首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seasonal variations in the advection and mixing of water masses in the northern Benguela were studied in relation to the oxygen minimum zone over the Namibian shelf. The used data set consists of hydrographic and current measurements from an oceanographic mooring 20 nm off Walvis Bay, monthly CTD transects from the Namibian 23°S monitoring line and recent large-scale hydrographic surveys. The current time series showed an intermittent southward continuation of the Angola Current (AC) through the Angola–Benguela frontal zone (ABFZ) into the northern Benguela, commonly known as poleward undercurrent. In austral summer hypoxic, nutrient rich South Atlantic central water (SACW) from the Angola Gyre is transported into the northern Benguela, whereas during the winter season the oxygen rich Eastern SACW (ESACW) spreads northward. The water mass analysis reveals a mixing between both water masses in the northern Benguela between the ABFZ and the Lüderitz upwelling cell (27°S). The oxygen balance over the Namibian shelf depends to a high extent on the water mass composition of the upper central water layer, controlled by the large scale and local circulation. The deviation of the measured oxygen concentration from its mixing concentration, calculated with the source water mass properties, was used to quantify the oxygen consumption. A new local definition SACW was derived to exclude biogeochemical processes, taking place in the Angola Gyre. The oxygen deficit in the northern Benguela central water amounted to about 60–80 μmol l−1 at the shelf edge and increased up to 150 μmol l−1 on the shelf, due to local oxygen consumption. In the austral summer anoxic bottom waters are observed at the central Namibian shelf, which correlate to an SACW fraction >55%. Periods with high SACW fraction in the water mass composition were congruent with hydrogen sulphide events detected by remote sensing.  相似文献   

2.
Using distributions of benthic Foraminifera and bottom-water variables (depth, salinity, temperature, oxygen, suspended matter, organic matter, phosphate, silicate, nitrite, and nitrate), we investigated movements of water masses on the South Brazilian Shelf (27–30°S) and assessed the seasonality of continental runoff on the distribution of shelf water masses. The data were obtained from water and sediment samples collected in the austral winter of 2003 and austral summer of 2004 in three transects. The terrestrial nutrient input was significantly reduced at stations away from the coast, but high values of nutrients were maintained in subsurface waters due the presence of South Atlantic Central Water (SACW) at greater depths. At shallow sampling stations the influence of freshwater runoff was related to (1) the dominance of calcareous benthic Foraminifera, such as lagoon-related Pseudononion atlanticum, Hanzawaia boueana, Bulimina marginata, Bolivina striatula, Elphidium poeyanum, together with several agglutinated species, including Arenoparrella mexicana, Gaudryina exilis, and Trochammina spp., common in coastal environments subject to wide salinity fluctuations. In contrast, smaller forms and higher species diversity characterized the assemblage at offshore stations. In winter, the presence of Buccella peruviana and Uvigerina peregrina at Santa Marta Cape suggest the possible transport of those species of Subantarctic Shelf Waters (SASW) origin. Foraminifera associated to Subtropical Shelf Water (STSW) were dominated by Globocassidulina subglobosa in both seasons. In summer, the occurrence of U. peregrina in the shallower stations suggested the influence of SACW nutrients brought up by upwelling of deeper waters.  相似文献   

3.
The Río de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28°S) during austral winter and 32°S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds.  相似文献   

4.
A continental shelf scale survey from 22°S to 34°S along the Western Australia coast provides the first detailed synoptic examination of the structure, circulation and modification of the southward flowing Leeuwin Current (LC) during the late austral autumn-early winter (May-June 2007). At lower latitudes (22°S-25°S), the LC was masked within a broad expanse of warm ambient surface water, which extended across the shelf and offshore before becoming constrained at the shelf break and attaining its maximum velocity of ∼1.0 m s−1 at 28°S. The temperature and salinity signature of the LC experienced substantial modification as it flowed poleward; surface temperature of the LC decreased by ∼5.25 °C while surface salinity increased by ∼0.72, consistent with climatology estimates and smaller (larger) for temperature (salinity) than those found during summer. Subsequently, LC water was denser by ∼2σT in the south compared to the north, and the surface mixed layer of the LC revealed only a small deepening trend along its poleward trajectory. Modification of the LC resulted from a combination of mixing due to geostrophic inflow and entrainment of cooler, more saline surrounding subtropical waters, and convective mixing driven by large heat loss to the atmosphere. Air-sea heat fluxes accounted for 50% of the heat lost from the LC in the south, whilst only accounting for 25% in the north, where large geostrophic inflow occurred and the LC displayed its maximum flow. The onshore transport was characterised by distinct jet-like structures, enhanced in the upper 200 m of the water column, and the presence of eddies in the vicinity of the shelf break generated offshore transport.  相似文献   

