in turnover process studies.  相似文献   

16.
An intensive Lagrangian particle-tracking analysis of the July 2004 upwelling period was conducted in a hindcast model of the US Pacific Northwest coast, in order to determine the effect of the Columbia River plume on the fate of upwelled water. The model, implemented using Regional Ocean Modeling System (ROMS), includes variable wind and atmospheric forcing, variable Columbia river flow, realistic boundary conditions from Navy Coastal Ocean Model (NCOM), and 10 tidal constituents. Model skill has been demonstrated in detail elsewhere [MacCready, P., Banas, N.S., Hickey, B.M., Dever, E.P., Liu, Y., 2008. A model study of tide- and wind-induced mixing in the Columbia River estuary and plume. Continental Shelf Research, this issue, doi:10.1016/j.csr.2008.03.015]. Particles were released in the Columbia estuary, along the Washington coastal wall, and along the model's northern boundary at 48°N. Particles were tracked in three dimensions, using both velocities from ROMS and a vertical random displacement representing turbulent mixing. When 25 h of upwelling flow is looped and particles tracked for 12 d, their trajectories highlight a field of transient eddies and recirculations on scales from 5 to 50 km both north and south of the Columbia. Not all of these features are caused by plume dynamics, but the presence of the plume increases the entrainment of inner-shelf water into them. The cumulative effect of the plume's interaction with these transient features is to increase cross-shelf dispersion: 25% more water is transported laterally past the 100 m isobath when river and estuarine effects are included than when they are omitted. This cross-shelf dispersion also disrupts the southward transport of water along the inner shelf that occurs in the model when the Columbia River is omitted. This second effect—increased retention of upwelled water on the Washington shelf—may be partly responsible for the regional-scale alongcoast gradient in chlorophyll biomass, although variations in shelf width, the Juan de Fuca Eddy to the north, and the intermittency of upwelling-favorable winds are likely also to play important roles.  相似文献   

17.
It has recently been shown that inner shelf waters of NE Monterey Bay, California function as an “extreme bloom incubator”, frequently developing dense “red tide” blooms that can rapidly spread. Located within the California Current upwelling system, this open bay is strongly influenced by oceanographic dynamics resulting from cycles of upwelling favorable winds and their relaxation and/or reversal. Different wind forcing causes influx of different water types that originate outside the bay: cold nutrient-rich waters during upwelling and warm nutrient-poor waters during relaxation. In this study, we examine how the bay's bloom incubation area can interact with highly variable circulation to cause red tide spreading, dispersal and retention. This examination of processes is supported by satellite, airborne and in situ observations of a major dinoflagellate bloom during August and September of 2004. Remote sensing of high spatial, temporal and spectral resolution shows that the bloom originated in the NE bay, where it was highly concentrated in a narrow band along a thermal front. Upwelling circulation rapidly spread part of the bloom, mixing cool waters of an upwelling filament with warm bloom source waters as they spread. Vertical migration of the dinoflagellate populations was mapped by autonomous underwater vehicle surveys through the spreading bloom. Following bloom expansion, a two-day wind reversal forced intrusion of warm offshore waters that dispersed much of the bloom. Upwelling winds then resumed, and the bloom was further dispersed by an influx of cold water. Throughout these oceanographic responses to changing winds, an intense bloom persisted in sheltered waters of the NE bay, where extreme blooms are most frequent and intense. Microscopic examination of surface phytoplankton samples from the central bay showed that spreading of the bloom from the NE bay and mixing with regional water masses resulted in significantly increased abundance of dinoflagellates and decreased abundance of diatoms. Similar dinoflagellate bloom incubation sites are indicated in other areas of the California Current system and other coastal upwelling systems. Through frequent bloom development and along-coast transports, relatively small incubation sites may significantly influence larger regions of the coastal marine ecosystems in which they reside.  相似文献   

