首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfur isotope ratios have been determined in 27 selected volcanic rocks from Iceland together with their whole rock chemistry. The 34S of analyzed basalts ranges from –2.0 to +0.4 with an average value of –0.8 Tholeiitic and alkaline rocks exhibit little difference in 34S values but the intermediate and acid rocks analyzed have higher 34S values up to +4.2 It is suggested that the overall variation in sulfur isotope composition of the basalts is caused by degassing. The small range of the 34S values and its similarity to other oceanic and continental basalts, suggest that the depleted mantle is homogeneous in its sulfur isotope composition. The 34S of the depleted mantle is estimated to be within the range for undegassed oceanic basalts, –0.5 to +1.0  相似文献   

2.
A systematic study of the auriferous quartz veins of the Val-dOr vein field, Abitibi, Quebec, Canada, demonstrates that the C, O, S isotope composition of silicate, carbonate, borate, oxide, tungstate and sulphide minerals have a range in composition comparable to that previously determined for the whole Superior Province. The oxygen isotope composition of quartz from early quartz–carbonate auriferous veins ranges from 9.4 to 14.4 whereas later quartz-tourmaline-carbonate veins have 18Oquartz values ranging from 9.2 to 13.8 . Quartz-carbonate veins have carbonate (18O: 6.9–12.5 ; 13C: –6.2– –1.9 ) and pyrite (34S: 1.2 and 1.9 ) isotope compositions comparable to those of quartz-tourmaline-carbonate veins (18O: 7.9–11.7 ; 13C: –8.0 – –2.4 ; 34S: 0.6–6.0 ). 18Oquartz values in quartz-tourmaline-carbonate veins have a variance comparable to analytical uncertainty at the scale of one locality, irrespective of the type of structure, the texture of the quartz or its position along strike, across strike or down-dip a vein. In contrast, the oxygen isotope composition of quartz in quartz-tourmaline-carbonate veins displays a regional distribution with higher 18O values in the south-central part of the vein field near the Cadillac Tectonic Zone, and which 18O values decrease regularly towards the north. Another zone of high 18O values in the northeast corner of the region and along the trace of the Senneville Fault is separated by a valley of lower 18O values from the higher values near the Cadillac Tectonic Zone. Oxygen isotope isopleths cut across lithological contacts and tectonic structures. This regional pattern in quartz-tourmaline-carbonate veins is interpreted to be a product of reaction with country rocks and mixing between (1) a deep-seated hydrothermal fluid of metamorphic origin with minimum 18O=8.5 , 13C=0.6 and 34S=–0.4 , and (2) a supracrustal fluid, most likely Archean seawater with a long history of water-rock exchange and with maximum 18O=3.9 , 13 C=–5.6 and 34S=5.0 .  相似文献   

3.
Sulfur isotope analyses were made on 14 alunites from volcanic and sedimentary rocks widely different in chemistry and age from southern Tuscany and northern Latium, central Italy. The 34S values range from +0.7 to +9.6, and appear not to be related to the nature of the host rock. Geological and isotopic evidence suggests that all the alunites formed by supergenic oxidation of sulfides. Sulfides occurring with alunites in the volcanic rocks of Latium can be divided into an isotopically light group of probably magmatic origin (34S=–1.5 to +3.4) and a heavy one with 34S=+6.0 to +10.3, tentatively interpreted as deposited by hydrothermal fluids that leached sulfides of similar 34S/32S from the deep basement. Such an interpretation is consistent with recent studies indicating that in the perityrrhenian belt of Latium exists a continuation, at depth, of the Tuscan stratigraphic series, rich in sulfides with 34 from +6 to +12.  相似文献   

