首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seasonal cycle of the main lunar tidal constituent M 2 is studied globally by an analysis of a high-resolution ocean circulation and tide model (STORMTIDE) simulation, of 19 years of satellite altimeter data, and of multiyear tide-gauge records. The barotropic seasonal tidal variability is dominant in coastal and polar regions with relative changes of the tidal amplitude of 5–10 %. A comparison with the observations shows that the ocean circulation and tide model captures the seasonal pattern of the M 2 tide reasonably well. There are two main processes leading to the seasonal variability in the barotropic tide: First, seasonal changes in stratification on the continental shelf affect the vertical profile of eddy viscosity and, in turn, the vertical current profile. Second, the frictional effect between sea-ice and the surface ocean layer leads to seasonally varying tidal transport. We estimate from the model simulation that the M 2 tidal energy dissipation at the sea surface varies seasonally in the Arctic (ocean regions north of 60°N) between 2 and 34 GW, whereas in the Southern Ocean, it varies between 0.5 and 2 GW. The M 2 internal tide is mainly affected by stratification, and the induced modified phase speed of the internal waves leads to amplitude differences in the surface tide signal of 0.005–0.0150 m. The seasonal signals of the M 2 surface tide are large compared to the accuracy demands of satellite altimetry and gravity observations and emphasize the importance to consider seasonal tidal variability in the correction processes of satellite data.  相似文献   

2.
Satellite Laser Ranging (SLR) to LAGEOS has a remarkable contribution to high-precise geodesy and geodynamics through deriving and validating various global geophysical models. This paper validates ocean tide models based on the analysis of satellite altimetry data, coastal tide gauges, and hydrodynamic data, i.e., CSR3.0, TOPEX4.0, CSR4.0A, FES2004, GOT00.2, and the CSRC Schwiderski model. LAGEOS orbits and SLR observation residuals from solutions based on different ocean tide models are compared and examined. It is found that LAGEOS orbits are sensitive to tidal waves larger than 5 mm. The analysis of the aliasing periods of LAGEOS orbits and tidal waves reveals that, in particular, the tidal constituent S2 is not well established in the recent ocean tide models. Some of the models introduce spurious peaks to empirical orbit parameters, which can be associated with S2, Sa, and K2 tidal constituents, and, as a consequence, can be propagated to fundamental parameters derived from LAGEOS observations.  相似文献   

3.
The nodal modulation of the diurnal (K1 and O1) and semi-diurnal (M2 and K2) tidal constituents at the coasts of the Mediterranean Sea and the eastern Atlantic is estimated and its spatial variability mapped. Fourteen hourly tide gauge records each spanning more than 18 years are considered in this analysis. Ten tide gauges are located in the Mediterranean Sea and four in the Bay of Biscay. The nodal modulation of the most energetic tidal constituent (M2) reaches up to 5 cm at the eastern Atlantic coasts, while within the Mediterranean Sea its modulation is in general less than 1.1 cm. The largest K2 nodal modulation found is 3.7 cm in the eastern Atlantic coasts. In the Mediterranean Sea, smaller modulation amplitudes, ranging between 0.4 and 1.4 cm are found. The K1 tide constituent has the largest amplitude nodal modulation within the Mediterranean Sea of 1.9 cm in the north Adriatic Sea, which is also larger than the modulation of this constituent at the eastern Atlantic coasts. The O1 tide constituent has the highest amplitude nodal modulation (1.4 cm) at the eastern Atlantic coasts. In the Mediterranean Sea the maximum value is 1 cm in the north Adriatic Sea.  相似文献   

4.
Bottom-mounted ADV and ADCP instruments in combination with CTD profiling measurements taken along the Chinese coast of the East China Sea were used to study the vertical structure of temperature, salinity, and velocity in reversing tidal currents on a shallow inner shelf and in rotating tidal flows over a deeper sloping bottom of the outer shelf. These two regimes of barotropic tide affect small-scale dynamics in the lower part of the water column differently. The reversing flow was superimposed by seiches of ∼2.3 h period generated in semienclosed Jiaozhou Bay located nearby. As the tidal vector rotates over the sloping bottom, the height of the near-bottom logarithmic layer is subjected to tidal-induced variations. A maximum of horizontal velocity Umax appears at the upper boundary of the log layer during the first half of the current vector rotation from the minor to the major axis of tidal ellipse. In rotating tidal flow, vertical shear generated at the seafloor, propagated slowly to the water interior up to the height of Umax, with a phase speed of ∼5 m/h. The time-shifted shear inside the water column, relative to the shear at the bottom, was associated with periodically changing increases and decreases of the tidal velocity above the log layer toward the sea surface. In reversing flows, the shear generated near the bottom and the shear at the upper levels were almost in phase.  相似文献   