18.
A 4-year simulation of the surface circulation driven by the local wind on a section of the central Chilean coast is presented. The model is shown to reproduce the major observed features of the circulation. Comparison to observations of sea-surface temperature (SST) taken within the study area suggests that the model captures well coastal upwelling processes in the region. The circulation is shown to have two distinct modes corresponding to spring/summer and autumn/winter. During spring/summer sustained strong south-westerly wind forcing drives an equatorward coastal jet consistent with the Chile Coastal Current (CCC) and coastal upwelling at previously identified locations of intense upwelling at Topocalma Point and Curaumilla Point. Weaker winds during autumn/winter produce a slower CCC and a more homogenous SST field. Upwelling/relaxation and topographic eddies provide the main sources of variability on sub-seasonal time-scales in the model. The mechanisms responsible for each of these are discussed. Upwelling at Topocalma and Curaumilla Points is shown to be produced through generation of an upwelling Ekman bottom boundary layer following acceleration of the CCC close to the coast, reinforced by secondary circulation due to flow curvature around the headlands. Additional upwelling occurs north of Curaumilla Point due to development of shallow wind-driven overturning flow. Wind-sheltering is shown to be an important factor for explaining the fact that Valparaíso Bay is typically an upwelling shadow. Flow separation and eddy formation within Valparaíso Bay is seen to occur on the order of 10 times per year during relaxation after strong wind events and may persist for a number of weeks. Shorter lived topographic eddies are also seen to occur commonly at Topocalma and Toro Points. These eddies are shown to form in response to the surface elevation minima produced at each of these locations during upwelling.  相似文献   

19.
Two-dimensional (cross-shelf and depth) circulation by downwelling wind in the presence of a prograding front (with isopycnals that slope in the same direction as the topographic slope) over a continental shelf is studied using high-resolution numerical experiments. The physical process of interest is the cross-shelf circulation produced by northeasterly monsoon winds acting on the Kuroshio front over the East China Sea outer shelf and shelfbreak where upwelling is often observed. However, a general problem is posed and solved by idealized numerical and analytical models. It is shown that upwelling is produced shoreward of the front. The upwelling is maintained by (1) a surface bulge of negative vorticity at the head of the front; (2) bottom offshore convergence beneath the front; and (3) in the case of a surface front that is thin relative to water depth, also by upwelling due to the vorticity sheet under the front. The near-coast downwelling produces intense mixing due to both upright and slant-wise convection in regions of positive potential vorticity. The analytical model shows that the size and on-shore propagating speed of the bulge are determined by the wind and its shape is governed by a nonlinear advection–dispersion equation which yields unchanging wave-form solutions. Successive bulges can detach from the front under a steady wind. Vertical circulation cells develop under the propagating bulges despite a stable stratification. These cells can have important consequences to vertical exchanges of tracers and water masses.  相似文献   

20.
This paper examines the role of atmospheric forcing in modifying the pathways of riverine water on the Laptev Sea shelf, using summer-to-winter hydrographic surveys from 2007 to 2009. Over the two consecutive winter seasons of 2007–2008 and 2008–2009 in the area of the winter coastal polynya, our data clearly link winter surface salinity fields to the previous summer conditions, with substantially different winter salinity patterns preconditioned by summer atmospheric forcing. In the summer of 2007, dominant along-shore westerly winds in the cyclonic regime force the Lena River runoff to flow eastward. In contrast, in the summer of 2008, dominant along-shore easterly winds over the East Siberian Sea and on-shore northerly winds over the Laptev Sea in the anticyclonic regime lock the riverine water in the vicinity of the Lena Delta. Over the coastal polynya area in the southeastern Laptev Sea these patterns precondition a surface salinity difference of 8–16 psu between the winters of 2008 and 2009. Overall, this indicates a residence time of at least half a year for riverine water on the Laptev Sea shelf. Future climate change associated with an enhanced summer cyclonicity over the eastern Arctic may turn more riverine water eastward along the eastern Siberian coast, resulting in weaker vertical density stratification over the Laptev Sea shelf, with possible impact on the efficiency of vertical mixing and polynya dense water production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号