首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The onset of deformation in the northern Andes is overprinted by subsequent stages of basin deformation, complicating the examination of competing models illustrating potential location of earliest synorogenic basins and uplifts. To establish the width of the earliest northern Andean orogen, we carried out field mapping, palynological dating, sedimentary, stratigraphic and provenance analyses in Campanian to lower Eocene units exposed in the northern Eastern Cordillera of Colombia (Cocuy region) and compare the results with coeval succession in adjacent basins. The onset of deformation is recorded in earliest Maastrichtian time, as terrigenous detritus arrived into the basin marking the end of chemical precipitation and the onset of clastic deposition produced by the uplift of a western source area dominated by shaly Cretaceous rocks. Disconformable contacts within the upper Maastrichtian to middle Palaeocene succession document increasing supply of quartzose sandy detritus from Cretaceous quartzose rocks exposed in eastern source areas. The continued unroofing of both source areas produced a rapid shift in depositional environments from shallow marine in Maastrichtian to fluvial‐lacustrine systems during the Palaeocene‐early Eocene. Supply of immature Jurassic sandstones from nearby western uplifts, together with localized plutonic and volcanic Cretaceous rocks, caused a shift in Palaeocene sandstones composition from quartzarenites to litharenites. Supply of detrital sandy fragments, unstable heavy minerals and Cretaceous to Ordovician detrital zircons, were derived from nearby uplifted blocks and from SW fluvial systems within the synorogenic basin, instead of distal basement rocks. The presence of volcanic rock fragments and 51–59 Ma volcanic zircons constrain magmatism within the basin. The Maastrichtian–Palaeocene sequence studied here documents crustal deformation that correlates with coeval deformation farther south in Ecuador and Peru. Slab flattening of the subducting Caribbean plate produced a wider orogen (>400 km) with a continental magmatic arc and intra‐basinal deformation and magmatism.  相似文献   

2.
This study constrains the sediment provenance for the Late Cretaceous–Eocene strata of the Ager Basin, Spain, and reconstructs the interplay between foreland basin subsidence and sediment routing within the south-central Pyrenean foreland basin during the early phases of crustal shortening using detrital zircon (DZ) U-Pb-He double dating. Here we present and interpret 837 new DZ U-Pb ages, 113 of which are new DZ (U-Th)/He double-dated zircons. U-Pb-He double dating results allow for a clear differentiation between different foreland and hinterland sources of Variscan zircons (280–350 Ma) by leveraging the contrasting thermal histories of the Ebro Massif and Pyrenean orogen, recorded by the zircon (U-Th)/He (ZHe) ages, despite their indistinguishable U-Pb age signatures. Cretaceous–Paleocene sedimentary rocks, dominated by Variscan DZ U-Pb age components with Permian–Triassic (200–300 Ma) ZHe cooling ages, were sourced from the Ebro Massif south of the Ager Basin. A provenance shift occurred at the base of the Early Eocene Baronia Formation (ca. 53 Ma) to an eastern Pyrenean source (north-east of the Ager Basin) as evidenced by an abrupt change in paleocurrents, a change in DZ U-Pb signatures to age distributions dominated by Cambro-Silurian (420–520 Ma), Cadomian (520–700 Ma), and Proterozoic–Archean (>700 Ma) age components, and the prominent emergence of Cretaceous–Paleogene (<90 Ma) ZHe cooling ages. The Eocene Corçà Formation (ca. 50 Ma), characterized by the arrival of fully reset ZHe ages with very short lag times, signals the accumulation of sediment derived from the rapidly exhuming Pyrenean thrust sheets. While ZHe ages from the Corçà Formation are fully reset, zircon fission track (ZFT) ages preserve older inherited cooling ages, bracketing the exhumation level within the thrust sheets to ca. 6–8 km in the Early Eocene. These DZ ZHe ages yield exhumation rate estimates of ca. 0.03 km/Myr during the Late Cretaceous–Paleocene for the Ebro Massif and ca. 0.2–0.4 km/Myr during the Eocene for the eastern Pyrenees.  相似文献   