5.
本文研究了基于泊松小波径向基函数融合多代卫星测高及多源重力数据精化大地水准面模型的方法.分别以沿轨垂线偏差和大地水准面高高差作为卫星测高观测量,研究了使用不同类型测高数据对于大地水准面建模精度的影响.针对全球潮汐模型在浅水区域及部分开阔海域精度较低的问题,引入局部潮汐模型研究了不同潮汐模型对于大地水准面的影响.数值分析表明:相比于使用沿轨垂线偏差作为测高观测量,基于沿轨大地水准面高高差解算得到的大地水准面模型的精度更高,特别是在海域区域,其精度提高了2.3cm.由于使用沿轨大地水准面高高差作为测高观测量削弱了潮汐模型长波误差的影响,采用不同潮汐模型对大地水准面解算的影响较小.总体而言,船载重力及测高观测数据在海洋重力场的确定中呈现互补性关系,联合两类重力场观测量可以提高局部重力场的建模精度.  相似文献   

6.
Initially the development of shallow sea three-dimensional barotropic tidal models is briefly reviewed with a view to determining what were the key measurements that allowed progress in this field and rigorous model validation. Subsequently this is extended to a brief review of baroclinic tidal models to try to determine a “way forward” for baroclinic model development. The difficulty of high spatial variability, and wind influence are identified as possibly important issues that must be considered in validating baroclinic tidal models. These are examined using a three-dimensional unstructured grid model of the M2 internal tide on the shelf edge region off the west coast of Scotland. The model is used to investigate the spatial variability of the M2 internal tide, and associated turbulence energy and mixing in the region. Initial calculations are performed with tidal forcing only, with subsequent calculations briefly examining how the tidal distribution is modified by down-welling and up-welling favourable winds. Calculations with tidal forcing only, show that there is significant spatial variability in the internal tide and associated mixing in the region. In addition, these are influenced by wind effects which may have to be taken into account in any model validation exercise. The paper ends by discussing the comprehensive nature of data sets that need to be collected to validate internal tidal models to the same level currently attained with three dimensional barotropic tidal models.  相似文献   

7.
Non-linear tidal constituents, such as the overtide M4 or the compound tide MS4, are generated by interaction in shallow seas of the much larger astronomically forced “primary” tidal constituents (e.g., M2, S2). As such, errors in modeling these “secondary” shallow-water tides might be expected to be caused first of all by errors in modeling the primary constituents. Thus, in the context of data assimilation, observations of primary-constituent harmonic constants can indirectly constrain shallow-water constituents. Here we consider variational data assimilation for primary and secondary tidal constituents as a coupled problem, using a simple linearized perturbation theory for weak interactions of the dominant primary constituents. Variation of the resulting penalty functional leads to weakly non-linear Euler–Lagrange equations, which we show can be solved approximately with a simple two-stage scheme. In the first stage, data for the primary constituents are assimilated into the linear shallow water equations (SWE), and the resulting inverse solutions are used to compute the quadratic interactions in the non-linear SWE that constitute the forcing for the secondary constituents. In the second stage, data for the compound or overtide constituent are assimilated into the linear SWE, using a prior forced by the results of the first stage. We apply this scheme to assimilation of TOPEX/Poseidon and Jason altimetry data on the Northwest European Shelf, comparing results to a large set of shelf and coastal tide gauges. Prior solutions for M4, MS4 and MN4 computed using inverse solutions for M2, S2, and N2 dramatically improve fits to validation tide gauges relative to unconstrained forward solutions. Further assimilation of along-track harmonic constants for these shallow-water constituents reduces RMS differences to below 1 cm on the shelf, approaching the accuracy of the validation tide gauge harmonic constants.  相似文献   

