首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A key challenge for predictive modeling of transverse mixing and reaction of solutes in groundwater is to determine values of transverse dispersivity (αT)(αT) in heterogeneous flow fields that accurately describe mixing and reaction at the pore scale. We evaluated the effects of flow focusing in high permeability zones on mixing enhancement using experimental micromodel flow cells and pore-scale lattice-Boltzmann-finite-volume model (LB-FVM) simulations. Micromodel results were directly compared to LB-FVM simulations using two different pore structures, and excellent agreement was obtained. Six different flow focusing pore structures were then systematically tested using LB-FVM, and both analytical solutions and a two-dimensional (2D) continuum-scale model were used to fit αTαT values to pore-scale results. Pore-scale results indicate that the overall rate of mixing-limited reaction increased by up to 40% when flow focusing occurred, and it was greater in pore structures with longer flow focusing regions and greater porosity contrast. For each pore structure, αTαT values from analytical solutions of transverse concentration profiles or total product at a given longitudinal location showed good agreement for nonreactive and reactive solutes, and values determined in flow focusing zones were always smaller than those downgradient after the flow focusing zone. Transverse dispersivity values from the 2D continuum model were between values within and downgradient from the flow focusing zone determined from analytical solutions. Also, total product and transverse concentration profiles along the entire pore structure from the 2D continuum model matched pore scale results. These results indicate that accurate quantification of pore-scale flow focusing with transverse dispersion coefficients is possible only when the entire flow and concentration fields are considered.  相似文献   

2.
3.
4.
5.
6.
Extreme heating (up to 43 °C measured from five-year temperature records) occurs in shallow coastal seagrass meadows of the Great Barrier Reef at low tide. We measured effective quantum yield (?PSII?PSII), growth, senescence and mortality in four tropical seagrasses to experimental short-duration (2.5 h) spikes in water temperature to 35 °C, 40 °C and 43 °C, for 6 days followed by one day at ambient temperature. Increasing temperature to 35 °C had positive effects on ?PSII?PSII (the magnitude varied between days and was highly correlated with PPFD), with no effects on growth or mortality. 40 °C represented a critical threshold as there were strong species differences and there was a large impact on growth and mortality. At 43 °C there was complete mortality after 2–3 days. These findings indicate that increasing duration (more days in a row) of thermal events above 40 °C is likely to affect the ecological function of tropical seagrass meadows.  相似文献   

7.
8.
This paper addresses the question of how spatial variability in the hydraulic and chemical properties of groundwater systems affects the transport and sorption behavior of pollutants at the field scale. In this paper, we limit our investigations on pollutants that adsorb according to an equilibrium controlled nonlinear Freundlich sorption isotherm. The new contribution of this paper is take into account not only spatially variable Freundlich distribution coefficients KSKS but spatially variable Freundlich nonlinearity parameters p as well. Using a homogenization theory approach, we shortly review the impact of spatially variable hydraulic properties on the transport and extend the theory to spatially variable chemical properties. We show that spatially variable Freundlich exponents cause a very different field scale transport and sorption behavior than spatial variations in the distribution coefficients only since in the first case field scale Freundlich parameters and field scale dispersion coefficients become concentration dependent. In particular, field scale retardation is much larger than small-scale retardation.  相似文献   

9.
10.
11.
12.
13.
In this study, a probabilistic collocation method (PCM) on sparse grids is used to solve stochastic equations describing flow and transport in three-dimensional, saturated, randomly heterogeneous porous media. The Karhunen–Loève decomposition is used to represent log hydraulic conductivity Y=lnKsY=lnKs. The hydraulic head h   and average pore-velocity vv are obtained by solving the continuity equation coupled with Darcy’s law with random hydraulic conductivity field. The concentration is computed by solving a stochastic advection–dispersion equation with stochastic average pore-velocity vv computed from Darcy’s law. The PCM approach is an extension of the generalized polynomial chaos (gPC) that couples gPC with probabilistic collocation. By using sparse grid points in sample space rather than standard grids based on full tensor products, the PCM approach becomes much more efficient when applied to random processes with a large number of random dimensions. Monte Carlo (MC) simulations have also been conducted to verify accuracy of the PCM approach and to demonstrate that the PCM approach is computationally more efficient than MC simulations. The numerical examples demonstrate that the PCM approach on sparse grids can efficiently simulate solute transport in randomly heterogeneous porous media with large variances.  相似文献   

14.
15.
16.
17.
One-dimensional flows of gravity currents within horizontal and inclined porous channels are investigated combining theoretical and experimental analysis to evaluate the joint effects of channel shape and fluid rheology. The parameter β governs the shape of the channel cross section, while the fluid rheology is characterised by a power-law model with behaviour index n. Self-similar scalings for current length and height are obtained for horizontal and inclined channels when the current volume increases with time as tα.For horizontal channels, the interplay of model parameters α,n, and β governs the front speed, height, and aspect ratio of the current (ratio between the average height and the length). The dependency is modulated by two critical values of α,αβ=n/(n+1) and αn=(2β+1)/β. For all channel shapes, αβ discriminates between currents whose height decreases (α<αβ) or increases (α>αβ) with time at a particular point. For all power-law fluids, αn discriminates between decelerated currents, with time-decreasing aspect ratio (α<αn), and accelerated currents, with time-increasing aspect ratio (α>αn). Only currents with time-decreasing height (α<αβ) and aspect ratio (α<αn) respect model assumptions asymptotically; the former constraint is more restrictive than the latter.For inclined channels, a numerical solution in self-similar form is obtained under the hypothesis that the product of the channel inclination θ and the slope of the free-surface is much smaller than unity; this produces a negligible error for θ>2°, and is acceptable for θ>0.5°. The action of gravity in inclined channels is modulated by both the behaviour index n and the shape factor β. For constant flux, the current reaches at long times a steady state condition with a uniform thickness profile. In steep channels and for sufficiently long currents, the free-surface slope becomes entirely negligible with respect to channel inclination, and the constant thickness profile depends only on n.Theoretical results are validated by comparison with experiments (i) in horizontal and inclined channels with triangular or semicircular cross-section, (ii) with different shear-thinning fluids, and (iii) for constant volume and constant flux conditions. The experimental results show good agreement with theoretical predictions in the long-time regime.Our analysis demonstrates that self-similar solutions are able to capture the essential long-term behaviour of gravity currents in porous media, accounting for diverse effects such as non-Newtonian rheology, presence of boundaries, and channel inclination. This provides a relatively simple framework for sensitivity analysis, and a convenient benchmark for numerical studies.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号