3.
Constraining the thermal and denudational evolution of continental margins from extensional episodes to early orogenic stages is critical in the objective to better understand the sediment routing during the growth of orogenic topography. Here, we report 160 detrital zircon U/Pb ages and 73 (U‐Th)/He ages from Albian, Upper Cretaceous and Eocene sandstones from the south‐central Pyrenees. All samples show dominant zircon U/Pb age peaks at 310–320 Ma, indicating a primary contribution from Variscan granites of the central Pyrenean Axial Zone. A secondary population at 450–600 Ma documents zircon grains sourced from the eastern Pyrenees. Zircon (U‐Th)/He ages recovered from older samples document, a Triassic age peak at ca. 241 Ma, corresponding to denudation coeval with the initiation of Atlantic rifting. An Early Cretaceous cooling event at ca. 133 Ma appears consistent with rift‐related exhumation and thermal overprint on the Iberian margin. The (U‐Th)/He age peaks from ca. 80 Ma to ca. 68 Ma with decreasing depositional ages are interpreted to reflect the southward‐migrating thrust‐related exhumation on the pro‐wedge side of the Pyrenean orogen. The increase in lag times, from ca. 15 Ma in the Tremp Formation (ca. 65 Ma) to 28 Ma in the Escanilla Formation (ca. 40 Ma), suggests decreasing exhumation rates from 0.4 km Myr–1 to 0.2 km Myr–1. The apparent inconsistency with convergence rates is used to infer that rocks cooled at 68 Ma may have resided in the crust before final exhumation to the surface. Finally, the cooling event observed at 68 Ma provides support to the inferred acceleration of convergence, shortening and exhumation during Late Cretaceous times.  相似文献   

4.
Despite many years of study, the processes involved in the development of the continental margin of southern Africa and the distinctive topography of the hinterland remain poorly understood. Previous thermochronological studies carried out within a monotonic cooling framework have failed to take into account constraints provided by Mesozoic sedimentary basins along the southern margin. We report apatite fission track analysis and vitrinite reflectance data in outcrop samples from the Late Jurassic to Early Cretaceous sedimentary fill of the Oudtshoorn, Gamtoos and Algoa Basins (Uitenhage Group), as well as isolated sedimentary remnants further west, plus underlying Paleozoic rocks (Cape Supergroup) and Permian‐Triassic sandstones from the Karoo Supergroup around the Great Escarpment. Results define a series of major regional cooling episodes. Latest Triassic to Early Jurassic cooling which began between 205 and 180 Ma is seen dominantly in basement flanks to the Algoa and Gamtoos Basins. This episode may have affected a wider region but in most places any effects have been overprinted by later events. The effects of Early Cretaceous (beginning between 145 and 130 Ma) and Early to mid‐Cretaceous (120–100 Ma) cooling are both delimited by major structures, while Late Cretaceous (85–75 Ma) cooling appears to have affected the whole region. These cooling events are all interpreted as dominantly reflecting exhumation. Higher Late Cretaceous paleotemperatures in samples from the core of the Swartberg Range, coupled with evidence for localised Cenozoic cooling, are interpreted as representing Cenozoic differential exhumation of the mountain range. Late Cretaceous paleotemperatures between 60°C and 90°C in outcropping Uitenhage Group sediments from the Oudtshoorn, Gamtoos and Algoa Basins require burial by between 1.2 and 2.2 km prior to Late Cretaceous exhumation. Because these sediments lie in depositional contact with underlying Paleozoic rocks in many places, relatively uniform Late Cretaceous paleotemperatures across most of the region, in samples of both basin fill and underlying basement, suggest the whole region may have been buried prior to Late Cretaceous exhumation. Cenozoic cooling (beginning between 30 and 20 Ma) is focussed mainly in mountainous regions and is interpreted as representing denudation which produced the modern‐day relief. Features such as the Great Escarpment are not related to continental break up, as is often supposed, but are much younger (post‐30 Ma). This history of post‐breakup burial and subsequent episodic exhumation is very different from conventional ideas of passive margin evolution, and requires a radical re‐think of models for development of continental margins.  相似文献   

5.
During the Cretaceous, the Neuquén Basin transitioned from an extensional back‐arc to a retroarc foreland basin. We present a multi‐proxy provenance study of Aptian to Santonian (125–84 Ma) continental sedimentary rocks preserved in the Neuquén Basin used to resolve changes of sediment drainage pattern in response to the change in tectonic regime. Sandstone petrology and U–Pb detrital zircon geochronology constrain the source units delivering detritus to the basin; apatite U–Pb and fission track dating further resolve provenance and determine the age and patterns of exhumation of the source rocks. Sandstone provenance records a sharp change from a mixed orogenic source during Aptian time (ca. 125 Ma), to a magmatic arc provenance in the Cenomanian (ca. 100 Ma). We interpret this provenance change as the result of the drainage pattern reorganisation from divergent to convergent caused by tectonic basin inversion. During this inversion and early stages of contraction, a transient phase of uplift and basin erosion, possibly due to continental buckling, caused the pre‐Cenomanian unconformity dividing the Lower from Upper Cretaceous strata in the Neuquén Basin. This phase was followed by the development of a retroarc foreland basin characterised by a volcanic arc sediment provenance progressively shifting to a mixed continental basement provenance during Turonian‐Santonian (90–84). According to multi‐proxy provenance data and lag times derived from apatite fission track analysis, this trend is the result of a rapidly exhuming source within the Cordillera to the west, in response to active compressional tectonics along the western margin of South America, coupled with the increasing contribution of material from the stable craton to the east; this contribution is thought to be the result of the weak uplift and exhumation of the foreland due to eastward migration of the forebulge.  相似文献   

