首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
浅海声信道中脉位信息检测的抗多途研究   总被引:1,自引:1,他引:0  
简述了浅海声信道中多途干扰的主要特征及其对脉位信息检测的影响,探讨克服多途干扰的几种可能途径,并提出了一种有效的抗多途方法,以实现浅海声信道中脉位信息的可靠、精确检测。  相似文献   

2.
水声数据在海洋信道传输过程中.除受到海洋噪声干扰外还存在由于信道界面反射引起的多途干扰。多途干扰的性质不同于海洋噪声及其它类型噪声.在抗干扰理论中所归纳的几种抗干扰方法均不适用本文提出一种编码方法.它使多途干扰信号在某一特定时刻以相同相位同时抵达接收点.由于信号的相互迭加作用使信号幅度增大.有效地提高海洋信道中数据传输的可靠性。  相似文献   

3.
本文介绍用单片机实现脉冲周期编码(PTC)的电路,给出硬件和软件的配置,其特点是灵活、简单、可靠,适合用于水下传输多个声遥控指令  相似文献   

4.
论文首先介绍浅海声信道声传输的基本特性,指出在此类信道中进行多媒体信息传输的特殊困难.随后论述了文本信息传输所具有的抗噪声、抗起伏等优良性能,较能适应于水声信道的复杂性和多变性,但属于较高速率的文本信息传输,多途干扰仍然是文本信息正确检测的根本障碍.文中分析了频率跳变技术克服时域扩散较短的浅海多途的可行性和需解决的关键技术.海上获得的初步实验结果说明了文本信息传输所具有的优越性,值得今后继续深入的研究.  相似文献   

5.
(括号内数字依次为卷数、期数、页数)波群的波向线散开因子方程关于台湾暖流起源的探讨苏志清海洋信道多途干扰下提高信息传输可靠度的一种编码方法Z、OCPU的全部新指令及其功能洪忠渝河口区水体元素的平衡(II) 一元素的平衡、转移和非保守元素的有效通量于圣睿东方对虾消化系统解剖和组织学的研究海洋无脊椎动物消化醉的研究 I、紫贻贝、日本蚜、滨螺消化酶的初步分析及其应用刘万顺运用聚丙烯酞胺凝胶电泳分析方法对中国卤虫尸产份从甸同工酶变异的研究 查尔斯·厌氧沉积中有孔虫组合特征点源二维各向异性地电断面的直流电场有限元解…  相似文献   

6.
水声信道高速率数据传输技术   总被引:2,自引:0,他引:2  
许肖梅  许鹭芬 《台湾海峡》1997,16(3):325-330
本文介绍近年来水声信道高速率数所传输技术的一些研究进展,并结合本所研究的水声数据遥测,数字语音通讯和视频图像传输实验样机,讨论了具有抗多途干扰的声传输系统在调制信号设计及信号处理上所采用的关键技术。  相似文献   

7.
针对水声信道的特点,提出了一种利用具有大的时宽带宽积的线性调频信号作为帧同步信号的方法。该方法首先在接收端进行滑动时频分析,从而实现线性调频信号的检测及粗同步,再进一步利用拷贝相关处理来实现细同步。计算机仿真和海上试验结果均表明,该方法能够在多途干扰下有效地实现同步。  相似文献   

8.
干涉谱法测量水下竖直运动目标轨迹   总被引:1,自引:0,他引:1  
江磊  惠俊英  蔡平  杨娟 《海洋工程》2006,24(4):38-42
以被动测量竖直运动目标轨迹为目的,通过分析多途信号声压场模型,讨论了经过相干多途信道的目标辐射噪声在接收点产生相干干涉的现象。在目标水平距离已知的情形下,给出了干涉频率周期与目标深度的关系,提出了利用多途信道的相干干涉信息来解算目标深度轨迹的方法。时频分析可以得到干涉条纹、条纹粗细变化的规律与目标深度变化有关。通过对实测数据的分析,说明本方法的有效性。  相似文献   

