首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Most entrained estuarine sediment mass occurs as flocs. Parameterising flocculation has proven difficult as it is a dynamically active process dependent on a set of complex interactions between the sediment, fluid and the flow. However the natural variability in an estuary makes it difficult to study the factors that influence the behaviour of flocculation in a systematic manner. This paper presents preliminary results from a laboratory study that examined how floc properties of a natural estuarine mud from the Medway (UK), evolved in response to varying levels of suspended sediment concentration and induced turbulent shearing. The experiments utilised the LabSFLOC floc video camera system, in combination with an annular mini-flume to shear the suspended sediment slurries. The flows created in the mini-flume produced average shear stresses, at the floc sampling height, ranging from 0.01 N m−2 to a peak of 1.03 N m−2. Nominal suspended particulate matter concentrations of 100, 600 and 2000 mg l−1 were introduced into the flume. The experimental runs produced individual flocs ranging in size from microflocs of 22.2 μm to macroflocs 583.7 μm in diameter. Average settling velocities ranged from 0.01 to 26.1 mm s−1, whilst floc effective densities varied from 3.5 up to 2000 kg m−3. Low concentration and low shear stress were seen to produce an even distribution of floc mass between the macrofloc (>160 μm) and microfloc (<160 μm) fractions. As both concentration and stress rose, the proportion of macrofloc mass increased, until they represented over 80% of the suspended matter. A maximum average macrofloc settling velocity of 3.3 mm s−1 was attained at a shear stress of 0.45 N m−2. Peak turbulence conditions resulted in deflocculation, limiting the macrofloc fall velocity to only 1.1 mm s−1 and placing over 60% of the mass in the microfloc size range. A statistical analysis of the data suggests that the combined influence of both suspended concentration and turbulent shear controls the settling velocity of the fragile, low density macroflocs.  相似文献   

2.
Suspended sediments form an integral part of shelf sea systems, determining light penetration for primary production through turbidity and dispersion of pollutants by adsorption and settling of particles. The settling speed of suspended particles depends on their size and on turbulence. Here a method of determining particle size via remote sensing measurements of ocean colour and brightness has been applied to a set of monthly satellite images of the Irish Sea covering a full year (2006). The suspended sediment concentration was calculated from the ratio between green (555 nm) and red (665 nm) wavelengths in MODIS imagery. Empirical formulae were employed to convert suspended sediment concentrations and irradiance reflectance in the red part of the spectrum into specific scattering by mineral particles and floc size. A geographical pattern was evident in all images with shallow areas with fast currents having high year-average suspended sediment concentrations (7.6 mg l−1), high specific scattering (0.225 m2 g−1) and thus small particle sizes (143 μm). The reverse is true for deeper areas with slower currents, e.g. the Gyre southwest of the Isle of Man where turbidity levels are lower (3.3 mg l−1), specific scattering is lower (0.081 m2 g−1) and thus particle sizes are larger (595 μm) on average over a year. Temporal signals are also seen over the year in these parameters with minimum seasonal amplitudes (a factor 3.5) in the Turbidity Maximum and maximum seasonal amplitudes twice as large (a factor 7) in the Gyre. In the Gyre heating overcomes mixing in summer and stratification occurs allowing suspended sediments to settle out and flocs to grow large. The size of aggregated flocs is theoretically proportional to the Kolmogorov scale. This scale was calculated using depth, current, and wind speed data and compared to the size of flocculated particles. The proportionality changes through the year, indicating the influence of biological processes in summer in promoting larger flocs.  相似文献   