6.
The Andean Orogen is the type‐example of an active Cordilleran style margin with a long‐lived retroarc fold‐and‐thrust belt and foreland basin. Timing of initial shortening and foreland basin development in Argentina is diachronous along‐strike, with ages varying by 20–30 Myr. The Neuquén Basin (32°S to 40°S) contains a thick sedimentary sequence ranging in age from late Triassic to Cenozoic, which preserves a record of rift, back arc and foreland basin environments. As much of the primary evidence for initial uplift has been overprinted or covered by younger shortening and volcanic activity, basin strata provide the most complete record of early mountain building. Detailed sedimentology and new maximum depositional ages obtained from detrital zircon U–Pb analyses from the Malargüe fold‐and‐thrust belt (35°S) record a facies change between the marine evaporites of the Huitrín Formation (ca. 122 Ma) and the fluvial sandstones and conglomerates of the Diamante Formation (ca. 95 Ma). A 25–30 Myr unconformity between the Huitrín and Diamante formations represents the transition from post‐rift thermal subsidence to forebulge erosion during initial flexural loading related to crustal shortening and uplift along the magmatic arc to the west by at least 97 ± 2 Ma. This change in basin style is not marked by any significant difference in provenance and detrital zircon signature. A distinct change in detrital zircons, sandstone composition and palaeocurrent direction from west‐directed to east‐directed occurs instead in the middle Diamante Formation and may reflect the Late Cretaceous transition from forebulge derived sediment in the distal foredeep to proximal foredeep material derived from the thrust belt to the west. This change in palaeoflow represents the migration of the forebulge, and therefore, of the foreland basin system between 80 and 90 Ma in the Malargüe area.  相似文献   

7.
The Northland Allochthon, an assemblage of Cretaceous–Oligocene sedimentary rocks, was emplaced during the Late Oligocene–earliest Miocene, onto the in situ Mesozoic and early Cenozoic rocks (predominantly Late Eocene–earliest Miocene) in northwestern New Zealand. Using low‐temperature thermochronology, we investigate the sedimentary provenance, burial and erosion histories of the rocks from both the hanging and footwalls of the allochthon. In central Northland (Parua Bay), both the overlying allochthon and underlying Early Miocene autochthon yield detrital zircon and partially reset apatite fission‐track ages that were sourced from the local Jurassic terrane and perhaps Late Cretaceous volcanics; the autochthon contains, additionally, material sourced from Oligocene volcanics. Thermal history modelling indicates that the lower part of the allochthon together with the autochthon was heated to ca. 55–100°C during the Late Oligocene and Early Miocene, most likely due to the burial beneath the overlying nappe sequences. From the Mesozoic basement exposed in eastern Northland, we obtained zircon fission‐track ages tightly bracketed between 153 and 149 Ma; the apatite fission‐track ages on the other hand, generally young towards the northwest, from 129 to 20.9 Ma. Basement thermochronological ages are inverted to simulate the emplacement and later erosion of the Northland Allochthon, using a thermo‐kinematic model coupled with an inversion algorithm. The results suggest that during the Late Oligocene, the nappes in eastern Northland ranged from ca. 4–6‐km thick in the north to zero in the Auckland region (over a distance >200 km). Following the allochthon emplacement, eastern Northland was uplifted and unroofed during the Early Miocene for a period of ca. 1–6 Myr at the rate of 0.1–0.8 km/Myr, leading to rapid erosion of the nappes. Since Middle Miocene, the basement uplift ceased and the erosion of the nappes and the region as a whole slowed down (ca. 0–0.2 km/Myr), implying a decay in the tectonic activity in this region.  相似文献   

