首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 822 毫秒
1.
The present work accentuated the expediency of remote sensing and geographic information system (GIS) applications in groundwater studies, especially in the identification of groundwater potential zones in Ithikkara River Basin (IRB), Kerala, India. The information on geology, geomorphology, lineaments, slope and land use/land cover was gathered from Landsat ETM + data and Survey of India (SOI) toposheets of scale 1:50,000 in addition, GIS platform was used for the integration of various themes. The composite map generated was further classified according to the spatial variation of the groundwater potential. Four categories of groundwater potential zones namely poor, moderate, good and very good were identified and delineated. The hydrogeomorphological units like valley fills and alluvial plain and are potential zones for groundwater exploration and development and valley fills associated with lineaments is highly promising area for groundwater extraction. The spatial variation of the potential indicates that groundwater occurrence is controlled by geology, structures, slope and landforms.  相似文献   

2.
The main objective of the present work is to delineate the groundwater potential zones in Bilari watershed of district Shivpuri, Madhya Pradesh. Remote Sensing data and GIS were used to delineate the groundwater potential zones of the area. IRS-1D (LISS III) data have been utilized to extract information on various themes such as geomorphology, structure, drainage and land use/land cover. Available lithology and soil maps have also been used. DEM has been generated from contours taken from Survey of India topographical maps in order to obtain the slope percentage and slope aspect of the area. The groundwater potential zones were delineated by weighted overlay analysis. The themes geology, geomorphology, slope and soil were considered and the weightages assigned to different classes of respective themes according to their role in groundwater potential. Finally, five groundwater potential zones viz., very good, good, moderate; poor and very poor were delineated for the study area. It was estimated that about 110.41?sq km area which forms 37.55% of the total area are in the zones of very poor, poor and moderate category and about 183.75?sq km (62.45%) in zones of good and very good category.  相似文献   

3.
ABSTRACT

Groundwater potential mapping (GWPM) in the coastal zone is crucial for the planning and development of society and the environment. The current study is aimed to map the groundwater potential zones of Sindhudurg coastal stretch on the west coast of India, using three machine learning models: random forest (RF), boosted regression tree (BRT), and the ensemble of RF and support vector machine (SVM). In order to achieve the objective, 15 groundwater influencing factors including elevation, slope, aspect, slope length (LS), profile curvature, plan curvature, topographical wetness index (TWI), distance from streams, distance from lineaments, lithology, geomorphology, soil, land use, normalized difference vegetation index (NDVI), and rainfall were considered for inter-thematic correlations and overlaid with spring and well occurrences in a spatial database. A total of 165 spring and well locations were identified, which had been divided into two classes: training and validation, at the ratio of 70:30, respectively. The RF, BRT, and RF-SVM ensemble models have been applied to delineate the groundwater potential zones and categorized into five classes, namely very high, high, moderate, low, and very low. RF, BRT, and ensemble model results showed that 33.3%, 35.6%, and 36.8% of the research area had a very high groundwater potential zone. These models were validated with area under the receiver operating characteristics (AUROC) curve. The accuracy of RF (94%) and hybrid model (93.4%) was more efficient than BRT (89.8%) model. In order to further evaluate and validate, four different sites were subsequently chosen, and we obtained similar results, ensuring the validity of the applied models. Additionally, ground-penetrating radar (GPR) technique was applied to predict the groundwater table and validated by measured wells. The mean difference between measured and GPR predicted groundwater table was 14 cm, which reflected the importance of GPR to guide the location of new wells in the study region. The outcomes of the study will help the decision-makers, government agencies, and private sectors for sustainable planning of groundwater in the area. Overall, the present study provides a comprehensive high-precision machine learning and GPR-based groundwater potential mapping.  相似文献   

4.
Groundwater exploration in the Western Doon valley has been carried out to delineate the groundwater potential and groundwater quality zones suitable for domestic purposes based on the integrated use of Remote Sensing and Geographical Information Systems (GIS). The Western Doon Valley, occupying broad synclinal troughs in the evolving fold-thrust system of sub-Himalaya, which is filled by post-Siwalik fluvial and debris flow deposits in the late Quaternary-Holocene. The Western Doon Valley area is bounded by the Mussoorie range in the north with 1800–2800 m elevation and in the south by young topographic relief of the frontal Siwalik range with ~800 m average elevation. Groundwater quality of Western Doon valley through pictorially representation in the GIS environment, it is inferred that calcium, magnesium, total hardness and nitrate at some locations above the desirable limit. The groundwater prospects map has been prepared by integrating the hydrogeomorphologic, land use/land cover from satellite data (IRS-ID, LISS-III data) slope, soil, drainage density, depth to water table of pre-monsoon and post-monsoon periods (unconfined aquifer), water table fluctuation, static water level (confined to semi-confined aquifers), specific capacity, discharge and drawdown maps using index overlay method in the GIS environment. The groundwater prospects are depicted in five categories Very high, high, moderate, low and very low (runoff zone) integrated with the groundwater quality zones which have been prepared from hydrochemical data. The results indicated that 16.82 % of the area is under Very high potential zone category with 16.11 % and 0.71 % of desirable and undesirable quality of groundwater and 18.65 %, 42.06 %, 6.96 % and 15.46 % classified as high, moderate, low and very low potential zones with desirable and undesirable quality of groundwater for domestic purposes. This study be useful for designing the groundwater prospects and management plan for the sustainable development of study area.  相似文献   