3.
This paper describes an analysis of the observed up-river transport of fine sediments in the Ems River, Germany/Netherlands, using a 1DV POINT MODEL, accounting for turbulence-induced flocculation and sediment-induced buoyancy destruction. From this analysis, it is inferred that the net up-river transport is mainly due to an asymmetry in vertical mixing, often referred to as internal tidal asymmetry. It is argued that the large stratification observed during ebb should be attributed to a profound interaction between turbulence-induced flocculation and sediment-induced buoyancy destruction, as a result of which the river became an efficient trap for fine suspended sediment. Moreover, an asymmetry in flocculation processes was found, such that during flood relative large flocs are transported at relative large flow velocity high in the water column, whereas during ebb, the larger flocs are transported at smaller velocities close to the bed??this asymmetry contributes to the large trapping mentioned above. The internal tidal asymmetry and asymmetry in flocculation processes are both driven by the pronounced asymmetry in flow velocities, with flood velocities almost twice the ebb values. It is further argued that this efficient trapping is the result of a continuous deepening of the river, and occurs when concentrations in the river become typically a few hundred mg/l; this was the case during the 1990 survey analyzed in this paper. We also speculate that a second regime shift did occur in the river when fluid mud layers become so thick that net transport rates are directly related to the asymmetry in flow velocity itself, probably still in conjunction with internal asymmetry as well. This would yield an efficient mechanism to transport large amounts of fine sediment far up-river, as currently observed.  相似文献   

4.
Research over the last decade has shown that the suspended sediment loads of many rivers are dominated by composite particles. These particles are also known as aggregates or flocs, and are commonly made up of constituent mineral particles, which evidence a wide range of grain sizes, and organic matter. The resulting in situ or effective particle size characteristics of fluvial suspended sediment exert a major control on all processes of entrainment, transport and deposition. The significance of composite suspended sediment particles in glacial meltwater streams has, however, not been established. Existing data on the particle size characteristics of suspended sediment in glacial meltwaters relate to the dispersed mineral fraction (absolute particle size), which, for certain size fractions, may bear little relationship to the effective or in situ distribution. Existing understanding of composite particle formation within freshwater environments would suggest that in‐stream flocculation processes do not take place in glacial meltwater systems because of the absence of organic binding agents. However, we report preliminary scanning electron microscopy data for one Alpine and two Himalayan glaciers that show composite particles are present in the suspended sediment load of the meltwater system. The genesis and structure of these composite particles and their constituent grain size characteristics are discussed. We present evidence for the existence of both aggregates, or composite particles whose features are largely inherited from source materials, and flocs, which represent composite particles produced by in‐stream flocculation processes. In the absence of organic materials, the latter may result solely from electrochemical flocculation in the meltwater sediment system. This type of floc formation has not been reported previously in the freshwater fluvial environment. Further work is needed to test the wider significance of these data and to investigate the effective particle size characteristics of suspended sediment associated with high concentration outburst events. Such events make a major contribution to suspended sediment fluxes in meltwater streams and may provide conditions that are conducive to composite particle formation by flocculation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Multimodal particle size distributions (PSDs) of fine-grained cohesive sediments are common in marine and coastal environments. The curve-fitting software in this study decomposed such multimodal PSDs into subordinate log-normal PSDs. Four modal peaks, consisting of four-level ordered structures of primary particles, flocculi, microflocs, and macroflocs, were identified and found to alternately rise and sink in a flow-varying tidal cycle due to shear-dependent flocculation. The four modal PSD could be simplified further into two discrete size groups of flocculi and flocs. This allowed the development of a two-class population balance equation (TCPBE) model with flocculi and flocs to simulate flocculation involving multimodal PSDs. The one-dimensional vertical (1-DV) TCPBE model further incorporated the Navier-Stokes equation with the k-ε turbulence closure and the sediment mass balance equations. Multimodal flocculation as well as turbulent flow and sediment transport in a flow-varying tidal cycle could be simulated well using the proposed model. The 1-DV TCPBE was concluded to be the simplest model that is capable of simulating multimodal flocculation in the turbulent flow field of marine and coastal zones.  相似文献   

6.
Motivated by field studies of the Ems estuary which show longitudinal gradients in bottom sediment concentration as high as O(0.01 kg/m4), we develop an analytical model for estuarine residual circulation based on currents from salinity gradients, turbidity gradients, and freshwater discharge. Salinity is assumed to be vertically well mixed, while the vertical concentration profile is assumed to result from a balance between a constant settling velocity and turbulent diffusive flux. Width and depth of the model estuary are held constant. Model results show that turbidity gradients enhance tidally averaged circulation upstream of the estuarine turbidity maximum (ETM), but significantly reduce residual circulation downstream, where salinity and turbidity gradients oppose each other. We apply the condition of morphodynamic equilibrium (vanishing sediment transport) and develop an analytical solution for the position of the turbidity maximum and the distribution of suspended sediment concentration (SSC) along a longitudinal axis. A sensitivity study shows great variability in the longitudinal distribution of suspended sediment with the applied salinity gradient and six model parameters: settling velocity, vertical mixing, horizontal dispersion, total sediment supply, fresh water flow, and water depth. Increasing depth and settling velocity move the ETM upstream, while increasing freshwater discharge and vertical mixing move the ETM downstream. Moreover, the longitudinal distribution of SSC is inherently asymmetric around the ETM, and depends on spatial variations in the residual current structure and the vertical profile of SSC.  相似文献   