4.
Dalradian metamorphic rocks, Lower Ordovician meta-igneous rocks (MGS) and Caledonian granites of the Connemara complex in SW Connemara all show intense retrograde alteration. Alteration primarily involves sericitization and saussuritization of plagioclase, the alteration of biotite and hornblende to chlorite and the formation of secondary epidote. The alteration is associated with sealed microcracks in all rocks and planes of secondary fluid inclusions in quartz where it occurs, and was the result of a phase of fluid influx into these rocks. In hand specimen K-feldspar becomes progressively reddened with increasing alteration. Mineralogical alteration in the MGS and Caledonian granites took place at temperatures 275±15°C and in the MGS Pfluid is estimated to be 1.5 kbar during alteration. The °D values of alteration phases are:-18 to-29 (fluid inclusions),-47 to-61 (chlorites) and-11 to-31 (epidotes). Chlorite 18O values are +0.2 to +4.3, while 18O values for quartz-K-feldspar pairs show both positively sloped (MGS) and highly unusual negatively sloped (Caledonian granites) arrays, diverging from the normal magmatic field on a - plot. The stable isotope data show that the fluid that caused retrogression continued to be present in most rocks until temperatures fell to 200–140°C. The retrograde fluid had D -20 to-30 in all lithologies, but the fluid 18O varied both spatially and temporally within the range-4 to +7. The fO2 of the fluid that deposited the epidotes in the MGS varied with its 18O value, with the most 18O-depleted fluid being the most oxidizing. The D values, together with low (<0) 18O values for the retrograde fluid in some lithologies indicate that this fluid was of meteoric origin. This meteoric fluid was probably responsible for the alteration in all lithologies during a single phase of fluid infiltration. The variation in retrograde fluid 18O values is attributed to the effects of variable oxygen isotope shifting of this meteoric fluid by fluid-rock interaction. Infiltration of meteoric fluid into this area was most likely accomplished by convection of pore fluids around the heat anomaly of the Galway granite soon after intrusion at 400 Ma. However convective circulation of meteoric water and mineralogical alteration could possible have occurred considerably later.  相似文献   

5.
Oxygen and carbon isotope compositions were determined for calcites from the Green Tuff formations of Miocene age in Japan. Values of 18O from 24 calcites in altered rocks from 5 districts range from –2 to +16SMOW, in most cases from 0 to +8SMOW. The low 18O values rule out the possibility of their low-temperature origin or any significant contribution of magmatic fluid in the calcite precipitation. These values, coupled with their mineral assemblages, suggest that the calcites formed from meteoric hydrothermal solutions which caused propylitic alteration after the submarine strata became emergent.Values of 13C from the calcites show a wide variation from –17 to 0PDB. Calcites from different districts have different ranges of 13C values, indicating that there was no homogeneous reservoir of carbon at the time the calcite formed, and that the carbon had local sources. Carbon isotopic compositions of calcite within ore deposits in the Green Tuff formations range from –19 to 0PDB, similar to those of calcite in the altered rocks in the same district, suggesting that the carbon in ore calcites was likely supplied from the surrounding rocks through activity of meteoric hydrothermal solutions.  相似文献   

6.
Sulfur and carbon isotope data are presented of 15 granulite samples from the Furua Complex, southern Tanzania, in which scapolite is a primary and major rock-forming constituent (up to 30 vol%). From these data, the isotopic composition is deduced of the sulfate and carbonate group in the scapolite structure. Subsequently, the composition and origin is discussed of the volatile species that are present in the deep crustal environment in which these scapolites formed.The 34S-values show a narrow range from 0.3 to 3.6, consistent with a deep-seated (mantle) origin of the sulfur; the mean value of 1.9 is slightly higher than usually found in rocks of assumed mantle provenance. The results of the carbon isotope analyses are more difficult to interpret; they suggest that the granulites contain two different carbon components with different isotopic compositions. Firstly, one component, liberated by phosphoric acid at room temperature, has 13Cvalues between –3.8 and –11.2 and a mean value of –6.7. This carbon component is assumed to occur as finely dispersed, submicroscopic carbonate inclusions. The second carbon fraction is liberated by phosphoric acid treatment at temperatures between 200 and 400° C and has considerably lower 13Cvalues with a mean value of –14.1 This seems to represent the carbon isotope composition in the scapolite structure. Such low 13C-values do not agree with the generally accepted value of –7 for juvenile carbon, but they are comparable to those found in early, primary carbonic inclusions from various granulite regions. It is argued that these low 13C-values are typical for granulite-facies metamorphism and that they may characterize an important fluid phase of the lower crust.  相似文献   