9.
水声信道多途效应明显,而且存在衰落、散射、损耗以及随机时变等特性,使得水声通信系统的接收信号存在严重的码间干扰.利用带乘性噪声系统模型来刻画随机信道,在建模基础上利用最优滤波递推算法实现状态估计.由于状态向量中的第一维与接收信号之间存在一一对应关系,进而可实现水声信号的估计.该算法在最小方差意义下是最优的,能有效克服码间干扰和噪声污染.2种信道的仿真结果表明,在信噪比(SNR)为18db时,误码率(BER)均已经降低到10-4数量级,验证了算法的有效性.  相似文献   

10.
一九八三年三月十四日——十七日,美将在加里福尼亚州召开第一届遥控潜器会议与展览会。会议发起单位是海洋技术学会圣地亚哥分会、加州大学海洋资源研究所及海洋技术学会海下潜器委员会。在圣地亚哥,有两个遥控潜器的设计、生产与销售单位,现共销售150台潜器。另外遥控潜器技术的主要研究单位海军海洋系统中心也设在圣地亚哥。预计将有500多人出席会议,50多家公司参展。参加会  相似文献   

11.
High-throughout multiple-access communication networks are being considered for use in underwater acoustic channels. Bandwidth limitations of underwater acoustic channels require receivers to process broad-band communications signals in the presence of several active users. To deal with the resulting multiple-access interference in addition to high intersymbol interference, the spatial variability of ocean multipath is exploited in a multichannel multiuser receiver. Two configurations of such a receiver, a centralized and a decentralized one, are presented in fully adaptive modes of operations. While greatly reducing intersymbol and multiple-access interference, spatial diversity implies high increase in adaptive multiuser receiver complexity. To reduce the complexity of the optimal multichannel combiner, spatial structure of multipath is exploited. The complexity of resulting adaptive decentralized multichannel multiuser receiver is reduced at almost no cost in performance. Comparison of proposed multichannel receivers in an experimental shallow water channel demonstrates superior performance of spatial signal combining. The use of multiple input channels is shown to provide high level of tolerance for the near-far effect in both centralized and decentralized receivers. Decentralized receiver with reduced-complexity combining is found to satisfy the performance/complexity trade-off required for practical receiver realization in shallow water networks  相似文献   

12.
Adaptive decision feedback equalization (DFE) has recently been used to enable high-rate data transmission through shallow-water acoustic channels. This adaptive receiver successfully tracks and suppresses intersymbol interference due to a dispersive multipath channel. However, acoustic modems which are used for network applications must also contend with interference due to cochannel signals from proximal modems. In this work, we propose and evaluate a multiuser receiver with cochannel interference suppression. The advantages of this multiuser receiver in the presence of strong cochannel interference are shown by a performance comparison to a bank of the single-user DFEs described above. Conclusions are supported in part by the demodulation of experimental data for two simultaneous cochannel signals and by a steady-state performance analysis  相似文献   

13.
In this paper, we study the effect of array motion on signal cancellation and interference rejection in optimum beamformers in the presence of multipath with partially or fully correlated sources. First, we show how array motion causes signal decorrelation with a rate that depends on the spacing and directions of the sources. Next, we briefly discuss the signal cancellation and interference rejection behavior of the optimum beamformer in the presence of a correlated interference to motivate the need to decorrelate the desired source from the interference. We then propose an optimally weighted covariance averaging technique to ensure perfect decorrelation of the sources for any given displacement. Computer plots and simulation results are included to support our analysis.  相似文献   

14.
Swath bathymetry: principles of operation and an analysis of errors   总被引:1,自引:0,他引:1  
The principles of swath bathymetry are described, and the main cause of depth error is identified as acoustic interference, particularly from the sea surface. An error analysis is presented which gives the relationship among depth errors, the signal-to-interference ratio, the grazing angle, receiver spacing, and area resolution. It permits a prediction of when its measurement of depth can meet the accuracies required for nautical charting. Ways of reducing multipath interference and of minimizing its effect when it does occur are discussed. Particularly important are area averaging, the use of widely spaced receivers with ambiguities resolved by the vernier technique, and phase tracking for avoiding bias problems  相似文献   