5.
The study area is one of the watersheds of North Pennar basin, covering an area of 570 km2 in Pavagada taluk of Tumkur district. The watershed has been subdivided into nine sub-watersheds namely Dalavayihalli, Maddalenahalli, Talamaradahalli, Puluvalli tank, Nagalamadike, Gowdatimmanahalli, Naliganahalli, Devadabetta and Byadanur. These nine sub-watersheds have been evaluated to delineate groundwater potential zones based on the characteristics of geomorphic units together with slope, geology, lineaments, borewell data using Remote Sensing and Geographic Information System (GIS) techniques. Slope varies from nearly level (0–1%) to very steep (>35%). The different geomorphic units in each sub-watershed consist of denudational hills, residual hills, inselbergs, pediment inselberg complex, pediments, shallow weathered pediplains, moderately weathered pediplains and valley fills. The lineament map for each sub-watershed has been prepared and the trends were analysed with rose diagrams. The analysis of borewell locations and their yield data in association with lineaments at subwatersheds level reveals that the lineaments are acting as a pathway for groundwater movement. The integrated map comprising groundwater potential zones prepared by “Union” function using GIS indicate that valley fills and moderately weathered pediplains are very good to good, shallow weathered pediplains are good to moderate, pediment inselberg complex and pediments are moderate to poor and denudational hills, residual hills and inselbergs are poor to very poor groundwater prospect zones.  相似文献   

6.
The groundwater occurrence and movement within the flow systems are governed by many natural factors like topography, geology, geomorphology, lineament structures, soil, drainage network and land use land cover (LULC). Due to complex natural geological/hydro-geological regime a systematic planning is needed for groundwater exploitation. It is even more important to characterize the aquifer system and delineate groundwater potential zones in different geological terrain. The study employed integration of weighted index overlay analysis (WIOA) and geographical information system (GIS) techniques to assess the groundwater potential zones in Krishna river basin, India and the validation of the result with existing groundwater levels. Different thematic layers such as geology, geomorphology, soil, slope, LULC, drainage density, lineament density and annual rainfall distribution were integrated with WIOA using spatial analyst tools in Arc-GIS 10.1. These thematic layers were prepared using Geological survey of India maps, European Digital Archive of Soil Maps, Bhuvan (Indian-Geo platform of ISRO, NRSC) and 30 m global land cover data. Drainage, watershed delineation and slope were prepared from the Shuttle Radar Topography Mission digital elevation model of 30 m resolution data. WIOA is being carried out for deriving the normalized score for the suitability classification. Weight factor is assigned for every thematic layer and their individual feature classes considering their significant importance in groundwater occurrence. The final map of the study area is categorized into five classes very good, good, moderate, poor and very poor groundwater potential zones. The result describes the groundwater potential zones at regional scale which are in good agreement with observed ground water condition at field level. Thus, the results derived can be very much useful in planning and management of groundwater resources in a regional scale.  相似文献   

7.
Abstract

The present study was an attempt to delineate potential groundwater zones in Kalikavu Panchayat of Malappuram district, Kerala, India. The geo-spatial database on geomorphology, landuse, geology, slope and drainage network was generated in a geographic information system (GIS) environment from satellite data, Survey of India topographic sheets and field observations. To understand the movement and occurrence of groundwater, the geology, geomorphology, structural set-up and recharging conditions have to be well understood. In the present study, the potential recharge areas are delineated in terms of geology, geomorphology, land use, slope, drainage pattern, etc. Various thematic data generated were integrated using a heuristic method in the GIS domain to generate maps showing potential groundwater zones. The composite output map scores were reclassified into different zones using a decision rule. The final output map shows different zones of groundwater prospect, viz., very good (15.57% of the area), good (43.74%), moderate (28.38%) and poor (12.31%). Geomorphic units such as valley plains, valley fills and alluvial terraces were identified as good to excellent prospect zones, while the gently sloping lateritic uplands were identified as good to moderate zones. Steeply sloping hilly terrains underlain by hard rocks were identified as poor groundwater prospect zones.  相似文献   

