首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
文章以地质地貌与地震遗迹野外调查获得的第一手资料为基础,重点介绍了实皆断裂的活动习性、2012年地震产生的建筑物破坏与地震地表破裂带特征.实皆断裂是一条规模宏大,以右旋走滑为主的全新世活动断裂,其水平滑动速率为18~20 mm/a.历史上沿实皆断裂曾发生10余次7级以上强震,迄今保留有1839年曼德勒因瓦M 8、193...  相似文献   

2.
The Mw7.5 Palu earthquake that occurred on September 28, 2018, in Indonesia caused much damage to the city of Palu. Preliminary investigations indicated that the Palu‐Koro Fault (PKF) hosted this damaging event. We calculated the seismicity before and after the 1996 Minahasa Mw7.9 earthquake and found that the seismicity on the PKF was enhanced after this earthquake. The earlier earthquake added Coulomb stress changes (?CFS) to the seismogenic fault plane. We calculated the ?CFS produced by the Palu earthquake on a specified received nodal plane; the results suggest that many aftershocks occurred in the region of increased ?CFS. This region was consistent with the region of increased seismicity. The ?CFS on neighbouring faults increased, and up to 55.282 bar of stress was observed on the PKF. Furthermore, we calculated the expected seismicity rate and found that it will require ~50 years to recover to its original level.  相似文献   

3.
The Bolnay (Hangayn) fault is an active shear system which generated the M = 8.2-8.5 Bolnay earthquake of 23 July 1905, one of world’s largest recorded intracontinental event. The fault follows the Mesozoic suture formed during the closure of the Mongolia-Okhotsk ocean. The Late Cenozoic faulting in the region was induced by propagation of strain from the India-Eurasia collision that had reached Mongolia at about 5 ± 3 Ma. The left-lateral strike slip almost all over the fault length is compensated in its western end by Late Quaternary reverse motion. We estimated coseismic slip associated with the event of 1905 and the previous earthquakes in the eastern fault end and checked whether vertical offset compensates the strike slip in this part as well. The 1905 coseismic slip measured from a displaced dry stream bed and pebble bars in the Hasany-Gol river valley was 6.5-7.5 m. The 13 ± 1 m left-lateral displacement of pebble bars in the same valley represents a cumulative slip of two events. Paleoseismological studies across the strike of surface ruptures reveal at least two generations of rupture in two events that postdated the deposition of sediments with a 14C age of 4689 ± 94 yr. Hypsometry of the alluvial surface in the zone of deformation shows gradual elevation increase toward the mountains, but without abrupt change across the fault. This means the absence of vertical offset and reactivation of the fault as a left-lateral strike slip. The horizontal slip in the eastern extension of the Bolnay fault is compensated rather by parallel fault-bounded pull-apart basins trending northeastward oblique to the principal fault strike. The age of their sedimentary fill suggests no older than middle Pleistocene normal faulting that compensated the Bolnay strike slip.  相似文献   

4.
The 26 November 2005 Jiujiang-Ruichang, Jiangxi, Ms?5.7 earthquake occurred in a seismotectonic setting of moderate earthquake. The northwest-trending Xiangfan-Guangji fault (XFG) does not enter into the epicenter vicinity, but the northeast-trending Ruichang-Wuning fault (RWF) as a regional fault extends to the epicenter nearby, appearing as the Ruichang basin and its marginal faults. Tilting of the Ruichang Basin (RCB) in the Quaternary was controlled by the RCB southeast-marginal, buried fault (RSMBF). Shallow geophysical survey reveals that the RSMBF caused an offset of the reflection layers. Drill hole columnar section demonstrates that there are about 10–12?m displacement in the lower section of the middle-Pleistocene Series along the RSMBF, but no disruption is found in the upper section of the middle-Pleistocene Series. The RSMBF not only has activity in the Quaternary, but also coincides with the nodal plane I from the focal mechanism of the Jiujiang-Ruichang Ms?5.7 earthquake. This evidence, including aftershock distribution and isoseismic lines, strongly suggests that the RSMBF might be the seismogenic tectonics. The RWF is discontinuous at the surface, and consists of three en echelon Quaternary basins, which are the Ruichang, Fanzhen and Wuning basins. Three moderate earthquakes, the Fanzhen ML?4.9 earthquake, the Yejiapu ML?4.1 earthquake and the Jiujiang-Ruichang Ms?5.7 earthquake, have happened in the basins since 1995. The seismogenic tectonics of the Jiujiang-Ruichang Ms?5.7 earthquake is not isolated, but may be controlled by the RWF at depth, the slip of which causes the accumulation of energy for earthquake occurrence.  相似文献   