7.
Freshwater flocculation of suspended sediments in the Yangtze River, China   总被引:3,自引:1,他引:2  
Leicheng Guo  Qing He 《Ocean Dynamics》2011,61(2-3):371-386
This study focuses on suspended sediments and in situ flocculation in the Yangtze River, with the goal of improving our understanding of the relationship between freshwater and estuarine flocculation. A field survey with state-of-the-art instruments was carried out in January 2008 in the reach from downstream of the Three Gorges Dam to the estuary. The data show that in situ floc mean diameters range from 22 to 182???m in the river, whereas the median dispersed grain sizes are 4.4?C11.4???m. This demonstrates that flocculation is an important process during the transport of suspended sediments along the river. The flocculation characteristics, suspended sediment concentration and dispersed grain sizes all vary longitudinally in the main stream of the Yangtze River. Biochemical factors are likely be more significant in the freshwater flocculation than in the estuary, where hydrodynamics and biochemical factors are both important. Flocculation is found in the freshwater river, in the estuary and in coastal waters, which indicates that dynamic break-up/reflocculation processes take place during the suspended sediment transport. The freshwater flocs may behave as parent flocs to the estuarine flocculation. This study enhances our understanding of flocculation from estuarine and coastal areas to fresh river systems and provides insights into the effects of input of riverine flocs to the estuarine flocculation and into the sources and fate of flocs.  相似文献   

8.
The effects of large-scale interventions in the North Passage of the Yangtze Estuary (the Deep Waterway Project, DWP) on the along-channel flow structure, suspended sediment distribution and its transport along the main channel of this passage are investigated. The focus is explaining the changes in net sediment transport in terms of physical mechanisms. For this, data of flow and suspended sediment concentration (SSC), which were collected simultaneously at several locations and at different depths along the main channel of the North Passage prior to and after the engineering works, were harmonically analyzed to assess the relative importance of the transport components related to residual (time-mean) flow and various tidal pumping mechanisms. Expressions for main residual flow components were derived using theoretical principles. The SSC revealed that the estuarine turbidity maximum (ETM) was intensified due to the interventions, especially in wet seasons, and an upstream shift and extension of the ETM zone occurred. The amplitude of the M 2 tidal current considerably increased, and the residual flow structure was significantly altered by engineering works. Prior to the DWP, the residual flow structure was that of a gravitational circulation in both seasons, while after the DWP, there was seaward flow throughout the channel during the wet season. The analysis of net sediment transport reveals that during wet seasons and prior to the DWP, the sediment trapping was due to asymmetric tidal mixing, gravitational circulation, tidal rectification, and M 2 tidal pumping, while after the DWP, the trapping was primarily due to seaward transport caused by Stokes return flow and fresh water discharge and landward transport due to M 2 tidal pumping and asymmetric tidal mixing. During dry seasons, prior to the DWP, trapping of sediment at the bottom relied on landward transports due to Stokes transport, M 4 tidal pumping, asymmetric tidal mixing, and gravitational circulation, while after the DWP the sediment trapping was caused by M 2 tidal pumping, Stokes transport, asymmetric tidal mixing, tidal rectification, and gravitational circulation.  相似文献   