8.
The area in and around Guntur Town in Andhra Pradesh faces an acute water problem. It represents plain land and gentle slope responsible for infiltration and groundwater recharge. Adequate groundwater resource is reported to be available in the investigated area. It has not been properly exploited. The present investigation is, therefore, undertaken to assess groundwater favourable zones for development and exploration with the help of geomorphological units and associated features. The identified units and features by remote sensing technology with the integration of conventional information and limited ground truths are shallow weathered pediplain (PPS), moderately weathered pediplain (PPM), deeply weathered pediplain (PPD), residual hill (RH) and lineaments (L). The results show that the PPD, PPM and PPS are good, moderate to good and poor to moderate promising zones, respectively for groundwater prospecting. The RH is a poor geomorphological unit in respect to prospective zone as groundwater resource. However, adequate recharge source of groundwater can be expected surrounding the RH, as it acts as surface run-off zone. Lineaments parallel to the stream courses and intersecting-lineaments are favourable indicators for groundwater development. They can also be utilized to augment groundwater resource.  相似文献   

9.
Assessment of groundwater potential zones using GIS technique   总被引:1,自引:0,他引:1  
A case study was conducted to find out the groundwater potential zones in Kattakulathur block, Tamil Nadu, India with an aerial extent of 360.60 km2. The thematic maps such as geology, geomorphology, soil hydrological group, land use / land cover and drainage map were prepared for the study area. The Digital Elevation Model (DEM) has been generated from the 10 m interval contour lines (which is derived from SOI, Toposheet 1:25000 scale) and obtained the slope (%) of the study area. The groundwater potential zones were obtained by overlaying all the thematic maps in terms of weighted overlay methods using the spatial analysis tool in ArcGIS 9.2. During weighted overlay analysis, the ranking has been given for each individual parameter of each thematic map and weights were assigned according to the influence such as soil −25%, geomorphology − 25%, land use/land cover −25%, slope − 15%, lineament − 5% and drainage / streams − 5% and find out the potential zones in terms of good, moderate and poor zones with the area of 49.70 km2, 261.61 km2 and 46.04 km2 respectively. The potential zone wise study area was overlaid with village boundary map and the village wise groundwater potential zones with three categories such as good, moderate and poor zones were obtained. This GIS based output result was validated by conducting field survey by randomly selecting wells in different villages using GPS instruments. The coordinates of each well location were obtained by GPS and plotted in the GIS platform and it was clearly shown that the well coordinates were exactly seated with the classified zones.  相似文献   

10.
The use of remote sensing data with other ancillary data in a geographic information system (GIS) environment is useful to delineate groundwater potential zonation map of Ken–Betwa river linking area of Bundelkhand. Various themes of information such as geomorphology, land use/land cover, lineament extracted from digital processing of Landsat (ETM+) satellite data of the year 2005 and drainage map were extracted from survey of India topographic sheets, and elevation, slope data were generated from shuttle radar topography mission (SRTM) digital elevation model (DEM). These themes were overlaid to generate groundwater potential zonation (GWPZ) map of the area. The final map of the area shows different zones of groundwater prospects, viz., good (5.22% of the area), moderate (65.83% of the area) poor (15.31% of the area) and very poor (13.64% of area).  相似文献   

11.
In the present study, detailed field survey in conjunction with remotely sensed (IRS-1D, LISS-III) data is of immense help in terrain analysis and landscape ecological planning at watershed level. Geomorphologically summit crust, table top summits, isolated mounds. plateau spurs, narrow slopes, plateau side drainage floors, narrow valleys and main valley floor were delineated. The soil depth ranges from extremely shallow in isolated mounds to very deep soils in the lower sectors. Very good, good, moderate, poor and very poor groundwater prospect zones were delineated. By the integrated analysis of slope, geomorphology. soil depth, land use/land cover and groundwater prospect layers in GIS. 29 landscape ecological units were identified. Each landscape ecological unit refers to a natural geographic entity having distinctive properties of slope, geomorphology. soil depth, land use/ land cover and groundwater prospects. The landscape ecological stress zone mapping of the study area has been carried out based on the analysis and reclassification of tandscape ecological units. The units having minimum ecological impact in terms of slope, geomorphology, soil depth and land use/land cover were delineated under very low stress landscape ecological zones. The units having maximum ecological stress in the form of very high slopes, isolated mounds, table top summits and summit crust, extremely shallow soils, waste lands and very poor groundwater prospects were delineated into very high stress landscape ecological zones. The integrated analysis of remotely sensed data and collateral data in GIS environment is of immense help in evaluation of landscape ecological units and landscape ecological stress zones. The delineated landscape ecological stress zones in the watershed have been recommended for landscape ecological planning for better utilization of natural resources without harming the natural geo-ecosystem of the area.  相似文献   