5.
Evidence of right‐lateral offsets associated with the 1912 earthquake (Mw 7.4) along the North Anatolian Fault (Gaziköy–Saros segment) allow us to survey (using DGPS) the co‐seismic and cumulative slip distribution. The damage distribution and surface breaks related with the earthquake show an elongated zone of maximum intensity (X MSK) parallel to the fault rupture on land but this may extend offshore to the north‐east and south‐west. Detailed mapping of the fault using topographic maps and aerial photographs indicates the existence of pull‐apart basins and pressure ridges. At several localities, the average 1912 offset along strike is 3.5–4 m and cumulative slip is 2–6 times that of individual movement. The fault rupture geometry and slip distribution suggest the existence of three subsegments with a combined total length of 110–120 km, a fault length and maximum slip similar to those of the 1999 Izmit earthquake. The amount of slip at the north‐easternmost section and in the coastal region of the Sea of Marmara reaches an average 4 m, thereby implying the offshore extension of the 1912 rupture. The results suggest that the 1912 event generated up to 150 km of surface faulting, which would imply a Mw 7.2–7.4 earthquake and which, added with rupture lengths of the 1999 earthquakes, help to constrain the remaining seismic gap in the Sea of Marmara.  相似文献   

6.
Several source parameters (source dimensions, slip, particle velocity, static and dynamic stress drop) are determined for the moderate-size October 27th, 2004 (MW = 5.8), and the large August 30th, 1986 (MW = 7.1) and March 4th, 1977 (MW = 7.4) Vrancea (Romania) intermediate-depth earthquakes. For this purpose, the empirical Green's functions method of Irikura [e.g. Irikura, K. (1983). Semi-Empirical Estimation of Strong Ground Motions during Large Earthquakes. Bull. Dis. Prev. Res. Inst., Kyoto Univ., 33, Part 2, No. 298, 63–104., Irikura, K. (1986). Prediction of strong acceleration motions using empirical Green's function, in Proceedings of the 7th Japan earthquake engineering symposium, 151–156., Irikura, K. (1999). Techniques for the simulation of strong ground motion and deterministic seismic hazard analysis, in Proceedings of the advanced study course seismotectonic and microzonation techniques in earthquake engineering: integrated training in earthquake risk reduction practices, Kefallinia, 453–554.] is used to generate synthetic time series from recordings of smaller events (with 4 ≤ MW ≤ 5) in order to estimate several parameters characterizing the so-called strong motion generation area, which is defined as an extended area with homogeneous slip and rise time and, for crustal earthquakes, corresponds to an asperity of about 100 bar stress release [Miyake, H., T. Iwata and K. Irikura (2003). Source characterization for broadband ground-motion simulation: Kinematic heterogeneous source model and strong motion generation area. Bull. Seism. Soc. Am., 93, 2531–2545.] The parameters are obtained by acceleration envelope and displacement waveform inversion for the 2004 and 1986 events and MSK intensity pattern inversion for the 1977 event using a genetic algorithm. The strong motion recordings of the analyzed Vrancea earthquakes as well as the MSK intensity pattern of the 1977 earthquake can be well reproduced using relatively small strong motion generation areas, which corresponds to small asperities with high stress drops (300–1200 bar) and high particle velocities (3–5 m/s). These results imply a very efficient high-frequency radiation, which has to be taken into account for strong ground motion prediction, and indicate that the intermediate-depth Vrancea earthquakes are inherently different from crustal events.  相似文献   

7.
On the morning of 15 November 1990 local time, Armidale and the area to the west of Armidale was shaken by a magnitude 3.2 earthquake. The epicentre was located at 30.39° S, 150.88° E and the depth of focus at 12 ± 7 km. As the epicentre was close to the Peel Fault an attempt was made to constrain the focal mechanism of this earthquake. The conventional method, which is based on the analysis of P wave polarities, was not applicable because the event was not strong enough. In an alternative method, the amplitudes of various seismic phases recorded at a number of stations well distributed in azimuth were compared with theoretical amplitudes calculated with the reflectivity method for a point shear dislocation in a layered medium. The differences between observed and calculated amplitudes were minimized as a function of fault strike, fault dip and direction of the slip vector. The analysis indicates that none of the possible fault planes had the strike of the Peel Fault. The solution suggests predominantly strike slip motion along two possible, steeply dipping fault planes. The inferred direction of the maximum compressional stress. is east‐west which is in good agreement with other estimates of the stress field for eastern Australia.  相似文献   

