首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cause for prolific seismicity in the Koyna region is a geological enigma. Attempts have been made to link occurrence of these earthquakes with tectonic strain as well as the nearby reservoirs. With a view to providing reliable seismological database for studying the earth structure and the earthquake process in the Koyna region, a state of the art digital seismic network was deployed for twenty months during 1996–97. We present preliminary results from this experiment covering an area of 60 × 80 km2 with twenty seismic stations. Hypocentral locations of more than 400 earthquakes confined to 11×25 km2 reveal fragmentation in the seismicity pattern — a NE — SW segment has a dip towards NW at approximately 45°, whilst the other two segments show a near vertical trend. These seismic segments have a close linkage with the Western Ghat escarpment and the Warna fault. Ninety per cent of the seismicity is confined within the depth range of 3–10 km. The depth distribution of earthquakes delimits the seismogenic zone with its base at 10 km indicating a transition from an unstable to stable frictional sliding regime. The lack of shallow seismicity between 0 and 3 km indicates a mature fault system with well-developed gouge zones, which inhibit shallow earthquake nucleation. Local earthquake travel time inversion for P- and S-waves show ≈ 2% higher velocity in the seismogenic crust (0–10 km) beneath the epicentral tract relative to a lower velocity (2–3%) in the adjoining region. The high P- and S-wave velocity in the seismogenic crust argues against the presence of high pressure fluid zones and suggests its possible linkage with denser lithology. The zone of high velocity has been traced to deeper depths (≈ 70 km) through teleseismic tomography. The results reveal segmented and matured seismogenic fault systems in the Koyna region where seismicity is possibly controlled by strain build up due to competent lithology in the seismic zone with a deep crustal root.  相似文献   

2.
Complexity in the earth’s crustal structure plays an important role in governing earth’s thermal and geodynamic behavior. In the present study, an attempt has been made taking insights from our recent geological, geochemical, petrophysical and geophysical findings from specially drilled deep boreholes, to understand the lithospheric thermal evolution of the highly complex western India, which forms the core region of the Deccan large igneous province. This region was severely affected by the Deccan volcanic eruptions 65 Ma ago, which resulted in a totally degenerated, reworked and exhumed mafic crust, which presently contains several Tertiary basins with proven hydrocarbon reserves. Our detailed case study from the disastrous 1993 Killari earthquake (Mw 6.3) region, apart from some other geotectonically important localities like seismically active 2001 Bhuj and 1967 Koyna earthquake regions together with Tertiary Cambay graben, indicate that the western part of India, is perhaps one of the warmest segments of the earth. It is characterized by an average high mantle heat flow and Moho temperatures of about 43 mW/m2 (range: 31-65 mW/m2) and 660°C (range: 540-860°C) respectively. Estimated thickness of the lithosphere beneath these areas varies from as low as about 45 km to 100 km. Consequently, melting conditions in certain segments are expected at extremely shallow depths due to asthenospheric swell, like northern part of Cambay basin and Bhuj seismic zone beneath which only about half of original crystalline crust now remains due to sub-crustal melting and massive exhumation of deeper crustal layers. Sustained thermal heating and rise of isotherms appear to have resulted in substantial enhancement of hydrocarbon generation and maturation processes in Tertiary sediments. The present study highlights the need of an integrated geological, geochemical and geophysical study, if reasonably accurate deep crustal thermal regime is to be investigated.  相似文献   

3.
Indian shield has been frequented by number of large and moderate magnitude damaging earthquakes since historical times, including the recent disastrous ones like Latur Mw 6.3 in 1993, Jabalpur Mw 5.8 in 1997 and Bhuj Mw 7.7 in 2001. Seismogenesis of these events is still not understood well. Detailed study of nine such earthquake localities (as appended in Table 1), indicates quite high P- and S- velocities (6.2–6.7 km/s and 3.65–3.90 km/s respectively) at a shallow depth of almost surface to six kilometers. These seismogenic regions appear to be in a state of continuous uplift and erosion since geological times, which brought mafic (granulitic/amphibolitic) crust to significantly shallow levels in which stresses are accummulated due to ongoing local uplift and a high input of heatflow from the mantle. These stresses act over and above to the regional compressive stresses generated by India-Eurasia collision. As against common belief, the role played by fluids in nucleation of such earthquakes, in the relatively denser and high velocity Indian crust (compared to the other global stable continental regions), appears limited.  相似文献   