8.
We studied the circulation on the coastal domain of the Amazon Shelf by applying the hydrodynamic module of the estuarine and coastal ocean model and sediment transport. The first barotropic experiment aimed to explain the major bathymetric effects on tides and those generated by anisotropy in sediment distribution. We analyzed the continental shelf response of barotropic tides under realistic bottom stress parametrization (C d ), considering sediment granulometry obtained from a faciologic map, where river mud deposits and reworked sediments areas are well distinguished, among others classes of sediments. Very low C d values were set in the fluid mud regions off the Amapá coast (1.0 10???4), in contrast to values around 3.5 10???3 for coarser sediment regions off the Pará coast. Three-dimensional experiments represented the Amazon River discharge and trade winds, combined to barotropic tide influences and induced vertical mixing. The quasiresonant response of the Amazon Shelf to the M2 tide acts on the local hydrodynamics by increasing tidal admittance, along with tidal forcing at the shelf break and extensive fluid mud regions. Harmonic analysis of modeled currents agreed well with the analysis of the AMASSEDS observational data set. Tidal-induced vertical shear provided strong homogenization of threshold waters, which are subject to a kind of hydraulic control due to the topographic steepness. Ahead of the hydraulic jump, the low-salinity plume is disconnected from the bottom and acquires negative vorticity, turning southeastward. Tides act as a generator mechanism and topography, via hydraulic control, acts as a maintainer mechanism for the low-salinity frontal zone positioning. Tidally induced southeastward plume fate is overwhelmed by northwestward trade winds so that they, along with background circulation, probably play the most important role on the plume fate and variability over the Amazon Shelf.  相似文献   

9.
A continental shelf scale survey from 22°S to 34°S along the Western Australia coast provides the first detailed synoptic examination of the structure, circulation and modification of the southward flowing Leeuwin Current (LC) during the late austral autumn-early winter (May-June 2007). At lower latitudes (22°S-25°S), the LC was masked within a broad expanse of warm ambient surface water, which extended across the shelf and offshore before becoming constrained at the shelf break and attaining its maximum velocity of ∼1.0 m s−1 at 28°S. The temperature and salinity signature of the LC experienced substantial modification as it flowed poleward; surface temperature of the LC decreased by ∼5.25 °C while surface salinity increased by ∼0.72, consistent with climatology estimates and smaller (larger) for temperature (salinity) than those found during summer. Subsequently, LC water was denser by ∼2σT in the south compared to the north, and the surface mixed layer of the LC revealed only a small deepening trend along its poleward trajectory. Modification of the LC resulted from a combination of mixing due to geostrophic inflow and entrainment of cooler, more saline surrounding subtropical waters, and convective mixing driven by large heat loss to the atmosphere. Air-sea heat fluxes accounted for 50% of the heat lost from the LC in the south, whilst only accounting for 25% in the north, where large geostrophic inflow occurred and the LC displayed its maximum flow. The onshore transport was characterised by distinct jet-like structures, enhanced in the upper 200 m of the water column, and the presence of eddies in the vicinity of the shelf break generated offshore transport.  相似文献   

10.
A fine grid tidal modeling experiment is carried out in order to investigate the tidal regimes for major five tidal constituents, the nonlinear tidal phenomena in terms of M4 and MS4 generation, and the independent tide by the tide generating force in the Yellow and East China Seas (YECS). In this study a two-dimensional numerical model based upon a subgrid-scale (SGS) stress modeling technique is used with the tide generating force included. The model was validated with recently observed tide and current data. The calculated tidal charts for tidal elevation show a generally good agreement with existing ones, with more accurate feature of the M2 cotidal chart in comparison with both the observed data and the existing tidal charts. A careful comparison of the computed diurnal amplitude with observations suggests that the diurnal constituents seem to be overdamped especially in the Kyunggi Bay region, for the case when quadratic bottom friction law is used.Propagation features of the M4(MS4) tides are discussed in the YECS, based upon the analyses of the observed and calculated results. The amphidromic system of the M4 is quite complicated and one noticeable characteristic is that the propagation direction of the M4 tidal wave along the west coast of Korean peninsula is opposite to that of the M2 tidal wave. This result coincides with observations. The propagation feature of the MS4 is almost similar to that of the M4, but with lesser amplitude. The responses of the M4 tidal features to momentum diffusion term and depth-dependent form of the friction coefficient are also discussed.It is also shown that when the independent tide (Defant, 1960) arising from tide generating force (TGF) coexists with tidal waves (co-oscillating tide) arising from external boundary forcing, the TGF tidal waves are dissipated and their amphidromes tend to move westward. This may be interpreted as a process whereby the incident and reflected TGF tidal waves are damped by co-oscillating tide arising from external force at open boundaries. The TGF amplitude is found to be up to 10 cm and 4 cm in the Kyunggi Bay for the M2 and S2 constituents while those for all diurnal constituents are less than 1 cm over the entire model domain.  相似文献   