5.
Hydrographic data collected during surveys carried out in austral winter 2003 and summer 2004 are used to analyze the distributions of temperature (T) and salinity (S) over the continental shelf and slope of eastern South America between 27°S and 39°S. The water mass structure and the characteristics of the transition between subantarctic and subtropical shelf water (STSW), referred to as the subtropical shelf front (STSF), as revealed by the vertical structure of temperature and salinity are discussed. During both surveys, the front intensifies downward and extends southwestward from the near coastal zone at 33°S to the shelf break at 36°S. In austral winter subantarctic shelf water (SASW), derived from the northern Patagonia shelf, forms a vertically coherent cold wedge of low salinity waters that locally separate the outer shelf STSW from the fresher inner shelf Plata Plume Water (PPW) derived from the Río de la Plata. Winter TS diagrams and cross-shelf T and S distributions indicate that mixtures of PPW and tropical water only occur beyond the northernmost extent of pure SASW, and form STSW and an inverted thermocline characteristic of this region. In summer 2004, dilution of Tropical water (TW) occurs at two distinct levels: a warm near surface layer, associated to PPW–TW mixtures, similar to but significantly warmer than winter STSW, and a colder (T∼16 °C) salinity minimum layer at 40–50 m depth, created by SASW–STSW mixtures across the STSF. In winter, the salinity distribution controls the density structure creating a cross-shore density gradient, which prevents isopycnal mixing across the STSF. Temperature stratification in summer induces a sharp pycnocline providing cross-shelf isopycnal connections across the STSF. Cooling and freshening of the upper layer observed at stations collected along the western edge of the Brazil Current suggest offshore export of shelf waters. Low T and S filaments, evident along the shelf break in the winter data, suggest that submesoscale eddies may enhance the property exchange across the shelf break. These observations suggest that as the subsurface shelf waters converge at the STSF, they flow southward along the front and are expelled offshore, primarily along the front axis.  相似文献   

6.
Marginal ice edge zones (MIZ) are unique frontal systems with air-ice-sea interfaces. Phytoplankton blooms, which occur along the edge of the melting ice pack in spring, are strongly related to the air-ice-sea interactive processes. In spring 1982, during a cruise to the Bering Sea ice pack, hydrographic sections, including standard biological oceanographic parameters, were collected across the MIZ showing such enhanced phytoplankton bloom populations in the ice edge. During this period the ice edge retreated at speeds of 6 to 38 cm s?1. Associated with the retreating ice edge were a faster moving upper layer oceanic front that kept pace with the retreating ice edge, and a nearly stationary deeper front. In the presence of light, the phytoplankton blooms are shown to be associated with, and primarily controlled by enhanced density stratification and frontal structure due to ice melt during the spring ice retreat. The ice melt water forms stratification that helps to maintain the phytoplankton within the photic zone. The ice edge blooms can be differentiated from open water blooms by the stratification mechanism; in MIZ blooms stratification is due to low salinity melt water as opposed to temperature derived stratification in most open water blooms. In addition, in the series of cross sections collected, a unique biophysical interaction was observed when the MIZ front moving north with the spring retreat, came in contact with a fixed shelf front forming a ‘dish’ shaped hydrographic structure within which a major phytoplankton bloom was observed. We suggest that upwelling from the tidally driven shelf front supplied nutrients to the surface waters extending the life of the bloom. Wind-driven ice edge upwelling was also observed but was difficult to distinguish from the shelf front circulation.In this same set of ice edge cross sections, a cold water mass was observed at the surface in the MIZ. This water mass was subsequently overridden by warmer water forming a cold tongue structure above the pycnocline and seaward of the shelf front. We suggest that this cold tongue was transient in nature, and illustrative of one mechanism by which the T-S characteristics of high latitude shelf waters are formed and altered.  相似文献   