4.
A unique attempt is made to understand the genesis of intraplate seismicity in the Latur-Killari and Koyna seismogenic regions of India, through derived crustal structure by synthesizing active and passive seismic, magnetotelluric, gravity and heat flow data. It has indicated presence of relatively high velocity/density intermediate granulite (and amphibolite) facies rocks underneath the Deccan volcanic cover caused mainly due to a continuous geodynamic process of uplift and erosion since Precambrian times. These findings have been independently confirmed by detailed borehole geological, geochemical and mineralogical investigations. The crystalline basement rock is found to contain 2 wt% of carbon-di-oxide fluid components. The presence of geodynamic process, associated with thermal anomalies at subcrustal depths, is supported by a high mantle heat flow (29–36 mW/m2) beneath both regions, although some structural and compositional variations may exist as evidenced by P- and S-wave seismic velocities. We suggest that the stress, caused by ongoing uplift and a high mantle heat flow is continuously accumulating in this denser and rheologically stronger mafic crust within which earthquakes tend to nucleate. These stresses appear to dominate over and above those generated by the India–Eurasia collision. The role of fluids in stress generation, as advocated through earlier studies, appears limited.  相似文献   

5.
We analyzed a total of 206 receiver functions beneath Kottamiya broadband station in northern Egypt to study the crustal structure and any azimuthal variations in the crustal thickness. The computed receiver functions are subdivided according to their azimuth into eight subgroups and analyzed separately using a genetic algorithm. The genetic algorithm is more appropriate than conventional linearized inversion schemes in regions where there is little a priori information about local crustal structures such as northern Egypt because it does not strongly depend on an initial model. The study region is located on the unstable shelf of Egypt in the northeastern corner of Africa. Little information about the deep structure of the crust beneath this region is available. For this reason, we have adopted the genetic algorithm to seismic waveform data recorded by Kottamiya broadband station. The crustal thickness varies slightly from 32 to 34 km with an average of 32.25 km, which is consistent with previous studies in the region. The crustal thickness shows a tendency of decrease toward the east and northeast being consistent with the general tectonic setting of the region including the opening of the Red Sea in the Tertiary times. Nonetheless, more teleseismic receiver functions from earthquakes recorded at denser seismic stations in northern Egypt and the southeastern Mediterranean combined with surface wave dispersion data as well as other geophysical investigations are necessary for more detailed imaging of the crustal structure which will deepen our understanding of the current tectonic and seismic activities of the region.  相似文献   

6.
 The scale of the Three Georges Project (TGP) on the Yangtze River ensures that it will have enormous social and economic consequences. Determining the safety of the TGP is an essential consideration, and conducting the assessment and zonation of regional crustal stability has a crucial role in determining the success or failure of the TGP in the future. In this paper, the assessment of regional crustal stability, places much emphasis on tectonic stability and the stability of partial foundations (rock and soil masses) and surface slopes (which include landslides, collapses, etc.) related to fracture activity is also taken into consideration. The evaluation and zonation of regional crustal stability was conducted on two scales and scopes: the dam region and the vicinity of the TGP (about 310 000 km2), and the dam region of the TGP (about 30 000 km2). On the basis of tectonic zonation and present crustal stress field analysis, fuzzy mathematics was used to perform quantitative and comprehensive evaluations of crustal stability, and then the zonation of crustal stability in the study region, combined with a theoretical geological study, was made. The results of the assessment and zonation of the crustal stability can be summarized as follows: (1) the general crustal stability of the dam region is in a less stable-stable state and the Sandouping dam site is on a relatively stable landmass; and (2) the Sandouping dam site is on an ancient integrated granite body belonging to a stable (I) landmass. Therefore, from the view of assessment and zonation of regional crustal stability, a large-scale hydropower station can be constructed at Sandouping. Received: 8 September 1995 · Accepted: 25 February 1997  相似文献   