11.
TOPEX/Poseidon/Jason1 (T/P/J) sea surface height (SSH) measurements along tracks 91 and 15, crossing the wide West Florida continental shelf (WFS), were used to estimate seasonal across-shelf SSH gradients. SSH gradients and the knowledge that geostrophic flow approximately follows the isobaths enable estimation of the seasonal along-isobath geostrophic flows. The calculated along-isobath geostrophic flows are southeastward from December to March and northwestward in June, August, and September. The along-isobath geostrophic component of the flow is most likely small during the remaining months and, thus, not discernable in T/P/J SSH measurements. In agreement with previous theoretical, modeling, and observational work, the mid-shelf seasonal surface flow appears to be driven largely by the seasonal along-shore wind stress. Theory for flow driven by seasonal heat flux suggests negligible flow near the surface and on the bulk of the shelf away from the shelf break.  相似文献   

12.
Observations at 8 sites in the outer central Great Barrier Reef show M2, S2, K1, and O1 tidal currents flow directly off-shelf (northeast), when the corresponding tide at Townsville is at zero height and falling, with typical amplitudes of 12, 6, 3, and 2 cm s?1. On the slope (at 300 m depth), the vertically averaged long-shelf component was small. On the shelf, the eccentricity of the tidal ellipses decreases shoreward and the tidal ellipses rotate anticlockwise. The major axes of the tidal ellipses tilt left of cross-shelf, especially for the diurnal constituents. There is satisfactory agreement between the observed and modelled cross-shelf currents. The long-shelf velocity is sensitive to the long-shelf changes in amplitude and phase of the tide heights and high quality tidal data for open boundary conditions will be required if numerical models are to model these currents satisfactorily.  相似文献   

13.
The results for three-dimensional (3D) winter and summer tidal flows in the homogeneous Arctic Ocean, obtained with the use of a modified version of the 3D finite-element hydrothermodynamic model QUODDY-4, are presented. It is shown that seasonal variability of the M2 tidal constants (amplitudes and phases of tidal sea surface level elevations) in the Central and Canadian parts of the Arctic Ocean is less than the error in the predicted tidal sea surface level elevations. This means that the seasonal variability can be neglected at least as a first approximation. A different situation is encountered in the Siberian continental shelf, where seasonal changes of tidal amplitude are ±5 cm, while those of tidal phase vary from 15° to several tens of degrees.  相似文献   

14.
A knowledge of the vertical component of the oceanic tidal load to a precision of at least one microgal is essential for the geophysical exploitation of the high-precision absolute and differential gravity measurements which are being made at ground level and in deep boreholes. On the other hand the ocean load and attraction signal contained in Earth tide gravity measurements can be extracted with a precision which is sufficient to characterize the behaviour of the oceanic tides in different basins and this provides a check of the validity of the presently proposed cotidal maps. The tidal gravity profiles made since 1971 from Europe to Polynesia, through East Africa, Asia and Australia, with correctly intercalibrated gravimeters, comprise information from 91 tidal gravity stations which is used in this paper with this goal in mind.A discussion of all possible sources of error is presented which shows that at the level of 0.5 μgal the observed effects cannot be ascribed to computational or instrumental errors. Cotidal maps which generate computed loads in agreement with the Earth tide gravity measurements over a sufficiently broad area can be used with confidence as a working standard to apply tidal corrections to high-precision measurements made by using new techniques in geodesy, geophysics and geodynamics, satellite altimetry, very long baseline interferometry, Moon and satellite laser ranging and absolute gravity. The recent cotidal maps calculated by Schwiderski for satellite altimetry reductions agree very well with land-based gravimeter observations of the diurnal components of the tides (O1, K1 and P1 waves) but his semi-diurnal component maps (M2, S2 and N2 waves) strangely appear less satisfactory in some large areas. The maps of Hendershott and Parke give good results in several large areas but not everywhere. More detailed investigations are needed not only for several coastal stations but mainly in the Himalayas.  相似文献   