8.
The spacing of parallel continental strike‐slip faults can constrain the mechanical properties of the faults and fault‐bounded crust. In the western US, evenly spaced strike‐slip fault domains are observed in the San Andreas (SA) and Walker Lane (WL) fault systems. Comparison of fault spacing (S) vs. seismogenic zone thickness (L) relationships of the SA and WL systems indicates that the SA has a higher S/L ratio (~8 vs. 1, respectively). If a stress‐shadow mechanism guides parallel fault formation, the S/L ratio should be controlled by fault strength, crustal strength, and/or regional stress. This suggests that the SA‐related strike‐slip faults are relatively weaker, with lower fault friction: 0.13–0.19 for the SA vs. 0.20 for WL. The observed mechanical differences between the San Andreas and Walker Lane fault systems may be attributed to variations in the local geology of the fault‐hosting crust and/or the regional boundary conditions (e.g. geothermal gradient or strain rate).  相似文献   

9.
F. Di Luccio  E. Fukuyama  N.A. Pino   《Tectonophysics》2005,405(1-4):141-154
On October 31, 2002 a ML = 5.4 earthquake occurred in southern Italy, at the margin between the Apenninic thrust belt (to the west) and the Adriatic plate (to the east). In this area, neither historical event nor seismogenic fault is reported in the literature. In spite of its moderate magnitude, the earthquake caused severe damage in cities close to the epicenter and 27 people, out of a total of 29 casualties, were killed by the collapse of a primary school in S. Giuliano di Puglia. By inverting broadband regional waveforms, we computed moment tensor solutions for 15 events, as small as ML = 3.5 (Mw = 3.7). The obtained focal mechanisms show pure strike-slip geometry, mainly with focal planes oriented to NS (sinistral) and EW (dextral). In several solutions focal planes are rotated counterclockwise, in particular for later events, occurring west of the mainshock. From the relocated aftershock distribution, we found that the mainshock ruptured along an EW plane, and the fault mechanisms of some aftershocks were not consistent with the mainshock fault plane. The observed stress field, resulting from the stress tensor inversion, shows a maximum principal stress axis with an east–west trend (N83°W), whereas the minimum stress direction is almost N–S. Considering both the aftershock distribution and moment tensor solutions, it appears that several pre-existing faults were activated rather than a single planar fault associated with the mainshock. The finite fault analysis shows a very simple slip distribution with a slow rupture velocity of 1.1 km/s, that could explain the occurrence of a second mainshock about 30 h after. Finally, we attempt to interpret how the Molise sequence is related to the normal faulting system to the west (along the Apennines) and the dextral strike-slip Mattinata fault to the east.  相似文献   

10.
During May 2003 a swarm of 16 earthquakes (ML = 0.6–2.1) occurred at Anjalankoski, south-eastern Finland. The activity lasted for three weeks, but additional two events were observed at the same location in October 2004. A comparison of the waveforms indicated that the source mechanisms and the hypocentres of the events were nearly identical.A relative earthquake location method was applied to better define the geometry of the cluster and to identify the fault plane associated with the earthquakes. The relocated earthquakes aligned along an ENE–WSW trending zone, with a lateral extent of about 1.0 km by 0.8 km. The relative location and the waveform-modelling of depth sensitive surface wave (Rg) and S-to-P converted body wave (sP) phases indicated that the events were unusually shallow, most likely occurring within the first 2 km of the surface. The revised historical earthquake data confirm that shallow swarm-type seismicity is characteristic to the area.The focal mechanism obtained as a composite solution of the five strongest events corresponds to dip-slip motion along a nearly vertical fault plane (strike = 250°, dip = 80°, rake = 90°). The dip and strike of this nodal plane as well as the relocated hypocentres coincide with an internal intrusion boundary of the Vyborg rapakivi batholith.The events occur under a compressive local stress field, which is explained by large gravitational potential energy differences and ridge-push forces. Pore-pressure changes caused by intrusion of ground water and/or radon gas into the fracture zones are suggested to govern the swarm-type earthquake activity.  相似文献   