9.
The transport of fine-grained particles in estuarine and coastal waters is influenced by flocculation processes (aggregation and floc breakup). As a consequence, the particle size varies with time in the water column, and can be orders of magnitude larger than those of primary particles. In this study the variations in floc size is simulated using a size-resolved method, which approximates the real size distribution of particles by a range of size bins and solves a mass balance equation for each bin. To predict the size distribution both aggregation and breakup processes are included. The conventional rectilinear aggregation kernel is used which considers both turbulent shear and differential settling. The breakup kernel accounts for the fractal dimension of the flocs. A flocculation simulation is compared to the settling column lab experiments of Winterwerp [1998. A simple model for turbulence induced flocculation of cohesive sediment, Journal of Hydraulic Research, 36, 309–326], and a one-dimensional sediment transport model is verified with the observed variations in floc size and concentration over tidal cycles in a laboratory flume experiment of Bale et al. [2002. Direct observation of the formation and break-up of aggregates in an annular flume using laser reflectance particle sizing. In: Winterwerp, J.C., Kranenburg, C. (Eds.), Fine Sediment Dynamics in the Marine Environment. Elsevier, pp. 189–201]. The numerical simulations compare qualitatively and quantitatively well with the laboratory measurements, and the analysis of the two simulation results indicates that the median floc size can be correlated to the sediment concentration and Kolmogorov microscale. Sensitivity studies are conducted to explore the role of settling velocity and erosion rate. The results are not sensitive towards the formulation of settling velocity, but the parameterization of erosion flux is important. The studies show that for predicting the sediment deposition flux it is crucial to include flocculation processes.  相似文献   

10.
Using in situ, continuous, high frequency (8–16 Hz) measurements of velocity, suspended sediment concentration (SSC), and salinity, we investigate the factors affecting near-bed sediment flux during and after a meteorological event (cold front) on an intertidal flat in central San Francisco Bay. Hydrodynamic forcing occurs over many frequency bands including wind wave, ocean swell, seiching (500–1000 s), tidal, and infra-tidal frequencies, and varies greatly over the time scale of hours and days. Sediment fluxes occur primarily due to variations in flow and SSC at three different scales: residual (tidally averaged), tidal, and seiching. During the meteorological event, sediment fluxes are dominated by increases in tidally averaged SSC and flow. Runoff and wind-induced circulation contribute to an order of magnitude increase in tidally averaged offshore flow, while waves and seiching motions from wind forcing cause an order of magnitude increase in tidally averaged SSC. Sediment fluxes during calm periods are dominated by asymmetries in SSC over a tidal cycle. Freshwater forcing produces sharp salinity fronts which trap sediment and sweep by the sensors over short (∼30 min) time scales, and occur primarily during the flood. The resulting flood dominance in SSC is magnified or reversed by variations in wind forcing between the flood and ebb. Long-term records show that more than half of wind events (sustained speeds of greater than 5 m/s) occur for 3 h or less, suggesting that asymmetric wind forcing over a tidal cycle commonly occurs. Seiching associated with wind and its variation produces onshore sediment transport. Overall, the changing hydrodynamic and meteorological forcing influence sediment flux at both short (minutes) and long (days) time scales.  相似文献   

11.
In natural waters,exopolymers or extracellular polymeric substances(EPS) exuded by microorganisms interact with clay particles,resulting in the flocculation of clays and hence alteration to the properties of suspended cohesive sediments.To investigate and further understand how neutral EPS affect cohesive sediment transport and the final sediment yield,an experimental study was conducted on laboratory-prepared clay and guar gum(used as an analog for neutral EPS) suspensions to characterize EPS-induced flocculation and the settling velocity of resultant floes.Four different clays consisting of kaolinite,illite,Ca-montmorillonite,and Na-montmorillonite were studied to examine the influence of different layer charges on clay flocculation induced by neutral EPS.Floc size was determined by a laser particle size analyzer,and settling velocity estimated by analyzing the time-series floc settling images captured by an optical microscope.Results indicate that neutral EPS promote clay-EPS flocculation for all four clays with the particle/floc size significantly increased from~0.1-60μm to as large as~600μm.Clays’ layer charge has a profound influence on the clay-EPS flocculation.With the same floc size,the settling velocity of clay-EPS flocs is typically smaller than that of pure clay flocs,which is attributed to the reduced density of flocs caused by the EPS. However,for flocs of the same composition(e.g.pure clay or hybrid clay-EPS mixture),the settling velocity increases with size.The fractal dimension of these clay-EPS flocs estimated from settling velocity ranges from 1.39 to 1.47,which are smaller than that of pure clay flocs,indicating that these flocs are less compacted than the pure clay flocs.  相似文献   