8.
The tectonic evolution of the Tian Shan, as for most ranges in continental Asia is dominated by north‐south compression since the Cenozoic India‐Asia collision. However, precollision governing tectonic processes remain enigmatic. An excellent record is provided by thick Palaeozoic – Cenozoic lacustrine to fluvial depositional sequences that are well preserved in the southern margin of the Junggar Basin and exposed along a foreland basin associated to the Late Cenozoic rejuvenation of the Tian Shan ranges. U/Pb (LA‐ICP‐MS) dating of detrital zircons from 14 sandstone samples from a continuous series ranging in age from latest Palaeozoic to Quaternary is used to investigate changes in sediment provenance through time and to correlate them with major tectonic phases in the range. Samples were systematically collected along two nearby sections in the foreland basin. The results show that the detrital zircons are mostly magmatic in origin, with some minor input from metamorphic zircons. The U‐Pb detrital zircon ages range widely from 127 to 2856 Ma and can be divided into four main groups: 127–197 (sub‐peak at 159 Ma), 250–379 (sub‐peak at 318 Ma), 381–538 (sub‐peak at 406 Ma) and 543–2856 Ma (sub‐peak at 912 Ma). These groups indicate that the zircons were largely derived from the Tian Shan area to the south since a Late Carboniferous basin initiation. The provenance and basin‐range pattern evolution of the southern margin of Junggar Basin can be generally divided into four stages: (1) Late Carboniferous – Early Triassic basin evolution in a half‐graben or post‐orogenic extensional context; (2) From Middle Triassic to Upper Jurassic times, the southern Junggar became a passively subsiding basin until (3) being inverted during Lower Cretaceous – Palaeogene; (4) During the Neogene, a piedmont developed along the northern margin of the North Tian Shan block and Junggar Basin became a true foreland basin.  相似文献   

9.
The central and southern Perth Basin in southwestern Australia has a geological history involving multiple regional unconformity‐forming events from the Permian to Recent. This study uses sonic transit time analysis to quantify the magnitudes of net and gross exhumation for four stratigraphic periods from 43 wells. Most importantly, we quantify gross exhumation of the Permian–Triassic, Triassic–Jurassic, Valanginian break‐up and post‐Early Cretaceous events. Post‐Early Cretaceous gross exhumation averages 900‐m offshore and 600‐m onshore. Up to 200 m of this exhumation may be attributed to localized fault block rotation during extension in the Late Cretaceous and/or reverse fault re‐activation due to the compressive stresses in Australia in the last 50 Ma. The remainder is attributed to regional exhumation caused by epeirogenic processes either during the Cenozoic or at the Aptian–Albian boundary. Maximum burial depths prior to the Valanginian unconformity‐forming event were less than those reached subsequently, so that the magnitude of Valanginian break‐up exhumation cannot be accurately quantified. Gross exhumation prior to the break‐up of Gondwana was defined by large magnitude differences (up to 2500 m) between adjoining sub‐basins. At the end of Triassic, exhumation is primarily attributed to reverse re‐activation of faults that were driven by short‐wavelength inversion and exhumation at the end Permian is likely caused by uplift of rotated fault blocks during extension. The evidence from quantitative exhumation analysis indicates a switch in regime, from locally heterogeneous before break‐up to more regionally homogeneous after break‐up.  相似文献   

10.
《Basin Research》2018,30(Z1):1-14
The paleogeographic reconstruction of the Variscan Mountains during late Carboniferous‐Permian post‐orogenic extension remains poorly understood, owing to the subsequent erosion and/or burial of most associated sedimentary basins during the Mesozoic. The Graissessac‐Lodève Basin (southern France) preserves a thick and exceptionally complete record of continental sedimentation spanning late Carboniferous through late Permian time. This section records the localized tectonic and paleogeographic evolution of southern France in the context of the low‐latitude Variscan Belt of Western Europe. This study presents new detrital zircon and framework mineralogy data that address the provenance of siliciclastic strata exposed in the basin. The ages and compositions of units that constitute the Montagne Noire metamorphic core complex (west of the basin) dictate the detrital zircon age populations and sandstone compositions in Permian strata, recording rapid exhumation and unroofing of the Montagne Noire dome. Cambrian‐Archean zircons and metamorphic lithic‐rich compositions record derivation from recycled detritus of the earliest Paleozoic sedimentary cover and Neoproterozoic‐early Cambrian metasedimentary Schistes X, which formerly covered the Montagne Noire dome. Ordovician zircons and subarkosic framework compositions indicate erosion of orthogneiss units that formed a large part of the dome. The youngest zircon population (320–285 Ma) reflects derivation from late Carboniferous‐early Permian granite units in the axial zone of the Montagne Noire. This population appears first in the early Permian, persists throughout the Permian section and is accompanied by sandstone compositions dominated by feldspar, polycrystalline quartz and metamorphic lithic fragments. The most recent migmatization, magmatism and deformation occurred ca. 298 ± 2 Ma, at ca. 17 km depth (based on peak metamorphic conditions). Accordingly, these new provenance data, together with zircon fission‐track thermochronology, demonstrate that exhumation of the Montagne Noire core complex was rapid (1–17 mm year−1) and early (300–285 Ma), reflecting deep‐seated uplift in the southern Massif Central during post‐orogenic extension.  相似文献   