7.
Satellite ocean color and surface salinity data are used to characterize the space–time variability of the Río de la Plata plume. River outflow and satellite wind data are also used to assess their combined effect on the plume spreading over the Southwestern South Atlantic continental shelf. Over the continental shelf satellite-derived surface chlorophyll-a (CSAT) estimated by the OC4v4 SeaWiFS retrieval algorithm is a good indicator of surface salinity. The log (CSAT) distribution over the shelf presents three distinct modes, each associated to: Subantarctic Shelf Water, Subtropical Shelf Water and Plata Plume water. The log (CSAT) 0.4–0.8 range is associated with a sharp surface salinity transition across the offshore edge of the Plata plume from 28.5 to 32.5. Waters of surface salinity <31, derived from mixtures of Plata waters with continental shelf waters, are associated to log (CSAT)>0.5. In austral winter CSAT maxima extend northeastward from the Plata estuary beyond 30°S. In summer the high CSAT waters along the southern Brazil shelf retreat to 32°S and extend south of the estuary to about 37.5°S, only exceeding this latitude during extraordinary events. The seasonal CSAT variations northeast of the estuary are primarily controlled by reversals of the along-shore wind stress and surface currents. Along-shore wind stress and CSAT variations in the inner and mid-shelves are in phase north of the estuary and 180° out of phase south of the estuary. At interannual time scales northernmost Plata plume penetrations in winter (∼1200 km from the estuary) are associated with more intense and persistent northeastward wind stress, which in the period 2000–2003, prevailed over the shelf south of 26°S. In contrast, in winter 1999, 2004 and 2005, characterized by weaker northeastward wind stress, the plume only reached between 650 and 900 km. Intense southwestward plume extensions beyond 38°S are dominated by interannual time scales and appear to be related to the magnitude of the river outflow. The plume response to large river outflow fluctuations observed at interannual time scales is moderate, except offshore from the estuary mouth, where outflow variations lead CSAT variations by about 2 months.  相似文献   

8.
A general model is presented for the production and fate of phytoplankton during summer in two regions over the continental shelf of the Bering Sea. We propose that both regions of productivity are supported by nutrients transported into the area with the Bering Slope Current and that the fate of the phytodetritus produced is significantly affected by advection. We hypothesize that one system of primary productivity is initiated at the Bering Sea shelf-break front and continues into the northern Bering Sea as part of the modified Bering Shelf water mass. Phytodetritus produced in this system is transported north through Anadyr and Shpanberg Straits and we estimate that in 1987 it supplied 26% of the daily carbon demand of the benthos in the Chirikov Basin. The second region of primary productivity is located in the northern Bering Sea. Nutrients from the Anadyr Current, the northern branch of the bifurcated Bering Slope Current, support a highly productive phytoplankton bloom throughout the summer. Phytodetritus produced in this surface bloom is probably advected into the southern Chukchi Sea and deposited in the sediments.  相似文献   

9.
Seasonal and event scale variations in the distribution and growth of phytoplankton in different hydrographic regions of the continental shelf are compared and evaluated in terms of floristic composition and the evolution of density and nutrient structure across the shelf. Annual cycles of phytoplankton biomass inshore of the 1000-m isobath are characterized by a March maximum and a July minimum. Cross-shelf biomass gradients usually increase in an offshore direction, a phenomenon that is most pronounced during March and April when biomass is high, diatoms dominate, and growth rate is light limited. This is a consequence of the combined effects of growth along the stratified side of the shelf-break front and offshore transport of biomass produced nearshore. We estimate that about 90% of the diatom biomass produced during the February to April bloom period (35% of annual production) is exported from shelf to slope water. Similar but less-pronounced gradients develop during summer due to the development of a chlorophyll maximum layer below the pycnocline where growth rate is also light limited. Production and loss are more tightly coupled under these conditions and about 9% of the biomass produced during May to October appears to be exported (5% of annual production). Export during the diatom bloom period is balanced mainly by nitrate inputs from the Gulf of Maine and adjacent slope water while summer export may be balanced by anthropogenic nitrogen input. The latter could be coupled with biomass export by ammonium remineralization and nitrification in the cold pool of the mid-shelf region. In general, export is greatest when diatoms dominate, growth is light limited, and biomass distributions are physically forced. Export is lowest when nanoplankton dominate, growth is nitrogen limited, and biomass distributions are controlled by grazing.The shelf-break front plays a key role, influencing patterns of phytoplankton growth, biomass distributions, and shelf export. During the diatom bloom period, the development of stratification in nutrient-rich offshore water between storm events results in high growth rates and biomass near the surface on the shelf side of the front. Under these conditions, biomass accumulates in the mid-shelf region on a time scale of days to weeks. Export occurs during wind events with net export from the shelf occurring on a time scale of weeks to months. Blooms also develop along the shelf side of the front during summer but below the pycnocline. Most of the summer export of biomass probably takes place here with accumulation and export occurring on a time scale of hours to days. While this export is small compared to export during the diatom bloom period, it may be critical to the prevention of anoxic events such as that of 1976.  相似文献   