12.
When fine particles are involved, cohesive properties of sediment can result in flocculation and significantly complicate sediment process studies. We combine data from field observations and state-of-the-art modeling to investigate and predict flocculation processes within a hypertidal estuary. The study site is the Welsh Channel located at the entrance of the Dee Estuary in Liverpool Bay. Field data consist of measurements from a fixed site deployment during 12–22 February 2008. Grain size, suspended sediment volume concentration, and current velocity were obtained hourly from moored instruments at 1.5 m above bed. Near-bottom water samples taken every hour from a research vessel are used to convert volume concentrations to mass concentrations for the moored measurements. We use the hydrodynamic model Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) coupled with the turbulence model General Ocean Turbulence Model (GOTM) and a sediment module to obtain three-dimensional distributions of suspended particulate matter (SPM). Flocculation is identified by changes in grain size. Small flocs were found during flood and ebb periods—and correlate with strong currents—due to breakup, while coarse flocs were present during slack waters because of aggregation. A fractal number of 2.4 is found for the study site. Turbulent stresses and particle settling velocities are estimated and are found to be related via an exponential function. The result is a simple semiempirical formulation for the fall velocity of the particles solely depending on turbulent stresses. The formula is implemented in the full three-dimensional model to represent changes in particle size due to flocculation processes. Predictions from the model are in agreement with observations for both settling velocity and SPM. The SPM fortnight variability was reproduced by the model and the concentration peaks are almost in phase with those from field data.  相似文献   

13.
This study aims at gaining basic understanding about two specific phenomena that are observed in the highly turbid estuaries tidal Ouse, Yangtze and Ems, i.e. (1) the accumulation of suspended matter in the deeper parts of the estuaries and (2) the relatively high values of turbidity near the surface in the area of the turbidity maximum. A semi-analytical model is analysed to verify the hypothesis that these phenomena result from bottom slope-induced turbidity currents and from hindered settling, respectively. The model governs the dynamics of residual flow, driven by fresh water discharge, salinity gradients and turbidity gradients. It further uses the condition of morphodynamic equilibrium (no divergence of net sediment transport) to compute the residual sediment concentration. New aspects are that depth variations on flow and mixing processes, as well as flocculation and hindered settling of sediment, are explicitly accounted for. Tides act as a source of mixing and erosion of sediment only, thus processes like tidal pumping are not considered. Model results show that the estuarine turbidity maximum (ETM) shifts in the down-slope direction, compared to the case of a constant depth. Slope-induced turbidity currents, which are directed down-slope near the bottom and up-slope near the surface, are responsible for this shift, thereby confirming the first part of the hypothesis above. The down-slope shift of the ETM is reduced by currents resulting from gradients in depth-dependent mixing, which counteract turbidity currents, but which are always weaker. Including flocculation and hindered settling yields increased surface sediment concentrations in the area of the turbidity maximum, compared to the situation of a constant settling velocity, thereby supporting the second part of the hypothesis. Sensitivity experiments reveal that the conclusions are not sensitive to the values of the model parameters.  相似文献   