7.
Abu-Dabbab area is the most active seismic zone in the central Eastern Desert of Egypt, where seismic activities are daily recorded. The reported earthquakes are microearthquakes of local magnitudes (ML < 2.0). A spatial distribution of these microearthquakes shows that the earthquakes of the area follow an ENE–WSW trending pattern, which is nearly perpendicular to the Red Sea Rift. Focal mechanisms of different fault styles were recognized with dominant normal faulting (with a strike-slip component) events characterized by focal depths greater than 7 km and reverse ones of shallower focal depths. Several lines of evidence indicating that the brittle-ductile transition zone underlies the Abu-Dabbab area occurs at a relatively shallow depth (10–12 km) and it is acting as a low-angle normal shear zone (LANF). Field-structural, EMR and seismic data (this study) reveal that the maximum compressive stress (σ1) in the area is perturbed from the regional NW–SE direction to ENE–WSW orientation. This stress rotation is evidently akin to the reactivation of the crustal scale Najd Fault System (NFS), where such reactivation is attributed to the ongoing activity/opening of the Red Sea. Our tectonic model proposes that the continuous activity on the brittle-ductile transition zone including the LANF led to stress localization, which triggering a brittle deformation in the upper crustal-levels and associated shallow dipping thrusts. Such bimodal tectonic model suggests that the deep earthquakes are owing to the tectonic movement on the LANF (transtension), whereas the shallow earthquakes are related to a brittle deformation inside the fault blocks of the upper crust (transpression). Deformation creep along this zone didn’t permit continuous accumulation of strain and hence reduce the possible occurrence of large earthquakes.  相似文献   

8.
This paper presents a combination of seismic imaging, geomorphologic, and tectonic data and an interpretation of the M = 5.1 1980 Arudy earthquake sequence putting in relation the seismicity, the inherited faults, and the geomorphologic (Würm and postwürm) markers in this region of the Pyrenees. Since the anticlockwise rotation of the regional compression axis in Oligocene time, western Pyrenees are under a dextral regime and the resulting motion is accommodated along major inherited E–W dextral strike-slip faults. The Arudy aftershocks sequence is controlled by antecedent horsetail splay faults built at the boundary between two shallow Mesozoic crustal blocks most probably due to their differing rheology. This boundary has played the role of a seismic barrier stopping the E–W slip motion. The Arudy earthquake has reactivated the eastern segment of the main E–W strike-slip fault, while the post-seismic aftershocks correspond to local relaxation processes in normal tectonic behavior.  相似文献   