11.
The Salar de Atacama Basin holds important information regarding the tectonic activity, sedimentary environments and their variations in northern Chile during Cretaceous times. About 4000 m of high‐resolution stratigraphic columns of the Tonel, Purilactis and Barros Arana Formations reveal braided fluvial and alluvial facies, typical of arid to semi‐arid environments, interrupted by scarce intervals with evaporitic, aeolian and lacustrine sedimentation, displaying an overall coarsening‐upward trend. Clast‐count and point‐count data evidence the progressive erosion from Mesozoic volcanic rocks to Palaeozoic basement granitoids and deposits located around the Cordillera de Domeyko area, which is indicative of an unroofing process. The palaeocurrent data show that the source area was located to the west. The U/Pb detrital zircon geochronological data give maximum depositional ages of 149 Ma for the base of the Tonel Formation (Agua Salada Member), and 107 Ma for its middle member (La Escalera Member); 79 Ma for the lower Purilactis Formation (Limón Verde Member), and 73 Ma for the Barros Arana Formation. The sources of these zircons were located mainly to the west, and comprised from the Coastal Cordillera to the Precordillera. The ages and pulses record the tectonic activity during the Peruvian Phase, which can be split into two large events; an early phase, around 107 Ma, showing uplift of the Coastal Cordillera area, and a late phase around 79 Ma indicating an eastward jump of the deformation front to the Cordillera de Domeyko area. The lack of internal deformation and the thicknesses measured suggest that deposition of the units occurred in the foredeep zone of an eastward‐verging basin. This sedimentation would have ended with the K‐T phase, recognized in most of northern Chile.  相似文献   

12.
Apatite fission‐track (AFT) thermochronology and (U‐Th)/He (AHe) dating, combined with paleothermometers and independent geologic constraints, are used to model the thermal history of Devonian Catskill delta wedge strata. The timing and rates of cooling determines the likely post‐orogenic exhumation history of the northern Appalachian Foreland Basin (NAB) in New York and Pennsylvania. AFT ages generally young from west to east, decreasing from ~185 to 120 Ma. AHe single‐grain ages range from ~188 to 116 Ma. Models show that this part of the Appalachian foreland basin experienced a non‐uniform, multi‐stage cooling history. Cooling rates vary over time, ~1–2 °C/Myr in the Early Jurassic to Early Cretaceous, ~0.15–0.25 °C/Myr from the Early Cretaceous to Late Cenozoic, and ~1–2 °C/Myr beginning in the Miocene. Our results from the Mesozoic are broadly consistent with earlier studies, but with the integration of multiple thermochronometers and multi‐kinetic annealing algorithms in newer inverse thermal modeling programs, we constrain a Late Cenozoic increase in cooling which had been previously enigmatic in eastern U.S. low‐temperature thermochronology datasets. Multi‐stage cooling and exhumation of the NAB is driven by post‐orogenic basin inversion and catchment drainage reorganization, in response to changes in base level due to rifting, plus isostatic and dynamic topographic processes modified by flexure over the long (~200 Myr) post‐orogenic period. This study compliments other regional exhumation data‐sets, while constraining the timing of post‐orogenic cooling and exhumation in the NAB and contributing important insights on the post‐orogenic development and inversion of foreland basins along passive margins.  相似文献   

13.
The Neuquén Group is an Upper Cretaceous continental sedimentary unit exhumed during the latest Miocene contractional phase occurred in the southern Central Andes, allowing a direct field observation and study of the depositional geometries. The identification of growth strata on these units surrounding the structures of the frontal parts of the Andes, sedimentological analyses and U–Pb dating of detrital components, allowed the definition of a synorogenic unit that coexisted with the uplift of the early Andean orogen since ca. 100 Ma, maximum age obtained in this work, compatible with previous assignments and constrained in the top by the deposition of the Malargüe Group, in the Maastrichtian (ca. 72 Ma). The definition of a wedge top area in this foreland basin system, where growth strata were described, permitted to identify a Late Cretaceous orogenic front and foredeep area, whose location and amplitude contrast with previous hypotheses. This wedge top area was mostly fed from the paleo‐Andes with small populations coming from sources in the cratonic area that are interpreted as a recycling in Jurassic and Lower Cretaceous sections, which contrasts with other analyses performed at the foredeep zone that have mixed sources. In particular, Permian sources are interpreted as coming directly from the cores of the basement structures, where Neopaleozoic sections are exposed, next to the synorogenic sedimentation, implying a strong incision in Late Cretaceous times with an exhumation structural level similar to the present. The maximum recognised advance for this Late Cretaceous deformation in the study area is approximately 500 km east of the Pacific trench, which constitutes an anomaly compared with neighbour segments where Late Cretaceous deformations were found considerably retracted. The geodynamic context of the sedimentation of this unit is interpreted as produced under the westward fast moving of South America, colliding with two consecutive mid‐ocean ridges during a period of important plate reorganisation. The subduction of young, anhydrous, buoyant lithosphere would have produced changes in the subduction geometry, reflected first by an arc waning/gap and subsequently by an arc migration that coexisted with synorogenic sedimentation. These magmatic and deformational processes would be the product of a shallow subduction regime, following previous proposals, which occurred in Late Cretaceous times, synchronous to the sedimentation of the Neuquén Group.  相似文献   