7.
The Mount Lofty Ranges comprises interlayered marbles, metapsammites, and metapelites that underwent regional metamorphism during the Delamarian Orogeny at 470–515 Ma. Peak metamorphic conditions increased from lowermost biotite grade (350–400°C) to migmatite grade (700°C) over 50–55 km parallel to the lithological strike of the rocks. With increasing metamorphic grade, 18O values of normal metapelites decrease from 14–16 to as low as 9.0, while 18O values of calcite in normal marbles decrease from 22–24 to as low as 13.2 These isotopic changes are far greater than can be accounted for by devolatilisation, implying widespread fluid-rock interaction. Contact metamorphism appears not to have affected the terrain, suggesting that fluid flow occurred during regional metamorphism. Down-temperature fluid flow from synmetamorphic granite plutons (18O=8.4–8.6) that occur at the highest metamorphic grades is unlikely to explain the resetting of oxygen isotopes because: (a) there is a paucity of skarns at granite-metasediment contacts; (b) the marbles generally do not contain low-XCO2 mineral assemblages; (c) there is insufficient granite to provide the required volumes of water; (d) the marbles and metapelites retain a several permil difference in 18O values, even at high metamorphic grades. The oxygen isotope resetting may be accounted for by along-strike up-temperature fluid flow during regional metamorphism with time-integrated fluid fluxes of up to 5x109 moles/m2 (105 m3/m2). If fluid flow occurred over 105–106 years, estimated intrinsic permeabilities are 10-20 to 10-16m2. Variations in 18O at individual outcrops suggest that time-integrated fluid fluxes and intrinsic permeabilities may locally have varied by at least an order of magnitude. A general increase in XCO2 values of marble assemblages with metamorphic grade is also consistent with the up-temperature fluid-flow model. Fluids in the metapelites may have been derived from these rocks by devolatilisation at low metamorphic grades; however, fluids in the marbles were probably derived in part from the surrounding siliceous rocks. The marble-metapelite boundaries preserve steep gradients in both 18O and XCO2 values, suggesting that across-strike fluid fluxes were much lower than those parallel to strike. Up-temperature fluid flow may also have formed orthoamphibole rocks and caused melting of the metapelites at high grades.This paper is a contribution to IGCP Project 304 Lower Crustal Processes  相似文献   

8.
Stable isotope data have been determined for 13 Mesozoic and Tertiary plutons in eastern Nevada and nearby Utah. In the southern Snake Range of eastern Nevada, where relations are best exposed and have been most intensively studied, D, 18O, and apparent K-Ar ages depend on proximity to the Snake Range decollement. Where stresses resulting from late movement on the decollement have caused cataclasis of Oligocene (37 Ma) granitoid rock, 18O, D, and K-Ar age values as low as –2.5, –155, and 18 Ma, respectively, have been determined. Where there has been no cataclasis, 18O values of Jurassic, Cretaceous, and Oligocene granitoid rocks are apparently unaffected, but both D values and K-Ar ages have been modified for distances of tens of meters below the decollement.Results similar to those in the southern Snake Range have been observed in other eastern Nevada granitoid rocks spatially related to regional thrust faults, as in the Kern Mountains, the Toana Range, and the northern Egan Range. In each of these areas cataclasis or deformation of granitoid rocks has resulted in lowered 18O, D, and K-Ar age values. Where there has been no cataclasis or deformation, 18O values are unaffected, but both D and K-Ar age values have been lowered by stresses resulting from postcrystallization movement along overlying thrust faults.Many of the plutons discussed have not been deeply eroded, and spatially related thrust faults crop out. Where thrust faults are not in evidence and the granitoid rocks give D values lower than about –130 along with spuriously low K-Ar age results, modification of the D and K-Ar age values may have been caused by stresses related to late movement along an overlying (now eroded) thrust fault.  相似文献   