9.
The tectonic evolution of the Mt Amiata volcano-geothermal area is under discussion. Some authors state that this region, as well as the hinterland of the Northern Apennines, were affected by compression from the Cretaceous to the Quaternary. In contrast, most authors believe that extension drove the tectonic evolution of the Northern Apennines from the Early Miocene to the Quaternary. Field data, seismic analyses and borehole logs have been integrated in order to better define the structural features of the continental crust in the Mt Amiata geothermal area. In this paper I propose the hypothesis that the structure of the crust in the Mt Amiata volcano-geothermal area derives from two main geological processes: (1) contractional tectonics related to the stacking of the Northern Apennines (Cretaceous–Early Miocene), (2) subsequent extensional collapse of the hinterland of the mountain chain, and related opening of the Northern Tyrrhenian Sea (Early Miocene–Quaternary). Compressional and extensional structures characterise the Mt Amiata region, although extensional structures dominate its geological framework. In particular the extension produced: (a) Middle-Late Miocene boudinage of the previously stacked tectonic units; (b) Pliocene–Quaternary normal faulting which favoured the emplacement of a magmatic body in the middle-upper crust; and (c) the eruption of the Mt Amiata volcano, which gave rise to an acid and intermediate volcanic complex (0.3–0.19 Ma). The extension produced the space necessary to accommodate the Middle-Late Miocene marine and continental sediments. Pliocene and Quaternary normal and transtensional faults dissected the previous structures and influenced the Early Middle Pliocene marine sedimentation within the structural depressions neighbouring the Mt Amiata volcano. The magmatic body was emplaced at depth (about 6–7 km) during the Pliocene extension, and produced the eruption of the Mt Amiata volcano during the Late Pleistocene. This gave rise to local uplift, presently reaching about 3,000 m, as well as a negative Bouguer anomaly (−16 mgal), both centred on the Mt Amiata area. The crustal dome shows a good correspondence with the convex shape of the regional seismic marker known as the K-horizon, which corresponds to the 450°C isotherm, and the areas with greatest heat flow. This is probably a consequence of the above-cited magmatic body presently in the process of solidification. A Late Pleistocene eruption occurred along a crustal fissure striking N50° (Mt Amiata Fault), which crosscuts the crustal dome. Hydrothermal circulation, proven by the occurrence of thermal springs and gas vents (mainly CO2 and H2S), mainly occurs along the Mt Amiata Fault both in the northeastern ans southwestern sides of the volcano.  相似文献   

10.
The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to delineate the crustal thermal structure along a 230 km long Deep Seismic Sounding (DSS) profile in the north Cambay basin. In this work P-wave velocities obtained from the DSS studies have been converted into heat generation values for the computation of temperature distribution. The model result reveals the Curie isotherm at a depth of ≈22 km and Moho temperature at around 900‡C.  相似文献   

11.
Although the upper Mississippi embayment is an area of low relief, the region has been subjected to tectonic influence throughout its history and continues to be so today. Tectonic activity can be recognized through seismicity patterns and geological indicators of activity, either those as a direct result of earthquakes, or longer term geomorphic, structural, and sedimentological signatures. The rate of seismic activity in the upper Mississippi embayment is generally lower than at the margins of tectonic plates; the embayment, however, is the most seismically active region east of the Rocky Mountains, with activity concentrated in the New Madrid seismic zone. This zone produced the very large New Madrid earthquakes of 1811 and 1812.

Geological and geophysical evidence of neotectonic activity in the upper Mississippi embayment includes faulting in the Benton Hills and Thebes Gap in Missouri, paleoliquefaction in the Western Lowlands of Missouri, subsurface faulting beneath and tilting of Crowley's Ridge in northeastern Arkansas and southeastern Missouri, subsurface faulting along the Crittenden County fault zone near Memphis, Tennessee, faulting along the east flank of the Tiptonville dome, and numerous indicators of historic and prehistoric large earthquakes in the New Madrid seismic zone.

Paleoearthquake studies in the New Madrid seismic zone have used trenching, seismic reflection, shallow coring, pedology, geomorphology, archaeology, and dendrochronology to identify and date faulting, deposits of liquefied sand, and areas of uplift and subsidence. The cause of today's relatively high rate of tectonic activity in the Mississippi embayment remains elusive. It is also not clear whether this activity rate is a short term phenomenon or has been constant over millions of years. Ongoing geodetic and geological studies should provide more insight as to the precise manner in which crustal strain is accumulating, and perhaps allow improved regional neotectonic models.  相似文献   


12.
博罗—大亚湾断陷区位于广东省惠州市西南部,处在我国东南沿海构造活动带,自新生代以来,受太平洋板块和欧亚大陆板块俯冲作用的影响,洋陆系统相互作用导致构造活动活跃,岩浆侵入、火山喷发频繁,地震活动强烈,地表热流值较全国而言比较高,沿着北西走向的博罗—大亚湾线性断陷系统内发育厚层的陆相碎屑沉积,众多的高温热泉出露在裂陷边界,显示出良好的地热资源潜力。通过研究分析深部重磁电震等地球物理资料,发现区域内不仅拥有丰富的浅层次水热型地热热源,深部层位可能存在优质的干热岩储层,初步推断其热源来自新生代南海地幔底辟作用,其导致壳幔物质非均匀流动,在陆壳地区底部发生熔融,向浅部不断传导形成线性热隆伸展构造,控制着整个断陷内的地热系统。  相似文献   