15.
Tidal current and elevation data were collected from five oceanographic moorings during October 2004 in Torres Strait, northern Australia, to assess the effects of large bedforms (i.e., sand banks) on the drag coefficient (CD) used for estimating bed shear stress in complex shallow shelf environments. Ten minute averages of tidal current speed and elevation data were collected for 18 days at an on-bank site (<7 m water depth) and an off-bank site (<10 m). These data were compared to data collected simultaneously from two shelf locations (<11 m) occupied to measure regional tidal behaviour. Overall CD estimates at the on- and off-bank sites attained 7.0±0.1×10−3 and 6.6±0.1×10−3, respectively. On-bank CD estimates also differed between the predominant east–west tidal streams, with easterly directed flows experiencing CD=7.8±0.18×10−3 and westerly directed flows CD=6.4±0.12×10−3. Statistically significant differences between the off-bank and on-bank sites are attributed to the large form drag exerted by the sand banks on the regional tidal currents, and statistically significant differences between the westward and eastward flows is ascribed to bedform asymmetry. Form drag from the large bedforms in Torres Strait comprises up to 65% of the total drag coefficient. When constructing sediment transport models, different CD estimates must therefore be applied to shelf regions containing steep bedforms compared to regions that do not. Our results extend the limited inventory of seabed drag coefficients for shallow shelf environments, and can be used to improve existing regional seabed mobilisation models, which have direct application to environmental management in Torres Strait.  相似文献   

16.
Blooms of the toxic dinoflagellates, Karenia spp. occur nearly annually in the eastern Gulf of Mexico with cell abundances typically >105 cells L−1. Thermal and ocean color satellite imagery shows sea surface temperature patterns indicative of upwelling events and the concentration of chlorophyll at fronts along the west Florida continental shelf. Daily cell counts of Karenia show greater increases in cell concentrations at fronts than can be explained by Karenia's maximum specific growth rate. This is observed in satellite images as up to a 10-fold greater increase in chlorophyll biomass over 1–2 d periods than can be explained by in situ growth. In this study, we propose a model that explains why surface blooms of Karenia may develop even when nutrients on the west Florida shelf are low. In the summer, northward winds produce a net flow east and southeast bringing water and nutrients from the Mississippi River plume onto the west Florida shelf at depths of 20–50 m. This water mass supplies utilizable inorganic and organic forms of nitrogen that promote the growth of Karenia to pre-bloom concentrations in sub-surface waters in the mid-shelf region. In the fall, a change to upwelling favorable winds produces onshore transport. This transport, coupled with the swimming behavior of Karenia, leads to physical accumulation at frontal regions near the coast, resulting in fall blooms. Strong thermal fronts during the winter provide a mechanism for re-intensification of the blooms, if Karenia cells are located north of the fronts. This conceptual model leads to testable hypotheses on bloom development throughout the Gulf of Mexico.  相似文献   

17.
Semidiurnal tidal currents on the outer shelf of the Mackenzie Shelf in the Beaufort Sea were found to be strongly influenced by the locally generated baroclinic tide. Two primary factors are involved in this process: (1) the sharp shelf break along the northeastern Mackenzie Shelf, promoting the generation of vigorous internal tidal waves; and (2) the proximity to critical latitudes for M2 and N2 motions locking these waves and preventing them from leaving the source region. As a result, internal tides are resonantly trapped between the shelf and critical latitudes. The physical properties and temporal variations of tidal motions were examined using current meter measurements obtained from 1987–1988 at four sites (SS1, SS2, SS3, and SS4) offshore of the shelf break at depths of ∼200 m. Each mooring had Aanderaa RCM4s positioned at ∼35 m below the surface and ∼50 m above the bottom. Complex demodulation was used to compute the envelopes (amplitude modulation) of these components. A striking difference in the variability of clockwise (CW) and counterclockwise (CCW) tidal currents was found. The CW tides are highly variable, have greater amplitude, exhibit a burst-like character associated with wind events and contain about 80% of the total energy of the semidiurnal tidal currents. In contrast, the CCW components have a more regular temporal regime with distinct monthly, fortnightly and 10-day modulation at astronomical periodicities associated with frequency differences M2–N2 (0.03629 cpd), S2–M2 (0.06773 cpd), and S2–N2 (0.10402 cpd). Significant horizontal correlation of the CW current envelopes was found only between stations near the northeast Mackenzie Shelf, indicating this to be the main area of baroclinic internal wave generation.  相似文献   