10.
Faroe Shelf Water (FSW) is the water mass that occupies the shallow parts of the Faroe Shelf, surrounding the Faroe Islands (62°N, 7°W). Intensive tidal mixing induces a high degree of homogeneity and the circulation system allows a partial isolation from surrounding waters. This water mass, therefore, supports a unique ecosystem of great importance for commercial fish stocks and studies have shown a clear dependence of the ecosystem on the physical processes that maintain this system and control the exchange between the FSW and the off-shelf waters. In order to identify and quantify these processes, a large observational dataset has been analysed and related to alternative theories. From this analysis, the extent and properties of the FSW have been quantified and the degree of stratification explained in terms of the Simpson–Hunter theory. The residual clockwise circulation system, which is responsible for the partial isolation from off-shelf waters, is shown to be mainly generated by tidal rectification. The typical exchange rate of water between the FSW and the off-shelf regimes has been determined by the use of simple models based on the heat and the salt budgets but the actual exchange rate is found to vary considerably in time and space. These results support earlier suggestions that this exchange is the main limiting factor for the phytoplankton spring bloom on the Faroe Shelf and that variations in exchange rate are responsible for the large inter-annual variation in spring bloom timing and intensity. The observations indicate that the on-shelf/off-shelf exchange intensity is not symmetrically distributed around the shelf, but rather concentrated around the narrow southern tip of the Faroe Shelf, where off-shelf waters during intensive exchange events may be imported all the way to the shore.  相似文献   

11.
Historical and recent oceanographic cruise data, MODIS chlorophyll-a satellite data, and an analytical model are used to examine SST fronts in the entrance to Spencer Gulf, South Australia. The fronts (2–3 °C) due to the contrast between warm Spencer Gulf waters and cooler waters of the continental shelf are readily observable on satellite imagery. Three water masses: cool, fresh upwelled shelf water; warm, salty Great Australian Bight water; and very warm and salty Spencer Gulf bottom water occupy the area. In consequence a summer density minimum is formed at the entrance to Spencer Gulf. The analytical model predicts that this thermohaline structure sets up an ageostrophic circulation, which favours upwelling in the central portion of the entrance. This is confirmed by the satellite data which show an increased chlorophyll-a concentration in the vicinity of the upwelling.  相似文献   

12.
《Continental Shelf Research》2007,27(10-11):1616-1628
Surveys of fish larvae and oceanographic conditions were conducted along transects across the shelf break region in the East China Sea (ECS) in May 2001. The objective of this study was to investigate the distribution and assemblages of fish larvae across the shelf break region and their relationships to mesoscale hydrographic features. There was a warm surface streamer from the Kuroshio which extended toward the shelf region of the ECS; concurrently, we observed the intrusion of the less saline shelf water into the subsurface layer towards the offshore. In all 66 taxa (65 families and 1 order) of larvae were collected by oblique net tows using a bongo net, the larval fish density and number of families sampled were lower in the low-temperature area. Based on cluster analysis and environmental factor, two larval fish assemblages were identified: off-shelf/Kuroshio and shelf break. In shelf break assemblage, Auxis spp. and Diaphus spp. were abundant in the warm surface streamer. In contrast, Maurolicus japonicus, Synagrops spp., Bregmaceros sp. and Champsodon spp. were found in the off-shelf region where the offshore intrusion of less-saline water occurred. This different pattern of the horizontal distribution would reflect vertical distribution of the larvae in the water column. Moreover, copepod nauplii density was higher in the upper layer of the shelf region. Thus, dynamic interactions between the Kuroshio and shelf waters at the frontal boundary are concluded to potentially affect larval fish transport and prey availability.  相似文献   