14.
Sediments deposited in the Late Cenozoic basins of the Central European Rift System, including the Upper Rhine Graben (URG) and the Lower Rhine Embayment (LRE), document the drastic extension of the Rhine's catchment towards the Central Alps in the Late Pliocene by distinct heavy mineral assemblages. This outstanding change in principal sediment sources should be accompanied by a change towards distinctly younger (i.e. Tertiary) detrital mineral cooling ages. Therefore, it provides a particularly well‐suited framework to explore the thermochronological provenance record in relation to heavy mineral assemblages. In this multi‐proxy approach we (i) exploit and elaborate detrital zircon (U–Th)/He thermochronology (ZHe) for sediment provenance surveys, (ii) document shortcomings if only a single geochronological method is employed, and (iii) obtain tighter constraints on the sources of Paleo‐Rhine sediments. Our results are based on Pliocene and Pleistocene sediment samples from the northern URG (drill core Ludwigshafen P36) and the LRE (lignite mine Hambach). In a Late Pliocene URG sample, Variscan and Permo‐Triassic cooling ages dominate the age spectra of the ZHe and Zircon fission track (ZFT) thermochronometers. The youngest ages are Late Cretaceous and these zircons show rare earth element signatures that suggest derivation from hydrothermally affected basement rocks of the URG margins. In contrast, a Lower Pleistocene URG sample contains significant Tertiary age components that unequivocally indicate Alpine sources. This cardinal difference coincides well with a significant change in the heavy mineral assemblage. The extension of the catchment of the Rhine towards the Central Alps is considered to occur no earlier than the latest Pliocene (i.e. after ~3.0 Ma). Despite strongly contrasting heavy mineral compositions, the Pliocene and Pleistocene samples from the LRE show largely similar ZHe and ZFT age distributions dominated by Permo‐Triassic and Variscan ages. Admixture of zircon‐dominated, but overall heavy mineral‐poor sediment derived from local drainages of the Rhenish Massif likely explains this apparent contradiction in sediment provenance proxies. Tertiary cooling ages occur in both Pliocene and Pleistocene LRE samples. Zircon Th/U ratios and U/Pb ages reveal that the young age component in Late Pliocene sediments from the LRE is not derived from the Alps but from Oligocene trachytic members of the Central European volcanic centres of the Vogelsberg, Westerwald, and/or Siebengebirge. The integration of ZHe and ZFT techniques with zircon geochemistry and U/Pb geochronology adds the respective advantages of each method and allows for a very detailed picture of detrital zircon provenance.  相似文献   

15.
《Basin Research》2018,30(Z1):401-423
The Lobo Formation of southwestern New Mexico consists of spatially variable continental successions attributed to the Laramide orogeny (80–40 Myr), although its age and provenance are virtually undocumented. This study combines sedimentological, magnetostratigraphical and geochronological data to infer the timing and origin of the Lobo Formation. Measured sections of Lobo strata at two locations, Capitol Dome in the Florida Mountains and in the Victorio Mountains, indicate significant differences in depositional environments and sediment provenance. At Capitol Dome, where Lobo strata were deposited above a syncline developed in Palaeozoic strata, deposition took place in fluvial, palustrine and marginal lacustrine settings, with alluvial‐fan deposits only at the top of the formation. Combined magnetostratigraphy and a young U–Pb detrital zircon age suggest deposition of the section at Capitol Dome from ~60 to 52 Ma. The Lobo Formation in the Victorio Mountains was deposited in alluvial‐fan and fluvial settings; the age of deposition is poorly bracketed between 66 ± 2 Ma, the weighted‐mean age of two young zircons, and middle Eocene (~40 Ma), the approximate age of overlying volcanic rocks. U–Pb zircon ages from sandstones at the Victorio and Capitol Dome localities indicate that different source rocks provided sediment to the Lobo Formation. Local Proterozoic basement (~1.47–1.45 Ga) dominated the source of the Lobo Formation in the Victorio Mountains, consistent with abundant granitic clasts that are present in the proximal facies there; a diverse range of grain ages suggest that recycled Lower Cretaceous strata provided the dominant source for Lobo Formation sediment at the Capitol Dome locality. The U–Pb data suggest that the depositional systems at the two sites were not connected. Contrasts in depositional setting and detrital zircon provenance indicate that the Palaeogene Lobo Formation in southwest New Mexico was deposited in an assemblage of local depositional settings, possibly in separate structural basins, as a consequence of Laramide tectonics in the region.  相似文献   