9.
New sulphur and sulphate-oxygen isotope measurements for the main discordant and stratiform lead-zinc-barite orebodies at Silvermines Co. Tipperary, allow reappraisal of previously offered differing interpretations (Graham, 1970; Greig et al., 1971) of the bearing of sulphur isotopes on the genesis of this important Irish deposit. The following aspects of the data are confirmed: barite 34 S-values range from 17–21, similar to lower Carboniferous seawater sulphate: stratiform sulphide lens pyrites have 34 S-values ranging from –13 to –36; vein sulphide 34 S-values range from –8 to 4; sulphide 34 S-values increase upwards and outwards respectively in the related discordant and stratiform G orebodies; galena-sphalerite isotope palaeotemperatures are not too consistent, ranging from 40 to 430°C (using the calibration of Czamanske and Rye (1974). New facts are as follows: barite 18O-values range from –13 to –17, stratiform barites ranging from 13 to 14.5; sulphides separated from a single stratiform ore lens hand specimen usually have 34 Ssl > 34 Sga > 34 Spy; the outward decrease in 34 S-values in the stratiform G orebody is confined to the first few hundred feet only; pyrite 34 S-values progressively increase downwards through one stratiform sulphide orebody; yet variations of 13 occur within a single colloform pyrite structure from another stratiform orebody. It is concluded that there were at least two sources of sulphur, seawater sulphate and deep-seated sulphur. The former was the dominant source of all sulphate and, via biogenic reduction, of the sulphur in the bulk of the stratiform sulphide. The latter was the source of the sulphur in the vein sulphides. There was minimal isotopic interaction between the cool seawater sulphate and the warm unwelling ore fluid sulphur species, even though the latter precipitated under near isotopic equilibrium conditions when the temperature dropped and/or the pH and Eh increased. The lack of isotopic equilibrium between pyrite and ore sulphides in the stratiform ore lenses may result from the latter having precipitated slightly later than the former because of solubility relationships. Overall the present isotopic evidence supports considerable geological evidence favoring a syngenetic origin for the stratiform Silvermines orebodies.  相似文献   

10.
Oxygen-isotope compositions have been measured for whole-rock and mineral samples of host and hydrothermally altered rocks from three massive sulfide deposits, Centennial (CL), Spruce Point (SP), and Anderson Lake (AL), in the Flin Flon — Snow Lake belt, Manitoba. Wholerock 18O values of felsic metavolcanic, host rocks (+8.5 to +16.1) are higher than those of altered rocks from the three deposits. The 18O values of altered rocks are lower in the chlorite zone and muscovite zone-I (CL=+ 5.3; SP=+5.4 to +8.3; AL= +3.7 to +5.9) than in the gradational zone (CL= +9.9 to +11.7; SP= +8.4 to +9.8; AL= + 6.6 to +7.7). Muscovite schist (Muscovite Zone-II) enveloping the Anderson Lake ore body has 18O values of +7.2 to +8.3. Quartz, biotite, muscovite, and chlorite separated from the altered rocks have lower 18O values compared to the same minerals separated from the host rocks. However, isotopic fractionation between mineral-pairs is generally similar in both host and altered rocks.It is interpreted that differences in the oxygen-isotope compositions of the altered and host rocks were produced prior to metamorphism, during hydrothermal alteration related to ore-deposition. Isotopic homogenization during metamorphism occurred on a grain-to-grain scale, over no more than a few meters. The whole-rock 18O values did not change significantly during metamorphism. The generally lower 18O values of altered rocks, the Cu-rich nature of the ore and the occurrence of the muscovite zone-II at Anderson Lake are consistent with the presence of higher temperature hydrothermal fluids at Anderson Lake than at the Centennial and Spruce Point deposits.  相似文献   