13.
This study used hydrographic data (CTD and ADCP) collected along the north Brazilian continental shelf and the adjacent oceanic area (the north Brazilian zone) and 13 years of monthly data of sea surface temperatures (SSTs) obtained from the Tropical Rainfall Measuring Mission satellite microwave images. In July and August 2001, the core of the North Brazil Current (NBC) with a velocity exceeding 1.2 m s?1 in the upper 150 m was observed near the break of the north Brazilian continental shelf. The satellite and in situ SSTs from the same time indicate that relatively cold waters (<27.5 °C) extended throughout the NBC region where the vertical distribution of temperature displayed a rise of the 26 °C isotherm to near the surface on transects where the NBC was more intense. These observations indicated that the NBC plays an important role in temperature changes in the water column near and/or over the north Brazilian continental shelf margin even at times when, theoretically, the NBC may be expected to be less intense (April–May) and warm waters dominate the area. The distribution of accumulated temperature change reveals that the NBC may contribute to possible nutrient upwelling of the bottom boundary layer along the continental shelf to surficial areas and offshore following the NBC deflection or merely into the North Atlantic.  相似文献   

14.
In situ primary production data collected during 1978–1981 period and 1997–2000 period were combined to improve understanding of seasonal and spatial distribution of primary production in the southeastern Bering Sea. Mean daily primary production rates showed an apparent seasonal cycle with high rates in May and low rates in summer over the entire shelf of the southeastern Bering Sea except for oceanic region due to lack of data. There was also an increasing trend of primary production rates in the fall over the inner shelf and the middle shelf. There was a decreasing trend of primary production rates between late April and mid-May over the inner shelf while there was an abrupt increase between late April and mid-May over the middle shelf and the outer shelf. In the shelf break region, there was an increasing pattern in late May. These suggest that there was a gradual progression of the development of the spring phytoplankton bloom from the inner shelf toward the shelf break region. There was also a latitudinal variability of primary production rate over the middle shelf, probably due to either spatial variations of the seasonal advance and retreat of sea ice or horizontal advection of saline water in the bottom layer. Annual rates of primary production across the southeastern Bering Sea shelf were 121, 150, 145, 110, and 84 g C m−2 yr−1 in the inner shelf, the middle shelf, the outer shelf, the shelf break, and oceanic region, respectively. High annual rates of primary production over the inner shelf can be attributed to continuous summer production based on regenerated nitrogen and/or a continuous supply of nitrogen at the inner front region, and to fall production. There were some possibilities of underestimation of annual primary production over the entire shelf due to lack of measurement in early spring and fall, which may be more apparent over the shelf break and oceanic region than the inner shelf, the middle, and the outer shelf. This study suggests that the response of primary production by climate change in the southeastern Bering Sea shelf can be misunderstood without proper temporal and seasonal measurement.  相似文献   

15.
16.
Exchanges between oceanic and coastal waters are fundamental in setting the hydrography of arctic shelves and fjords. In West Spitsbergen, Atlantic Water from the West Spitsbergen Current exchanges with the seasonally ice-covered waters of the coast and fjords causing a major annual shift in hydrographic conditions. The extent to which Atlantic Water dominates the fjord systems shows significant interannual variability. Hydrographic sections taken between 1999 and 2005 from Isfjorden and the adjacent shelf have been analyzed to identify the causes of the variability in Atlantic Water occupation of the fjord system. By treating the fjord system as a coastal polynya and running a polynya model to quantify the salt release each winter, we conclude that the critical parameter controlling fjord–shelf exchange is the density difference between the fjord water masses and the Atlantic Water. We provide a full dynamical mechanism for the interaction between water masses at the fjord entrance to rationalize the interannual variability.  相似文献   

17.
We use the hydrographic data obtained during the joint survey of the Yellow Sea by the First Institute of Oceanography, China and the Korea Ocean Research and Development Institute, Korea, to quantify the spatial structures and temporal evolution of the southern Yellow Sea Cold Water Mass (YSCWM). It is indicated that the southern YSCWM is a water mass that develops in summer and decays in fall. In winter, due to the intrusion of the Yellow Sea Warm Current (YSWC), the central area (approximately between 34°N and 35°N, 122°E and 124°E) of the Yellow Sea is mainly occupied by relatively high temperature water (T>10 °C). By contrast, from early summer to fall, under the seasonal thermocline, the central area of Yellow Sea is occupied by cold water (T<10 °C). In summer, the southern YSCWM has two cold cores. One is formed locally southeast of Shandong Peninsula, and the other one has a tongue-like feature occupying the area approximately between 34°N and 37°N, 123°E and 126°E. The bottom layer temperature anomalies from February to July in the cold tongue region, along with the trajectories of the bottom floaters, suggest that the cold water mass in the northeast region has a displacement from the north to the central area of the Yellow Sea during the summer.  相似文献   