13.
The Pacific Northwest region of North America is a site of very complex tectonomagmatic activity. This activity is due to subduction of the Pacific plate, the associated Cascade chain of volcanoes, micro-plate interactions, and mantle plume activity to the east of the plate margin that produced the Yellowstone hotspot track along the Eastern Snake River Plain (ESRP). A number of recent geophysical and geological studies have produced new results that have drawn attention to the complex tectonic setting of the region east of the Cascade Range, and its tectonic evolution is the subject of considerable scientific interest and debate. Numerous seismic studies have specifically focused on the crustal and upper mantle structure of the ESRP and Yellowstone area. However, crustal-scale studies of the Western Snake River Plain (WSRP) are limited. We undertook an integrated analysis of new and existing geophysical data and geologic constraints to study the crustal structure of the WSRP and generated two-dimensional crustal models across it. We observed both differences and similarities in the structural and tectonic evolution of the eastern and western arms of the SRP based on our integrated analysis. From a broader perspective based on recent geological and geophysical studies in the surrounding region, the intersection of the two arms of the SRP emerges as a major element of a complex tectonic intersection that includes the High Lava Plains of eastern Oregon, the Northern Nevada rift, a southwestern extension of the ESRP into northern Nevada, as well as, faulting and volcanism extending north-westward to connect with the Columbia River basalt plateau region. Thus, the goal of this study is to advance our understanding of the tectonomagmatic evolution of the region and to encourage further studies in the region.  相似文献   

14.
汶川5月12日8.0级地震在构造上起因于印度板块与欧亚板块以每年约5 cm的速度聚敛,并因此而引起青藏高原的地壳物质向四川盆地及中国东南大陆运移.主震震源及余震活动集中于以龙门山为中轴的一条长约350 km、宽约100 km的地震活动带.震源深度一般分布丁地壳脆性-韧性转换边界以上约10~20 km区间的地壳震源层之中,属浅源构造地震.主要震源机制与龙门山构造运动方式密切相关,以其地壳厚度向西急剧加厚、重力梯度带、高波速比(Vp/Vs~2.2)等深部异常及逆冲断层兼具走滑性质的地质构造为特征.在震源辐射、路径传播和场地效应研究的基础上,分别计算并比较了岩石和土壤条件下的地震响应谱,特别强调了土壤条件下的场地放大效应;同时对与地震安全性有关的一些问题如地质灾害、地震频谱设计、地震早期预警系统及中、长期至短期地震预报等进行了探讨;特别提供了一个由加权平均计算、以岩石条件下震波衰减模式为基础的地震频谱设计参考实例.地震构造与动力学研究可融人工程地质与环境工程等学科发展.经历汶川地震考验的一些新近设计和建设的工程项目可为今后改进工程建筑规范与标准提供重要而有益的参考.地震预报是当今一大难题,但需探索研究,不可懈怠.地震减灾与预防足目前比较切合实际的安全举措.  相似文献   

15.
Understanding magma plumbing is essential for predicting the behaviour of explosive volcanoes. We investigate magma plumbing at the highly active Anak Krakatau volcano (Indonesia), situated on the rim of the 1883 Krakatau caldera by employing a suite of thermobarometric models. These include clinopyroxene-melt thermobarometry, plagioclase-melt thermobarometry, clinopyroxene composition barometry and olivine-melt thermometry. Petrological studies have previously identified shallow magma storage in the region of 2–8 km beneath Krakatau, while existing seismic evidence points towards mid- to deep-crustal storage zone(s), at 9 and 22 km, respectively. Our results show that clinopyroxene in Anak Krakatau lavas crystallized at a depth of 7–12 km, while plagioclase records both shallow crustal (3–7 km) and sub-Moho (23–28 km) levels of crystallization. These magma storage regions coincide with well-constrained major lithological boundaries in the crust, implying that magma ascent and storage at Anak Krakatau is strongly controlled by crustal properties. A tandem seismic tomography survey independently identified a separate upper crustal (<7 km) and a lower to mid-crustal magma storage region (>7 km). Both petrological and seismic methods are sensitive in detecting magma bodies in the crust, but suffer from various limitations. Combined geophysical and petrological surveys, in turn, offer increased potential for a comprehensive characterization of magma plumbing at active volcanic complexes.  相似文献   