11.
Isotopic compositions were determined for quartz, sericite and bulk rock samples surrounding the Uwamuki no. 4 Kuroko ore body, Kosaka, Japan. 18O values of quartz from Siliceous Ore (S.O.), main body of Black Ore B.O.) and the upper layer of B.O. are fairly uniform, +8.7 to +10.5. Formation temperatures calculated from fractionation of 18O between sericite and quartz from B.O. and upper S.O. are 250° to 300° C. The ore-forming fluids had 18O values of +1 and D values of –10, from isotope compositions of quartz and sericite.Tertiary volcanic rocks surrounding the ore deposits at Kosaka have uniform 18O values, +8.1±1.0 (n=50), although their bulk chemical compositions are widely varied because of different degrees of alteration. White Rhyolite, which is an intensely altered rhyolite occurring in close association with the Kuroko ore bodies, has also uniform 18O values, +7.9±0.9 (n=19). Temperatures of alteration are estimated to be around 300° C from the oxygen isotope fractionation between quartz and sericite. Paleozoic basement rocks phyllite and chert, have high 18O values, +18 and +19. The Sasahata formation of unknown age, which lies between Tertiary and Paleozoic formations, has highly variable 18O, +8 to +16 (n=4). High 18O values of the basement rocks and the sharp difference in 18O at their boundary suggest that the hydrothermal system causing Kuroko mineralization was mainly confined within permeable Tertiary rocks. D values of altered Tertiary volcanic rocks are highly variable ranging from –34 to –64% (n=12). The variation of D does not correlate with change of chemical composition, 18O values, nor distance from the ore deposits. The relatively high D values of the altered rocks indicate that the major constituent of the hydrothermal fluid was sea water. However, another fluid having lower D must have also participated. The fluid could be evolved sea water modified by interaction with rocks and the admixture of magmatic fluid. The variation in D may suggest that sea water mixed dispersively with the fluid.  相似文献   

12.
Summary The stable isotope geochemistry of native gold-bearing quartz veins contained within low-grade metasedimentary strata in the central Canadian Rocky Mountains, British Columbia is examined. The data augment previous geological and geochemical studies.Vein pyrite 34S values cluster between + 14.2 and + 16.3 (CDT). Coeval galenas exhibit 34S values between + 11.4 and 13.3. Pyrite-galena geothermometry reveals a mean temperature of mineralization of 300 ± 43°C. Comparison of 34S values for the vein pyrites, with values for pyrite porphyroblasts in country rocks suggests that vein sulfur was probably derived from the host rocks.18O(SMOW) values of host quartzites and pelites cluster between + 12.0 and + 13.5, and + 9.5 and + 10.5, respectively. Auriferous vein quartz exhibits 18O values between + 13.0 and + 15.0. Veins were likely deposited from fluids undergoing post-peak metamorphic cooling.Vein inclusion fluids exhibit values between –105 and –124 (SMOW). Combined O-H-isotope data are most compatible with a source fluid involving chemically- and isotopically-evolved meteoric waters.The critical role of H-isotope data in the evaluation of source fluids for such mesothermal gold lodes is stressed. The paucity of H-isotope data pertaining to the study of lode gold deposits in similar low-grade metasedimentary domains suggests that the involvement of meteoric waters may at times be overlooked.
Der Ursprung metamorphogener Gold-Ganglagerstätten: Bedeutung stabiler Isotopendaten aus den zentralen Rocky Mountains, Kanada
Zusammenfassung Die vorliegende Arbeit befaßt sich mit der Untersuchung der Geochemie stabiler Isotope goldführender Quarzgänge in schwach metamorphen Sedimenten der zentralen Rocky Mountains in Britisch Kolumbien, Kanada. Die Resultate ergänzen früher publizierte geologische und geochemische Daten.Die 34S-Werte von Gang-Pyrit liegen zwischen + 14.2 und + 16.3 (CDT); gleichzeitig gebildeter Bleiglanz hat 34S-Werte von + 11.4 bis + 13.3. Die Isotopengeothermo metrie des Pyrits und Bleiglanzes ergibt eine mittlere Mineralisationstemperatur von 300°C + 43° für diese beiden Minerale. Vergleiche der 8345-Werte des Gang-Pyrits mit denen von Pyrit-Porphyroblasten des Nebengesteins lassen für die Gang-Pyrite eine Herkunft des Schwefels aus dem Nebengestein als wahrscheinlich erscheinen.Die 18O-Werte von Quarziten und Peliten, die als Nebengesteine auftreten, streuen von + 12.0 bis + 13.5 (SMOW), beziehungweise von +9.5 bis + 10.5 Quarz goldführender Gänge hat 18O-Werte, die zwischen + 13.0 und + 15.0 (SMOW) liegen. Er wurde als Gangfüllung wahrscheinlich bei sinkenden Temperaturen aus post metamorphen wäßrigen Lösungen abgesetzt.Flüssigkeitseinschlüsse von Gangmineralien zeigen D-Werte von -105 bis -124 (SMOW). Die H-O-Isotope sind deshalb ein Hinweis dafür, daß als mineralisierende Lösungen isotopisch veränderte meteorische Wässer in Betracht zu ziehen sind. Bei der Deutung der Herkunft der mineralisierenden wäßrigen Lösungen von mesothermalen Goldgängen muß die Kenntnis der H-Isotope als kritisch betrachtet werden. Die Seltenheit mit der H-Isotopendaten dieses Lagerstättentyps in der Literatur diskutiert werden, dürfte ein wesentlicher Grund dafür sein, daß die Rolle meteorischer Wässer bei der Genese mesothermaler, in Metasedimenten liegender Goldgänge, vielfach übersehen wurde.