16.
Sedimentological and geochronological studies along a north–south traverse across the Bangong‐Nujiang suture zone (BNSZ) in Gaize, Tibet provide evidence for a Late Triassic–Jurassic accretionary wedge accreted to the south margin of Qiangtang. This wedge, preserved as the Mugagangri Group (MG), records evidence for the northward subduction of the Bangong‐Nujiang Ocean (BNO) beneath Qiangtang. The MG strata comprise two coarser intervals (lower olistostromes and upper conglomerates) intercalated within sandy turbidites, which are consistent with timing and forearc stratigraphy during subduction initiation predicted by geodynamic modelling. Following the model, the northward subduction of the BNO beneath Qiangtang and subsequent arc‐magmatism are inferred to have begun, respectively, at ca. 220 Ma and ca. 210 Ma, with respect to depositional ages constrained by youngest detrital‐zircon ages. The initiation of arc‐magmatism is also supported by provenance transition reflected by sandstone detrital modes and age patterns of detrital zircons. Previously, evidence for an incipient arc was lacking, but the timing of Late Triassic BNO subduction and related arc‐magmatism is coincident with an important Late Triassic magmatic event in central Qiangtang that probably represents the ‘missing’ arc. Other Qiangtang events, such as exhumation of the Qiangtang metamorphic belt as a source area, and development of the Late Triassic Nadigangri deposits and bimodal volcanism, are more easily explained in the tectonic context of early northward subduction of the BNO beneath Qiangtang, beginning at about 220 Ma.  相似文献   

17.
ABSTRACT The tectonic evolution of a collisional hinterland sourcing the Ha?eg Basin, a Late Cretaceous syn‐orogenic sedimentary basin in the South Carpathians (Romania), is revealed through fission track thermochronology of detrital apatite and zircon grains. This basin formed on the upper plate (Getic unit) in response to Late Cretaceous collision with the lower plate (Danubian unit), an allochtonous continental block of the Moesian Platform, upon closure of a narrow oceanic basin (Severin Basin). The fission track results suggest that Turonian to lower Maastrichtian sediments of the Ha?eg Basin have been dominantly derived from pre‐Late Cretaceous sources. The age components they contain relate to pre‐Cretaceous tectonothermal events such as the Variscan orogenic cycle, Jurassic rifting and Severin Basin formation, and to Early Cretaceous compressional tectonics. These results are compatible with the tectonic evolution of the upper plate that is identified as the primary source. From the onset of sedimentation (late Albian) until the early Campanian the Ha?eg Basin resembles a piggy‐back basin formed on the upper plate concomitant with underthrusting and internal stacking of the lower plate. In contrast, important tectonic subsidence during the late Campanian and early Maastrichtian reflects a shift to extensional tectonics causing the unroofing of the collision zone and the exhumation of lower plate rocks back to the surface. Our fission track data place important constraints on the timing of lower plate erosion that must have commenced during the late Maastrichtian, as documented by the completely reset Late Cretaceous age component within upper Maastrichtian sediments (Sînpetru Formation). Late Maastrichtian uplift of the basin and the formation of positive relief at the site of the collision zone is an expression of continuous convergence. The mismatch between the amount of denudation and the amount of sediments trapped in the Ha?eg Basin underlines the importance of concomitant extensional unroofing.  相似文献   

18.
A comprehensive interpretation of single and multichannel seismic reflection profiles integrated with biostratigraphical data and log information from nearby DSDP and ODP wells has been used to constrain the late Messinian to Quaternary basin evolution of the central part of the Alboran Sea Basin. We found that deformation is heterogeneously distributed in space and time and that three major shortening phases have affected the basin as a result of convergence between the Eurasian and African plates. During the Messinian salinity crisis, significant erosion and local subsidence resulted in the formation of small, isolated, basins with shallow marine and lacustrine sedimentation. The first shortening event occurred during the Early Pliocene (ca. 5.33–4.57 Ma) along the Alboran Ridge. This was followed by a major transgression that widened the basin and was accompanied by increased sediment accumulation rates. The second, and main, phase of shortening on the Alboran Ridge took place during the Late Pliocene (ca. 3.28–2.59 Ma) as a result of thrusting and folding which was accompanied by a change in the Eurasian/African plate convergence vector from NW‐SE to WNW‐ESE. This phase also caused uplift of the southern basins and right‐lateral transtension along the WNW‐ENE Yusuf fault zone. Deformation along the Yusuf and Alboran ridges continued during the early Pleistocene (ca. 1.81–1.19 Ma) and appears to continue at the present day together with the active NNE‐SSW trending Al‐Idrisi strike‐slip fault. The Alboran Sea Basin is a region of complex interplay between sediment supply from the surrounding Betic and Rif mountains and tectonics in a zone of transpression between the converging African and European plates. The partitioning of the deformation since the Pliocene, and the resulting subsidence and uplift in the basin was partially controlled by the inherited pre‐Messinian basin geometry.  相似文献   