18.
Hydrographic data collected on monthly cruises over the West Louisiana and Texas shelf from 1963 to 1965 were analyzed and the volume of fresh water on the shelf was estimated for each data set. The freshwater volume exhibits an annual cycle that is dominated by the spring flood of the Mississippi and Atchafalaya rivers. During the winter, shelf freshwater content is low, with the highest content appearing as a discontinuous band along the inner shelf. In summer an isolated high-content region is present in the center of the shelf. This high-content region dissipates and the pattern migrates toward the southeast in the late summer. By late fall the winter distribution is again present.A fill time for the freshwater volume on the shelf was also estimated for each cruise. The freshwater volume appears, in most cases, to have originated near the time of the previous spring flood.Two of the study years had river discharges well below the long-term mean, while the third-year discharge approximated the long-term mean. These results, then, may not be applicable to large-discharge years.  相似文献   

19.
This paper examines the role of atmospheric forcing in modifying the pathways of riverine water on the Laptev Sea shelf, using summer-to-winter hydrographic surveys from 2007 to 2009. Over the two consecutive winter seasons of 2007–2008 and 2008–2009 in the area of the winter coastal polynya, our data clearly link winter surface salinity fields to the previous summer conditions, with substantially different winter salinity patterns preconditioned by summer atmospheric forcing. In the summer of 2007, dominant along-shore westerly winds in the cyclonic regime force the Lena River runoff to flow eastward. In contrast, in the summer of 2008, dominant along-shore easterly winds over the East Siberian Sea and on-shore northerly winds over the Laptev Sea in the anticyclonic regime lock the riverine water in the vicinity of the Lena Delta. Over the coastal polynya area in the southeastern Laptev Sea these patterns precondition a surface salinity difference of 8–16 psu between the winters of 2008 and 2009. Overall, this indicates a residence time of at least half a year for riverine water on the Laptev Sea shelf. Future climate change associated with an enhanced summer cyclonicity over the eastern Arctic may turn more riverine water eastward along the eastern Siberian coast, resulting in weaker vertical density stratification over the Laptev Sea shelf, with possible impact on the efficiency of vertical mixing and polynya dense water production.  相似文献   

20.
The Camamu Bay (CMB) is located on the narrowest shelf along the South American coastline and close to the formation of two major Western Boundary Currents (WBC), the Brazil/North Brazil Current (BC/NBC). These WBC flow close to the shelf break/slope region and are expected to interact with the shelf currents due to the narrowness of the shelf. The shelf circulation is investigated in terms of current variability based on an original data set covering the 2002-2003 austral summer and the 2003 austral autumn. The Results show that the currents at the shelf are mainly wind driven, experiencing a complete reversal between seasons due to a similar change in the wind field. Currents at the inner-shelf have a polarized nature, with the alongshore velocity mostly driven by forcings at the sub-inertial frequency band and the cross-shore velocity mainly supra-inertially forced, with the tidal currents playing an important role at this direction. The contribution of the forcing mechanisms at the mid-shelf changes between seasons. During the summer, forcings in the two frequency bands are important to drive the currents with a similar contribution of the tidal currents. On the other hand, during the autumn season, the alongshore velocity is mostly driven by sub-inertial forcings and tidally driven currents still remain important in both directions. Moreover, during the autumn when the stratification is weaker, the response of the shelf currents to the wind forcing presents a barotropic signature. The meso-scale processes related to the WBC flowing at the shelf/slope region also affect the circulation within the shelf, which contribute to cause significant current reversals during the autumn season. Currents at the shelf-estuary connection are clearly supra-inertially forced with the tidal currents playing a key role in the generation of the along-channel velocities. The sub-inertial forcings at this location act mainly to drive the weak ebb currents which were highly correlated with both local and remote wind forcing during the summer season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号