With 4 Figures  相似文献   

13.
Strata-bound sulfide deposits associated with clastic, marine sedimentary rocks, and not associated with volcanic rocks, display distributions of S34 values gradational between two extreme types: 1. a flat distribution ranging from S34 of seawater sulfate to values about 25 lower; and 2. a narrow distribution around value S34 (sulfide)=S34 (seawater sulfate) –50, and skewed to heavier values. S34 (seawater sulfate) is estimated from contemporaneous evaporites. There is a systematic relation between the type of S34 distribution and the type of depositional environment. Type 1 occurs in shallow marine or brackish-water environments; type 2 occurs characteristically in deep, euxinic basins. These distributions can be accounted for by a model involving bacterial reduction of seawater sulfate in systems which range from fully-closed batches of sulfate (type 1) to fully open systems in which fresh sulfate is introduced as reduction proceeds (type 2). The difference in the characteristic distributions requires that the magnitude of the sulfate-sulfide kinetic isotope effect on reduction be different in the two cases. This difference has already been suggested by the conflict between S34 data for modern marine sediments and laboratory experiments. The difference in isotope effects can be accounted for by Rees' (1973) model of steady-state sulfate reduction: low nutrient supply and undisturbed, stationary bacterial populations in the open system settings tend to generate larger fractionations.
Zusammenfassung Schichtgebundene Sulfid-Lagerstätten in Begleitung von klastischen, marinen Sedimentgesteinen ohne Beteiligung vulkanischer Gesteine zeigen kontinuierliche Verteilungen der S34-Werte zwischen zwei Extremtypen: 1. Eine flache Verteilung im Bereich von S34-Werten des Seewasser-Sulfats bis zu Werten, die etwa 25 niedriger liegen. 2. Eine eng begrenzte Verteilung um den S34 (Sulfid)-Wert=S34 (Seewasser-Sulfat) –50 und asymmetrischer Verteilungskurve mit stärkerer Besetzung bei den schwereren Werten. Das S34 (Seewasser-Sulfat) wird von gleichaltrigen Evaporiten abgeleitet. Es besteht eine systematische Beziehung zwischen der Art der S34-Verteilung und dem Milieu des Ablagerungsraumes. Typ 1 tritt im marinen Flachwasser oder in brackischer Umgebung auf. Typ 2 ist charakteristisch für tiefe euxinische Becken. Diese Verteilungen können erklärt werden mit Hilfe eines Modells mit bakterieller Reduktion von Meerwasser-Sulfat in Systemen, die von völlig abgeschlossenen Sulfat-Mengen (Typ 1) bis zu völlig offenen Systemen reichen, in die bei fortschreitender Reduktion frisches Sulfat zugeführt wird (Typ 2). Der Unterschied in den charakteristischen Verteilungen setzt voraus, daß die Stärke der kinetischen Sulfat-Sulfid-Isotopen-Wirkung auf die Reduktion in beiden Fällen verschieden ist. Dieser Unterschied wurde bereits wegen der Widersprüche zwischen den verschiedenen S34-Werten heutiger mariner Sedimente und Laborexperimente vermutet. Der Unterschied in der Isotopen-Wirkung kann durch das Modell von Rees (1973) für kontinuierlich ablaufende Sulfat-Reduktion erklärt werden. Geringes Nahrungsangebot und ungestörte, gleichbleibende Bakterien-Populationen in offenen Systemen neigen zur Erzeugung stärkerer Fraktionierungen.
  相似文献   