11.
The Vienna Basin Transfer Fault (VBTF) is a slow active fault with moderate seismicity (I max~8–9, M max~5.7) passing through the most vulnerable regions of Austria and Slovakia. We use different data to constrain the seismic potential of the VBTF including slip values computed from the seismic energy release during the 20th century, geological data on fault segmentation and a depth-extrapolated 3-D model of a generalized fault surface, which is used to define potential rupture zones. The seismic slip of the VBTF as a whole is in the range of 0.22–0.31 mm/year for a seismogenic fault thickness of 8 km. Seismic slip rates for individual segments vary from 0.00 to 0.77 mm/year. Comparing these data to geologically and GPS-derived slip velocities (>1 mm/year) proofs that the fault yields a significant seismic slip deficit. Segments of the fault with high seismic slip contrast from segments with no slip representing locked segments. Fault surfaces of segments within the seismogenic zone (4–14 km depth) vary from 55 to 400 km2. Empirical scaling relations show that these segments are sufficiently large to explain both, earthquakes observed in the last centuries, and the 4th century Carnuntum earthquake, for which archeo-seismological data suggest a magnitude of M ≥ 6. Based on the combination of all data (incomplete earthquake catalog, seismic slip deficits, locked segments, potential rupture areas, indications of strong pre-catalog earthquakes) we argue, that the maximum credible earthquake for the VBTF is in the range M max = 6.0–6.8, significantly larger than the magnitude of the strongest recorded events (M = 5.7).  相似文献   

12.
3D earthquake locations, focal mechanisms and stress tensor distribution in a 16‐month interval covering the 2018 Mt. Etna flank eruption, enabled us to investigate the relationship between magma intrusion and structural response of the volcano and shed light on the dynamic processes affecting the instability of Mt. Etna. The magma intrusion likely caused tension in the flanks of the volcano, leading to significant ground deformation and redistribution of stress on the neighbouring faults at the edge of Mt. Etna's unstable sector, encouraging the ESE sliding of the eastern flank of the volcano. Accordingly, FPSs of the post‐eruptive events show strike slip faulting mechanisms, under a stress regime characterized by a maximum compressive σ1, NE‐SW oriented. In this perspective, any flank eruption could temporarily enhance the sliding process of both the southern and eastern flanks of the volcano.  相似文献   

13.
Beginning with the Swabian Jura earthquake in 1911 the seismic activity in Central Europe is concentrated to this area. A comparison with other events of the same epicentral region shows that the largest earthquake in Germany has the character of a left-lateral horizontal strike slip striking N — NNE. The focal parameters can be assumed within the following intervalls: Seismic moment Mo = 1…8·1017 Nm; focal area Fo = 18…53 km2; average dislocation do = 20…53 cm and stress drop Δpo = 13…19 bar.  相似文献   

14.
The Longquan–Shan fault and the Huya fault are two major neighboring faults of the Longmen–Shan fault zone where the 12 May 2008 Wenchuan earthquake (Mw 7.9) occurred. To study the influence of the Wenchuan event on these two active faults, we calculate changes of Coulomb stress on the Longquan–Shan fault and the Huya fault caused by the Wenchuan mainshock. Our results indicate that the Coulomb stress in the northern section (Zone A) of the Longquan–Shan fault is increased by 0.07–0.10 bars, that in the middle section (Zone B) by 0.04–0.11 bars, and that in the southern section (Zone C) shows almost no change. For the Huya fault, the Coulomb stress is decreased by 0.01–0.03 bars in the northern section (Zone A), 0.10–0.35 bars in the middle section (Zone B), and nearly 0.5 bars in the southern section (Zone C). The epicenter distribution of small earthquakes (ML  1.5) on the Longquan–Shan fault and the Huya fault after the Wenchuan earthquake is consistent with the distribution of the Coulomb stress change. This implies that the Wenchuan earthquake may have triggered small events on the Longquan–Shan fault, but inhibited those on the Huya fault. We then use the rate/state friction law to calculate the occurrence probability of future earthquakes in the study region for the next decade. They include the distribution of b-values, magnitude of completeness (Mc), the background seismicity rate, a value of n and the duration for the transient effect (ta) in the study region. We also estimate the earthquake occurrence probabilities on the neighboring faults after the Wenchuan earthquake. Our results show that, the occurrence probability of future earthquakes in the Longquan–Shan has a slight increase, being 7% for M  5.0 shocks during the next decade, but the earthquake probability in the Huya region is reduced obviously, being 5–20%, 7–26% and 3–9% for M  5.0 shocks during the next decade in sections A, B and C of the Huya fault, respectively.  相似文献   