15.
High-speed phase coherent communications in the ocean channel are made difficult by the combined effects of large Doppler fluctuations and extended, time-varying multipath. In order to account for these effects, we consider a receiver which performs optimal phase synchronization and channel equalization jointly. Since the intersymbol interference in some underwater acoustic channels spans several tens of symbol intervals, making the optimal maximum-likelihood receiver unacceptably complex, we use a suboptimal, but low complexity, decision feedback equalizer. The mean squared error multiparameter optimization results in an adaptive algorithm which is a combination of recursive least squares and second-order digital phase and delay-locked loops. The use of a fractionally spaced equalizer eliminates the need for explicit symbol delay tracking. The proposed algorithm is applied to experimental data from three types of underwater acoustic channels: long-range deep water, long-range shallow water, and short-range shallow water channels. The modulation techniques used are 4- and 8-PSK. The results indicate the feasibility of achieving power-efficient communications in these channels and demonstrate the ability to coherently combine multiple arrivals, thus exploiting the diversity inherent in multipath propagation  相似文献   

16.
A multi-element receiver strategy is proposed in this paper for a multi-user shallow-water acoustic network (SWAN). The base station receiver, equipped with prior knowledge of the synchronization and training sequences of all intended users, has the task of demodulating the received signals of each user independent of the presence of other users. The adopted receiver strategy enables robust communications through the challenging underwater environment which is limited by both environmental and system factors. The channel is characterized by inter-symbol interference due to multipath propagation and multiple access interference. In this paper, we propose a number of multi-user detection receiver structures employing adaptive decision feedback equalization and spatial diversity to mitigate the effect of these two types of interference. Computer simulations and experimental sea trials conducted in the North Sea in 1999 were used to test the receiver strategies' performance for a two user near far scenario. Amongst a number of strategies tested, the structure based on recursive successive interference cancellation demonstrated improved performance overall  相似文献   

17.
Two adaptive algorithms for multipath time delay estimation   总被引:1,自引:0,他引:1  
The problem of time delay estimation (TDE) with multipath transmissions arises often in many sonar and radar systems. Two adaptive algorithms based on a parameter estimation approach are proposed to estimate the difference in arrival times of a signal at two separated sensors in the presence of multipath propagation. The first method uses an adaptive IIR filter to eliminate the multipath signal in each transmission channel prior to applying a constrained delay estimation algorithm to extract the time difference between the two received outputs. The second employs two constrained adaptive FIR filters to perform equalization of the multipath arrivals, and time delay is then derived using a constrained delay estimator similar to that in the first method. Computer simulations are presented to compare and contrast the tracing capability and convergence behavior of these multipath TDE methods  相似文献   

18.
In July 1999, an at-sea experiment to measure the focus of a 3.5-kHz centered time-reversal mirror (TRM) was conducted in three different environments: an absorptive bottom, a reflective bottom, and a sloping bottom. The experiment included a preliminary exploration of using a TRM to generate binary-phase shift keying communication sequences in each of these environments. Broadside communication transmissions were also made, and single-source communications were simulated using the measured-channel response. A comparison of the results is made and time reversal is shown to be an effective approach for mitigating inter-symbol interference caused by channel multipath.  相似文献   

19.
A design is presented for a system providing highly reliable command and control acoustic communications between a mother ship and a number of small fast submersibles. The small submersibles may be employed for underwater mining, exploration, bottom mapping, or military surveillance. Modulation and coding design is presented; the techniques discussed provide multiple protection against multipath and fading, high reliability, acceptable transmitted signal total time duration, simplicity, and economy. The required decision point signal-to-noise ratio (SNR) for Rayleigh fading conditions is derived for the modulation and coding design. Particular attention is paid in the receive signal processing to the Doppler (relative velocity) and Doppler variation (relative acceleration) problems inherent in a scenario with mobile endpoints. A Figure-of-Merit (FOM) calculation is provided for typical geometrical and environmental parameters. It is shown for a realistic source level that the required SNR can be achieved at long range with considerable endpoint relative motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号