14.
The isotopic composition of oxygen and carbon was studied in accessory carbonates and quartz separated from salts in Upper Devonian halogenous formations of the Pripyat Trough (Belorus). It is established that isotopic characteristics vary in a wide range. Values of 18O vary in the following range (SMOW): from 18.2 to 29.2 in calcites, from 15.7 to 32.5 in dolomites, and from 17.4 to 27.2 in quartz. Values of 13C range from –13.4 to 1.4 in calcites and from –11.1 to 1.7 in dolomites (PDB). Results obtained indicate highly variable isotope-geochemical conditions of sedimentation and early diagenesis during the formation of evaporitic sediments. Accessory minerals were repeatedly formed in a wide temperature range and probably at various stages of the lithogenesis.  相似文献   

15.
The northeastern sector of the Spanish Central System hosts important Stephanian-Permian silver-base metal epithermal mineralizations defining the so-called Hiendelaencina District. The overall geotectonic evolution of this region indicates a major late Variscan extensional period involving the unroofing of dome-shaped metamorphic core complexes, which ultimately led to the radial brittle disruption of these bodies allowing the ascent of andesitic magmas and high-level hydrothermal activity. The deposits are hosted by high-grade metaphorphic rocks belonging to these complexes. Mineralogical and fluid inclusion studies reveal that the mineralizations were formed during two to four hydrothermal stages. These are the result of complex interactions between fluids of contrasted temperatures and salinities. Data on sulphur isotopes suggest that two sources of sulphur existed: magmatic (andesitic derived, with 34S + 6) and metasediment-derived (with initial 34S probably + 25).  相似文献   

16.
An extremely differentiated suite of unaltered volcanic rocks dredged from the Galapagos Spreading Center ranges in 18O from 5.7 to 7.1 At 95°W, low K-tholeiites, FeTi-basalts, andesites and rhyodacites were recovered. Their lithologic and major element geochemical variation can be accounted for by crystal fractionation of plagioclase, pyroxenes, olivine and titanomagnetite in the same proportions and amounts needed to model the 18O variation by simple Rayleigh fractionation. More complicated behaviour was observed in a FeTi-basalt suite from 85°W. This study shows that 90% fractionation only enriches the residual melt by about 1.2 in 18O. It also implies that the magma chambers along parts of the Galapagos Spreading Center were static and isolated such that extreme differentiation could occur.  相似文献   

17.
The Myall Creek copper prospect is in unmetamorphosed carbonaceous dolosiltstone and sandstone at the base of the late Proterozoic (Adelaidean) Tapley Hill Formation. It contains disseminated, fine-grained chalcopyrite, zincian tennanite, bornite, chalcocite, pyrite, sphalerite and galena, and irregular to straight chalcopyrite-rich veinlets. Some ore minerals rim and/or partially replace pyrite or clastic grains. There is no evidence of hydrothermal activity. The 34SCDT values of pyrite and the other sulfides fall in the wide range –3.6 to +44.2. Dolomite in both mineralised and unmineralised samples has 13CPDB values concentrated around –3, and 18OSMOW values around +25. It is concluded that the mineralising fluids were near-neutral brines which leached metals from the basement and early Adelaidean rocks. They entered the Tapley Hill sediments at moderately low temperatures via permeable strata and faults. The metals were precipitated by biogenic H2S, and also fixed by reaction with iron sulfides and, possibly, organic matter. Continuing ascent of brines into the mineralised strata caused breakdown of detrital feldspars and Fe-Ti oxides, and some solution-remobilisation of early-formed sulfides.  相似文献   