15.
Focal mechanisms for three recent earthquakes in Finland are determined using P-wave polarities together with SV/P and SH/P phase amplitude ratios. The events occurred on May 11, 2000 in Toivakka, Central Finland (ML=2.4), on September 15, 2000 in Kuusamo, northeastern Finland (ML=3.5), and on May 2, 2001 in Kolari, western Finnish Lapland (ML=2.9).In order to obtain reliable estimates of the source parameters, one-dimensional crust and upper mantle velocity models are derived for the epicenter areas from deep-seismic sounding results. The starting models are modified by one-dimensional ray tracing using the earthquake observations. The events are relocated by employing P- and S-phase arrival times from the nearest seismic stations and the final velocity models. Synthetic waveforms, calculated with the reflectivity method, are used to further constrain and verify the source and structural parameters.The Toivakka earthquake indicates thrust- or reverse-faulting mechanism at a depth of 5 km. After comparison with aeromagnetic and topographic data we suggest the eastward dipping nodal plane (358°/42°) was the fault plane. The best-fitting fault plane solution of the Kolari earthquake suggests pure thrust-faulting at a depth of 5 km. The nodal plane striking 035°/30° correlates well with surface observations of the postglacial, possibly listric fault systems in the source area. The Kuusamo earthquake (focal depth 14 km) has a normal-faulting mechanism with the nodal planes trending 133°/47° or 284°/47°. Preference is given to the SW-dipping nodal plane, as it seems to coincide with topographic and magnetic lineament directions that have been active after the last ice age.The three earthquakes have occurred in old Precambrian faults and shear zones, which have been reactivated. The reactivated faults are favourably oriented in the local stress field.  相似文献   

16.
We analyze the strong motion accelerograms recorded for the large (MS=7.7, MW=7.3, mb=6.4) Rudbar earthquake of June 20, 1990. The earthquake had a complex source process. We have identified the imprints of rupture of three localized asperities on the major causative fault on the accelerograms. These asperities are interpreted to correspond to (i) the main shock that initiated the rupture process and was located in the domino block between the Kabateh and Zard Goli faults, (ii) a foreshock that occurred about 10 s earlier in the Kabateh fault and (iii) a later shock, on the western end of the Baklor fault, which terminated the bilateral rupture process at the western end. We estimate the strike, dip and slip of these causative sub-event rupture planes using the SH spectral amplitudes, based on a point source representation of sub-events and a non-linear least square formulation for inversion of the amplitude data. The results of our inversion of the near field data are comparable to other studies based on teleseismic data.  相似文献   

17.
The acceleration response spectra of earthquakes with M = 4–6.5 in the southwestern part of the Baikal Rift Zone have been studied. The absorption properties of the medium and the attenuation of seismic signals in the study area were determined. Average acceleration response spectra were obtained for regional earthquakes. A comparative analysis of the acceleration response spectra was made for earthquake focal mechanisms with different senses of motion: reverse fault, reverse slip, strike slip, and oblique slip. The effect of the sense of fault motion in the seismic source on acceleration response spectra was determined.  相似文献   

18.
N. Kraeva   《Tectonophysics》2004,383(1-2):29-44
Application of Tikhonov's technique, using input errors for the parameter of regularization estimation, enhances the accuracy and stability of the reconstruction of a source time function (STF) by the empirical Green function (EGF) method that gives us an opportunity to use simultaneously for analysis body and surface waves data, and to estimate the horizontal and vertical directivity effects. Knowledge of the last is particularly useful for the choice of an active nodal plane of earthquakes with the dip slip fault orientation that allows us to classify these earthquakes to the interplate or intraplate types and thereby to reach the better understanding of tectonic processes in the region of interest.By way of illustration, an attempt to estimate average parameters of faulting in a first approximation is made herein for two Russian Far East large events with opposite types of focal mechanism orientation, strike slip and dip slip. The former is not a matter of interest in the context of vertical directivity effect but enables us to test the method.The directivity analysis of pulse durations and inverse amplitudes of the relative source time functions (RSTFs) restored at eight globally distributed stations IRIS indicates that the destruction in the source of the Neftegorsk earthquake (05/27/1995 MW=7.1) propagated roughly horizontally in the direction 8±11° during 19.2±0.4 s along the rupture extending 35.5±4.9 km. The calculated slip distribution along the rupture coincides within the error with the results of field geological measurements on the causal surface fault that proves that the Neftegorsk earthquake source is well described by the model of the linear unilateral fault and gives a good assessment of the method applied.The average parameters of faulting in the Kamchatka earthquake (03/08/1999 MW=6.9) have been determined from data of 13 station IRIS. It was shown that the destruction in its source propagated downward at an angle of about 60° with horizon, in the direction about S156° E, during 13.4±0.2 s, along the rupture totaling 25.5±2.3 km in length. Therefore, the nodal plane, steeply dipped to the SE, was active and this event can be regarded as an intraplate type. Two asperities can be selected; the first with the maximum slip 3.3 m located at a distance of about 7 km from the onset of rupture, and the second with the maximum slip about 0.9 m centered at approximately 19 km from that.  相似文献   