16.
《China Geology》2020,3(2):314-338
The Yangtze River Economic Belt (YREB) spans three terrain steps in China and features diverse topography that is characterized by significant differences in geological structure and present-day crustal deformation. Active faults and seismic activity are important geological factors for the planning and development of the YREB. In this paper, the spatial distribution and activity of 165 active faults that exist along the YREB have been compiled from previous findings, using both remote-sensing data and geological survey results. The crustal stability of seven particularly noteworthy typical active fault zones and their potential effects on the crustal stability of the urban agglomerations are analyzed. The main active fault zones in the western YREB, together with the neighboring regional active faults, make up an arc fault block region comprising primarily of Sichuan-Yunnan and a “Sichuan-Yunnan arc rotational-shear active tectonic system” strong deformation region that features rotation, shear and extensional deformation. The active faults in the central-eastern YREB, with seven NE-NNE and seven NW-NWW active faults (the “7-longitudinal, 7-horizontal” pattern), macroscopically make up a “chessboard tectonic system” medium-weak deformation region in the geomechanical tectonic system. They are also the main geological constraints for the crustal stability of the YREB.  相似文献   

17.
The South China Sea (SCS) is a region of interaction among three major plates: the Pacific, Indo-Australian and Eurasian. The collision of the Indian subcontinent with the Eurasian plate in the northwest, back-arc spreading at the center, and subduction beneath the Philippine plate along Manila trench in the east and the collision along Palawan trough in the south have produced complex tectonic features within and along the SCS. This investigation examines the satellite-derived gravity anomalies of the SCS and compares them with major tectonic features of the area. A map of Bouguer gravity anomaly is derived in conjunction with available seafloor topography to investigate the crustal structure. The residual isostatic gravity anomaly is calculated assuming that the Cenozoic sedimentary load is isostatically compensated. The features in the gravity anomalies in general correlate remarkably well with the major geological features, including offsets in the seafloor spreading segments, major faults, basins, seamounts and other manifestations of magmatism and volcanism on the seafloor. They also correlate with the presumed location of continental-oceanic crust boundary. The region underlain by oceanic crust in the central part of the SCS is characterized by a large positive Bouguer gravity anomaly (220–330 mgal) as well as large free-air and residual isostatic anomalies. There are, however, important differences among spreading segments. For example, in terms of free-air gravity anomaly, the southwest section of mid-ocean has an approximately 50 km wide belt of gravity low superimposed on a broad high of 45 mgal running NW–SE, whereas there are no similar features in other spreading segments. There are indications that gravity anomalies may represent lateral variation in upper crustal density structure. For instance, free air and isostatic anomalies show large positive anomalies in the east of the Namconson basin, which coincide with areas of dense volcanic material known from seismic surveys. The Red River Fault system are clearly identified in the satellite gravity anomalies, including three major faults, Songchay Fault in the southwest, Songlo Fault in the Northeast and Central Fault in the center of the basin. They are elongated in NW–SE direction between 20±30'N and 17°N and reach to Vietnam Scarp Fault around 16°30'N. It is also defined that the crustal density in the south side of the Central Basin is denser than that in the north side of the Central Basin.  相似文献   