18.
The S-isotopic compositions of sulfide deposits from Steinmann, granitoid and felsic volcanic associations have been examined. Ores of Steinmann association have 34S values close to zero per mil (34S=+0.3±3.1) it appears they are of mantle origin. Isotopically, ores of granitoid association regularly show a variable enrichment in 32S relative to meteoritic (34S=–2.7±3.3). The composition is in accord with an upper mantle/lower crustal source. Two stratiform accumulations of felsic volcanic association show a narrow spread of 34S values (+0.2 to 2.4); a mantle origin for the sulfur in these deposits is favored. In contrast, vein, stockwork and cement ores are moderately enriched in 32S relative to meteoritic (34S=–4.0±6.4). These ores are polygenetic; sulfur and metals appear to have been leached from local country rocks where volcanogenic and biogenic sulfur predominate.  相似文献   

19.
Emerald deposits in Swat, northwestern Pakistan, occurring in talc-magnesite and quartz-magnesite assemblages, have been investigated through stable isotope studies. Isotopic analyses were performed on a total of seven emeralds, associated quartz (seven samples), fuchsite (three samples) and tourmaline (two samples) from the Mingora emerald mines. The oxygen isotopic composition ( 18O SMOW) of emeralds shows a strong enrichment in18O and is remarkably uniform at + 15.6 ± 0.4 (1,n = 7). Each of the two components of water in emerald (channel and inclusion) has a different range of hydrogen isotopic composition: the channel waters being distinctly isotopically heavier (D = –51 to –32 SMOW) than the other inclusion waters (D = –96 to –70 SMOW). Similarly the oxygen isotopic compositions of tourmaline and fuchsite are relatively constant ( 18O = + 13 to + 14 SMOW) and show enrichment in18O. The 18O values of quartz, ranging from + 15.1 to + 19.1 SMOW, are also high (+ 16.9 ± 1.4 1, n = 7). The meanD of channel waters measured from emerald (–42 ± 6.6 SMOW) and that of fluid calculated from hydrous mineralsDcalculated (–47 ± 7.1 SMOW) are consistent with both metamorphic and magmatic origin. However, the close similarity between the measuredD values of the hydroxyl hydrogen in fuchsite (–74 to –6 SMOW) and tourmaline (–84 and –69 SMOW) with pegmatitic muscovite and tourmaline suggests that the mineralization was probably caused by modified (18O-enriched) hydrothermal solutions derived from an S-type granitic magma. The variation in the carbon and oxygen isotopic composition of magnesite, locally associated with emerald mineralization, is also very restricted ( 13 –3.2 ± 0.7%, PDB; 18O + 17.9 ± 1.27 SMOW). On the basis of the isotopic composition of fluid ( 13C –1.8 ± 0.7 PDB; 18O + 13.6 ± 1.2 SMOW calculated for the 250-550 °C temperature), it is proposed that the Swat magnesites formed due to the carbonation of previously serpentinized ultramafic rocks by a CO2-bearing fluid of metamorphic origin.  相似文献   

20.
Zusmmenfassung Die Ergebnisse der Schwefelisotopenanalysen von sechs Sulfid- und vier Sulfatmineralproben von Bleiberg/Kreuth (Österreich) variieren von –6,9 bis –25,9 34S in den Sulfiden und von +14,8 bis +18,9 34S in den Sulfaten. Die große Variationsbreite der Schwefelisotopen und die Bevorzugung des leichten Schwefels deutet vermutlich auf bakterielle Prozesse der Sulfidfällung. Die Sulfatschwefel fallen in den Bereich der Schwefelisotopenzusammensetzung des mesozoischen (postskytischen) Meerwassers.
Determination of the sulfur isotopic composition in some sulfide and sulfate minerals of the lead zinc deposit, Bleiberg/Kreuth, Carinthia
Summary Results of sulfur isotope analyses on 6 sulfides and 4 sulfates from Bleiberg/Kreuth (Austria) range from –6.9 to –25.9 34S (in sulfides) and from +14.8 to +18.9 34S (in sulfates). A large range of sulfide sulfur isotope fractionation with appreciable light sulfur probably indicates a bacterial sulfur source in sulfide precipiation. The sulfate sulfur plots in the range of Mesozoic (post-Skytian) seawater sulfur isotopic composition.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号