19.
Early Mesozoic Basins in the Yanshan Fold–Thrust Belt (YFTB), located along the northern margin of the North China Craton (NCC), record significant intraplate deformation of unknown age. In this article, we present evidence for the rapid exhumation of high‐grade basement rocks along the northern margin of the NCC in the Early Mesozoic. U–Pb geochronology of detrital zircons constrains the maximum depositional ages of syntectonic sedimentary units that formed during the unroofing of basement rocks and plutons in the Xiabancheng Basin. In the Early Mesozoic, the Xiabancheng Basin recorded a dramatic transformation in depositional environments, related to a significant change in the regional tectonic setting. In this study, the tectonic evolution of the YFTB is established from paleocurrent data and U–Pb zircon ages of sandstone and granitic gravels of the Xingshikou Formation, Xiabancheng Basin. The paleocurrent direction of meandering fluvial facies in the Triassic Liujiagou and Ermaying Formations are from east to west. In contrast, the overlying Xingshikou Formation consists of alluvial fan facies with paleocurrent directions from north‐northwest to south‐southeast. The lower and middle segments of the Xingshikou Formation record rapid exhumation of basement rocks along the northern margin of the NCC. U‐Pb ages of detrital zircons within the Xingshikou Formation are characterized by three major U–Pb age groups: 2.2–2.5 Ga, 1.7–1.8 Ga and 193–356 Ma. From 193 Ma to 356 Ma, a subsidiary peak occurs at 198 ± 5 Ma, constraining the sedimentation age of the Xingshikou Formation to the Early Jurassic. Zircon from the Wangtufang pluton in the northern portion of the Xiabancheng Basin yields U–Pb ages of 191 ± 1 Ma and 207 ± 1 Ma. Within error, these crystallization ages are identical to detrital zircon ages of 206 ± 1 Ma and 206 ± 2 Ma obtained for granitic gravel clasts in the Xingshikou Formation. Thus, the Wangtufang pluton and surrounding basement rocks must have experienced rapid uplift and exhumation during the Early Jurassic. The onset of exhumation along the northern margin of the NCC occurred at ca. 198–180 Ma.  相似文献   

20.
This article presents combined stratigraphic, sedimentological, subsidence and provenance data for the Cretaceous–Palaeogene succession from the Zhepure Mountain of southern Tibet. This region records the northernmost sedimentation of the Tethyan passive margin of India, and this time interval represents the transition into continental collision with Asia. The uppermost Cretaceous Zhepure Shanpo and Jidula formations record the transition from pelagic into upper slope to delta‐plain environments. The Palaeocene–lower Eocene Zongpu Formation records a carbonate ramp that is overlain by the deep‐water Enba Formation (lower Eocene). The upper part of the Enba Formation records shallowing into a storm‐influenced, outer shelf environment. Detrital zircon U–Pb and Hf isotopic data indicate that the terrigenous strata of the Enba Formation were sourced from the Lhasa terrane. Unconformably overlying the Enba Formation is the Zhaguo Formation comprising fluvial deposits with evidence of recycling from the underlying successions. Backstripped subsidence analysis indicates shallowing during latest Cretaceous‐earliest Palaeocene time (Zhepure Shanpo and Jidula formations) driven by basement uplift, followed by stability (Zongpu Formation) until early Eocene time (Enba Formation) when accelerated subsidence occurred. The provenance, subsidence and stratigraphy suggest that the Enba and Zhaguo formations record foredeep and wedge‐top sedimentation respectively within the early Himalayan foreland basin. The underlying Zongpu Formation is interpreted to record the accumulation of a carbonate ramp at the margin of a submarine forebulge. The precursor tectonic uplift during latest Cretaceous time could either record surface uplift over a mantle plume related to the Réunion hotspot, or an early signal of lithospheric flexure related to oceanic subduction, continental collision or ophiolite obduction. The results indicate that the collision of India with Asia occurred before late Danian (ca. 62 Ma) time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号