18.
Coastal upwelling events in the California Current System can transport subsurface waters with high levels of carbon dioxide (CO2) to the sea surface near shore. As these waters age and are advected offshore, CO2 levels decrease dramatically, falling well below the atmospheric concentration beyond the continental shelf break. In May 2007 we observed an upwelling event off the coast of northern California. During the upwelling event subsurface respiration along the upwelling path added ∼35 μmol kg−1 of dissolved inorganic carbon (DIC) to the water as it transited toward shore causing the waters to become undersaturated with respect to Aragonite. Within the mixed layer, pCO2 levels were reduced by the biological uptake of DIC (up to 70%), gas exchange (up to 44%), and the addition of total alkalinity through CaCO3 dissolution in the undersaturated waters (up to 23%). The percentage contribution of each of these processes was dependent on distance from shore. At the time of measurement, a phytoplankton bloom was just beginning to develop over the continental shelf. A box model was used to project the evolution of the water chemistry as the bloom developed. The biological utilization of available nitrate resulted in a DIC decrease of ∼200 μmol kg−1, sea surface pCO2 near ∼200 ppm, and an aragonite saturation state of ∼3. These results suggest that respiration processes along the upwelling path generally increase the acidification of the waters that are being upwelled, but once the waters reach the surface biological productivity and gas exchange reduce that acidification over time.  相似文献   

19.
Observations of semidiurnal internal tidal currents from three moorings deployed on the continental shelf off central Chile during summer and winter of 2005 are reported. The spectra of the baroclinic currents showed large peaks at the semidiurnal band with a dominant counterclockwise rotation, which was consistent with internal wave activity. The amplitude of the barotropic tidal currents varied according to the spring–neap cycle following the sea level fluctuations. In contrast, the amplitudes of the internal tide showed high spatial-temporal variability not directly related to the spring–neap modulation. Near the middle of the continental shelf and near the coast (San Vicente Bay) the variance of the semidiurnal baroclinic current is larger than the variance of its barotropic counterpart. The vertical structure of the baroclinic tidal current fluctuations was similar to the structure of the first baroclinic internal wave mode. In general, in the three study sites the variance of the baroclinic current was larger near the surface and bottom and tended to show a minimum value at mid depths. Kinetic energy related to semidiurnal internal waves was larger in winter when stratification of the water column was stronger. During summer, upwelling and the decrease of freshwater input from nearby rivers reduced the vertical density stratification. The amplitude of the semidiurnal internal tide showed a tendency to be enhanced with increasing stratification as observed in other upwelling areas. The continental shelf break and submarine canyons, which limit the continental shelf in the alongshore direction, represent near-critical slopes for the semidiurnal period and are suggested to be the main internal tide generation sites in the study region.  相似文献   

20.
Phytoplankton biomass and primary production were monitored in the Hauraki Gulf and on the northeastern continental shelf, New Zealand - using ship surveys, moored instruments and satellite observations (1998-2001) - capturing variability across a range of space and time scales. A depth-integrated primary production model (DIM) was used to predict integrated productivity from surface parameters, enabling regional-specific estimates from satellite data. The shelf site was dominated by pico-phytoplankton, with low chlorophyll-a (<1 mg m−3) and annual production (136 g C m−2 yr−1). In contrast, the gulf contained a micro/nano-phytoplankton-dominated community, with relatively high chlorophyll-a (>1 mg m−3) and annual production (178 g C m−2 yr−1). Biomass and productivity responded to physico-chemical factors; a combination of light, critical mixing depths and/or nutrient limitation—particularly new nitrate-N. Relatively low biomass and production was observed during 1999. This coincided with inter-annual variability in the timing and extent of upwelling- and downwelling-favourable along-shelf wind-stress, influencing the fluxes of new nitrate-N to the shelf and gulf. Relationships with the Southern Oscillation Index are also discussed. Our multi-scaled sampling highlighted details associated with stratification and de-stratification events, and deep sub-surface chlorophyll-a not visible to satellite sensors. This study demonstrates the importance of multi-scaled sampling in gaining estimates of regional production and its responses to physico-chemical forcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号