14.
Fine‐grained (<62·5 µm) suspended sediment transport is a key component of the geochemical flux in most fluvial systems. The highly episodic nature of suspended sediment transport imposes a significant constraint on the design of sampling strategies aimed at characterizing the biogeochemical properties of such sediment. A simple sediment sampler, utilizing ambient flow to induce sedimentation by settling, is described. The sampler can be deployed unattended in small streams to collect time‐integrated suspended sediment samples. In laboratory tests involving chemically dispersed sediment, the sampler collected a maximum of 71% of the input sample mass. However, under natural conditions, the existence of composite particles or flocs can be expected to increase significantly the trapping efficiency. Field trials confirmed that the particle size composition and total carbon content of the sediment collected by the sampler were representative statistically of the ambient suspended sediment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Tagus intertidal microphytobenthos (MPB) assemblages were characterized over a wide range of sediment type and tidal height and the possible effects of these variables on MPB spatial distribution and photo-adaptation mechanisms were investigated. Two transects with six different sediment type and different tidal height sites were sampled once every two months from 2002 to 2004. Upper shore and sandy sites showed higher chlorophyll a (chl a) content, with sandy sediments showing a biomass peak in late winter–early spring, and muddy sites showing no obvious seasonal pattern. Stepwise multiple linear regressions showed that only SiO2, tidal height and sediment particle size <63 μm were significant variables (p<0.05), explaining 50% of MPB biomass spatial–temporal variability. However, when data were separated by transect, only tidal height remained significant at both transects. Sandier sediments exhibited higher zeaxanthin/chl a and lower fucoxanthin/chl a ratios characteristic of a mixed cyanobacteria/diatom assemblages, showing an alternate seasonality with cyanobacteria increasing in summer and diatoms dominating in spring. Diatom biofilms showed contrasting features depending on the sediment type. Epipsammic diatoms were small with an average length of around 10 μm, while epipelic diatoms showed a wider size range with size distribution peaks at 10–15 μm, 25–35 μm and >60 μm. Epipelic biofilms showed evidence of being low light-acclimated (high fucoxanthin/chl a) and of photo-regulating by vertical migration movements (presence of endogenous vertical rhythms and lower diatoxanthin/diadinoxanthin). Epipsammic biofilms showed higher diatoxanthin/diadinoxanthin ratios and no vertical migration rhythms. Thus, the two diatom biofilm types had distinct strategies to photo-regulate: epipelic diatoms using vertical migration to position themselves at the sediment depth of optimum light conditions, and epipsammic diatoms using the xanthophyll cycle to photo-regulate. Further studies comparing epipsammic and epipelic assemblages are necessary to better understand MPB photo-regulation mechanisms.  相似文献   

16.
The hydrodynamics of a small tributary channel and its adjacent mudflat is studied in Willapa Bay, Washington State, USA. Velocity profiles and water levels are simultaneously measured at different locations in the channel and on the mudflat for two weeks. The above tidal flat and channel hydrodynamics differ remarkably during the tidal cycle. When the water surface level is above the tidal flat elevation, the channel is inactive. At this stage, the above tidal flat flow is predominantly aligned along the Bay axis, oscillating with the tide as a standing wave with peak velocities up to 0.3 m/s. When the mudflat becomes emergent, the flow concentrates in the channel. During this stage, current velocities up to 1 m/s are measured during ebb; and up to 0.6 m/s during flood. Standard equations for open-channel flow are utilized to study the channel hydrodynamics. From the continuity equation, a lateral inflow is predicted during ebb, which likely originates from the drainage of the mudflat through the lateral runnels. Both advective acceleration and lateral discharge terms, estimated directly from the velocity profiles, play a significant role in the momentum equation. The computed drag coefficient for bottom friction is small, due to an absence of vegetation and bottom bedforms in the channel. Sediment fluxes are calculated by combining flow and suspended sediment concentration estimated using the acoustic backscatter signal of the instruments. A net export of the sediment from the channel is found during ebb, which is not balanced by the sediment import during flood. When the mudflat is submerged, ebb-flood asymmetries in suspended sediment concentration are present, leading to a net sediment flux toward the inner part of the Willapa Bay. Finally, a residual flow is detected inside the channel at high slack water, probably associated with the thermohaline circulation.  相似文献   