19.
We present the seismic energy, strain energy, frequency–magnitude relation (b-value) and decay rate of aftershocks (p-value) for the aftershock sequences of the Andaman–Sumatra earthquakes of December 26, 2004 (M w 9.3) and March 28, 2005 (M w 8.7). The energy released in aftershocks of 2004 and 2005 earthquake was 0.135 and 0.365% of the energy of the respective mainshocks, while the strain release in aftershocks was 39 and 71% for the two earthquakes, respectively. The b-value and p-value indicate normal value of about 1. All these parameters are in normal range and indicate normal stress patterns and mechanical properties of the medium. Only the strain release in aftershocks was considerable. The fourth largest earthquake in this region since 2004 occurred in September 2007 off the southern coast of Island of Sumatra, generating a relatively minor tsunami as indicated by sea level gauges. The maximum wave amplitude as registered by the Padang, tide gauge, north of the earthquake epicenter was about 60 cm. TUNAMI-N2 model was used to investigate ability of the model to capture the minor tsunami and its effect on the eastern Indian Coast. A close comparison of the observed and simulated tsunami generation, propagation and wave height at tide gauge locations showed that the model was able to capture the minor tsunami phases. The directivity map shows that the maximum tsunami energy was in the southwest direction from the strike of the fault. Since the path of the tsunami for Indian coastlines is oblique, there were no impacts along the Indian coastlines except near the coast of epicentral region.  相似文献   

20.
In the present work a detailed seismotectonic study of the broader area of the Mygdonia basin (N. Greece) is performed. Digital data for earthquakes which occurred in the broader Mygdonia basin and were recorded by the permanent telemetric network of the Geophysical Laboratory of the Aristotle University of Thessaloniki during the period 1989–1999 were collected and fault plane solutions for 50 earthquakes which occurred in the study area were calculated with a modified first motions approach which incorporates amplitude and radiation pattern information. Fault plane solutions for the 3 main shocks of Volvi (23/05/78, MW = 5.8 and 20/06/78, MW = 6.5) and Arnaia (04/05/95, MW = 5.8) events and the 1978 aftershock sequence were additionally used. Moreover, data from two local networks established in the Mygdonia basin were also incorporated in the final dataset.Determination of the stress field was realized by the use of the method of Gephart and Forsyth [Gephart, J.W., Forsyth, D.W., 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence: Jour. Geophys. Res., v.89, no. B11, p. 9305–9320] for the stress tensor inversion and the results were compared with independent estimates based on the calculation of the average moment tensor [Papazachos, C.B.,Kiratzi, A.A., 1992. A formulation for reliable estimation of active crustal deformation and its application to central Greece. Geophys. J. Int. 111, 424–432]. The obtained stress results show a relatively good agreement between the two approaches, with differences in the azimuth of the dominant extension axis of the order of 10°. Furthermore, comparison with independent information for the mean stress axes provided by the study of kinematics on neotectonic faults [Mountrakis, D., Kilias, A., Tranos, M., Thomaidou, E., Papazachos, C., Karakaisis, G., Scordilis, E., Chatzidimitriou, P., Papadimitriou, E., Vargemezis, G., Aidona, E., Karagianni, E., Vamvakaris, D. Skarlatoudis, A. 2003. Determination of the settings and the seismotectonic behavior of the main seismic-active faults of Northern Greece area using neotectonic and seismological data. Earthquake Planning and Protection Organisation (OASP) (in Greek)] shows a similar agreement with typical misfit of the order 10°. The stress inversion method was modified in order to select one or both nodal planes of the focal mechanism which corresponds to the “true” fault plane of the occurred earthquakes and was able to select a single fault plane in the majority of examined cases. Using this approach, the obtained fault plane rose diagrams are in agreement with results from various neotectonic studies. Moreover, several secondary active fault branches were identified, which are still not clearly observed in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号