18.
Gravity and magnetic data of the Kachchh basin and surrounding regions have delineated major E–W and NW–SE oriented lineaments and faults, which are even extending up to plate boundaries in the north Arabian Sea and western boundary of the Indian plate, respectively. The epicentral zone of Bhuj earthquake and its aftershocks is located over the junction of Rann of Kachchh and median uplifts viz. Kachchh mainland and Wagad uplifts, which are separated by thrust faults. Gravity data with constraints from the results of the seismic studies along a profile suggest that the basement is uplifted towards the north along thrust faults dipping 40–60° south. Similarly gravity and magnetic modeling along a profile across Wagad uplift suggest south dipping (50–60°) basement contacts separating rocks of high susceptibility and density towards the north. One of these contacts coincides with the fault plane of the Bhuj earthquake as inferred from seismological studies and its projection on the surface coincides with the E–W oriented north Wagad thrust fault. A circular gravity high in contact with the fault in northern part of the Wagad uplift along with high amplitude magnetic anomaly suggests plug type mafic intrusive in this region. Several such gravity anomalies are observed over the island belt in the Rann of Kachchh indicating their association with mafic intrusions. The contact of these intrusives with the country rock demarcates shallow crustal inhomogeneities, which provides excellent sites for the accumulation of regional stress. A regional gravity anomaly map based on the concept of isostasy presents two centers of gravity lows of −11 to −13 mGal (10−5 m/s2) representing mass deficiency in the epicentral region. Their best-fit model constrained from the receiver function analysis and seismic refraction studies suggest crustal root of 7–8 km (deep crustal inhomogeneity) under them for a standard density contrast of −400 kg/m3. It is, therefore, suggested that significant amount of stress get concentrated in this region due to (a) buoyant crustal root, (b) regional stress due to plate tectonic forces, and (c) mafic intrusives as stress concentrators and the same might be responsible for the frequent and large magnitude earthquakes in this region including the Bhuj earthquake of January 26, 2001.  相似文献   

19.
Magnetotelluric investigations have been carried out in the Garhwal Himalayan corridor to delineate the electrical structure of the crust along a profile extending from Indo-Gangetic Plain to Higher Himalayan region in Uttarakhand, India. The profile passing through major Himalayan thrusts: Himalayan Frontal Thrust (HFF), Main Boundary Thrust (MBT) and Main Central Thrust (MCT), is nearly perpendicular to the regional geological strike. Data processing and impedance analysis indicate that out of 44 stations MT data recorded, only 27 stations data show in general, the validity of 2D assumption. The average geoelectric strike, N70°W, was estimated for the profile using tensor decomposition. 2D smooth geoelectrical model has been presented, which provides the electrical image of the shallow and deeper crustal structure. The major features of the model are (i) a low resistivity (<50Ωm), shallow feature interpreted as sediments of Siwalik and Indo-Gangetic Plain, (ii) highly resistive (> 1000Ωm) zone below the sediments at a depth of 6 km, interpreted as the top surface of the Indian plate, (iii) a low resistivity (< 10Ωm) below the depth of 6 km near MCT zone coincides with the intense micro-seismic activity in the region. The zone is interpreted as the partial melting or fluid phase at mid crustal depth. Sensitivity test indicates that the major features of the geoelectrical model are relevant and desired by the MT data.  相似文献   

20.
In porous sediments of the Ishikari Lowland, there is a gradual increase in the background geothermal gradient from the Ishikari River (3–4 °C 100 m–1) to the southwest highland area (10 °C 100 m–1). However, the geothermal gradient at shallow depths differs in detail from the background distribution. In spite of convective heat-flow loss generally associated with groundwater flow, heat flow remains high (100 mW m–2) in the recharge area in the southwestern part of the Ishikari basin, which is part of an active geothermal field. In the northeastern part of the lowland, heat flow locally reaches 140 mW m–2, probably due to upward water flow from the deep geothermal field. Between the two areas the heat flow is much lower. To examine the role of hydraulic flow in the distortion of the isotherms in this area, thermal gradient vs. temperature analyses were made, and they helped to define the major components of the groundwater-flow system of the region. Two-dimensional simulation modeling aided in understanding not only the cause of horizontal heat-flow variations in this field but also the contrast between thermal properties of shallow and deep groundwater reservoirs. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号