17.
Z. Shi  H. J. Zhou 《水文研究》2004,18(15):2877-2892
Theoretical and experimental studies were undertaken to gain insight into physical parameters controlling the flocculation and settling properties of mud flocs in the Changjiang Estuary, China. The Rouse equation is applied to vertical profiles of suspended sediment concentration to determine the bulk mean settling velocity (ws) of sediment suspended in the Changjiang Estuary. Both in situ point‐sampled and acoustically measured profiles of suspended mud concentrations were fit selectively. The calculated settling velocities ws mainly ranged from 0·4 to 4·1 mm s?1 for the point‐sampled data set, and from 1·0 to 3·0 mm s?1 for the acoustically measured data set. Furthermore, the settling velocities of mud flocs increased with mean concentration (C?) of mud flocs in suspension and were proportional to increasing bottom shear stress (τb) of tidal flow. The best equation for the field settling velocity of mud flocs in the Changjiang Estuary can be expressed by the power law: ws = mC?n (m, 1·14–2·37; n, 0·84–1·03). It is suggested that C? and τb were the dominant physical parameters controlling the flocculation and ws of mud flocs in suspension. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
This work deals with analysis of hydrographic observations and results of numerical simulations. The data base includes acoustic Doppler current profilers (ADCP) observations, continuous measurements on data stations and satellite data originating from the medium resolution imaging spectrometer (MERIS) onboard the European Space Agency (ESA) satellite ENVISAT with a spatial resolution of 300 m. Numerical simulations use nested models with horizontal resolutions ranging from 1 km in the German Bight to 200 m in the East Frisian Wadden Sea coupled with a suspended matter transport model. Modern satellite observations have now a comparable horizontal resolution with high-resolution numerical model of the entire area of the East Frisian Wadden Sea allowing to describe and validate new and so far unknown patterns of sediment distribution. The two data sets are consistent and reveal an oscillatory behaviour of sediment pools to the north of the back-barrier basins and clear propagation patterns of tidally driven suspended particulate matter outflow into the North Sea. The good agreement between observations and simulations is convincing evidence that the model simulates the basic dynamics and sediment transport processes, which motivates its further use in hindcasting, as well as in the initial steps towards forecasting circulation and sediment dynamics in the coastal zone.  相似文献   

19.
Annual sedimentary layers in core A from the Yangtze River (Changjiang) subaqueous delta were identified based on high-resolution biogenic silica (BSi) and grain-size records. The contents of BSi, the sediment grain-size and the sensitive grain-size fractions of <13.14 μm and 13.14-250 μm illustrated steady coincident fluctuations with the depth profile of core A. These fluctuations were inferred to reflect seasonal changes in physical and biological processes. For example, variations in the content of BSi likely represent changes in primary production in flood versus dry seasons. It in flood seasons was several times higher than that in dry seasons. The amounts of <13.14 and 13.14-250 μm fractions were complimentary to each other and co-varied with the BSi amount. Therefore, the BSi, grain-size and sensitive fractions can be used as proxies for the annual sedimentation. From 1992 to 2005, the estimated sedimentary rate based on the annual layer varied from 1.0 to 3.5  cm/a (mean of 2.07  cm/a), and these values varies with the annual sediment discharge from the Yangtze River to the sea. The significant seasonal variations in the water discharge, sediment load, ocean hydrodynamics and primary production, which are common in the area affected by the East Asian monsoon, are likely responsible for the formation of the annual sedimentary lamination.  相似文献   

20.
In situ observations were combined with 3D modeling to gain understanding of and to quantify the suspended sediment transport in the Gulf of Lions (NW Mediterranean Sea). The outputs of a hydrodynamic–sediment transport coupled model were compared to near-bottom current and suspended sediment concentration measurements collected at the head of seven submarine canyons and at a shallow shelf site, over a 6-month period (November 2003–May 2004). The comparisons provide a reasonable validation of the model that reproduces the observed spatial and time variations. The study period was marked by an unusual occurrence of marine storms and high river inputs. The major water and sediment discharges were supplied by the Rhone, the largest Mediterranean river, during an exceptional flood accompanying a severe marine storm in early December 2003. A second major storm, with moderate flooding, occurred in February 2004. The estimate of river input during the studied period was 5.9 Mt. Our study reveals (i) that most of the particulate matter delivered by the Rhone was entrapped on the prodelta, and (ii) that marine storms played a crucial role on the sediment dispersal on the shelf and the off-shelf export. The marine storms occurring in early December 2003 and late February 2004 resuspended a very large amount of shelf sediment (>8 Mt). Erosion was controlled by waves on the inner shelf and by energetic currents on the outer shelf. Sediment deposition took place in the middle part of the shelf, between 50 and 100 m depth. Resuspended sediments and river-borne particles were transported to the southwestern end of the shelf by a cyclonic circulation induced by these onshore winds and exported towards the Catalan shelf and into the Cap de Creus Canyon which incises the slope close to the shore. Export taking place mostly during marine storms was estimated to reach 9.1 Mt during the study period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号