12.
Groundwater is the most valuable natural resource in arid areas. Therefore, any attempt to investigate potential zones of groundwater for further management of water supply is necessary. Hence, many researchers have worked on this subject all around the world. On the other hand, the Generalized Additive Model (GAM) has been applied to environmental and ecological modelling, but its applicability to other kinds of predictive modelling such as groundwater potential mapping has not yet been investigated. Therefore, the main purpose of this study is to evaluate the performance of GAM model and then its comparison with three popular GIS-based bivariate statistical methods, namely Frequency Ratio (FR), Statistical Index (SI) and Weight-of-Evidence (WOE) for producing groundwater spring potential map (GSPM) in Lorestan Province Iran. To achieve this, out of 6439 existed springs, 4291 spring locations were selected for training phase and the remaining 2147 springs for model evaluation. Next, the thematic layers of 12 effective spring parameters including altitude, plan curvature, slope angle, slope aspect, drainage density, distance from rivers, topographic wetness index, fault density, distance from fault, lithology, soil and land use/land cover were mapped and integrated using the ArcGIS 10.2 software to generate a groundwater prospect map using mentioned approaches. The produced GSPMs were then classified into four distinct groundwater potential zones, namely low, moderate, high and very high classes. The results of the analysis were finally validated using the receiver operating characteristic (ROC) curve technique. The results indicated that out of four models, SI is superior (prediction accuracy of 85.4%) following by FR, GAM and WOE, respectively (prediction accuracy of 83.7, 77 and 76.3%). The result of groundwater spring potential map is helpful as a guide for engineers in water resources management and land use planning in order to select suitable areas to implement development schemes and also government entities.  相似文献   

13.
The area around Panwari town, Hamirpur district, Uttar Pradesh, faces acute water scarcity and chronically drought prone. The groundwater resources in the area have not been fully exploited. The present study was undertaken to evaluate the groundwater prospective zones. Landsat TM and IRS-1A LISS-II data have been used to differentiate different hydromorphogeological units and to delineate the major trends of lineaments. The digitally enhanced False Colour Composite, Principal Component Analysis and Edge Detections were useful for better correlation. The digital enhancement was helpful with identification of faint lineaments. In addition, the boundaries of various lands forms were better discriminable on the digitally enhanced products. The deeply and moderately weathered buried pediplains are the most potential zones for groundwater targeting. Occurrence of lineaments in such zones is also a favourable indicator. A number of promising groundwater well sites have been located in the pediplains.  相似文献   

14.
The study area around Choral river basin in the Narmada valley region, forms a part of Indore and Khargone districts of Madhya Pradesh. The geological, geomorphologic, lineament, hydrogeomorphic and groundwater potential zone maps of the study area have been prepared using IRS IC LISS III FCC imagery on 1:50,000 scale. Various litho-units, different land-forms, lineament fabric and hydro-geomorphic units have been worked out by visual interpretation methods and frequent field checks. The integrated hydro-geomorphological map of the study area reveals that the groundwater potential in denudation landforms such as buried pediplains, plateaus, denudational and residual hills is moderate-to-poor. On the other hand, the groundwater occurrence in structural landforms like structural hills, lineaments/faults and narrow gorges is likely to be good to moderate and the depositional landforms namely alluvial plains, valley-fills and meandering-channels favour the accumulation of sub-surface water and, therefore, may be considered as good recharge zones. From the point of view of groundwater occurrence, various hydro-geomorphic units have been classified as high, moderate and low potential zones.  相似文献   

15.
In this study, an attempt has been made to apply Remote Sensing (RS) and geographic information system (GIS) to determine land quality for agriculture purpose using analytic hierarchy process technique. In this study, various thematic layers were used like organic matter content, soil texture, soil depth, soil pH, soil P, soil K, geomorphology, run-off potential, slope and land use/land cover to assess the land quality index of the study area for the agriculture purpose which were generated in the RS and GIS environment. The study area can be divided into four zones, viz. high quality, moderately quality, marginally quality and low quality according to their suitability of land quality for agriculture purpose. It was found that about 39.09, 31.24, 20.41 and 9.26% of the study area falls under high quality zone, moderately quality, marginally quality and low quality zone, respectively, for agricultural purpose.  相似文献   

16.
Godavari sub-watershed is a part of buried pediplain developed over ‘Chotanagpur’ granite gneiss. Aquifer is unconfined in nature and groundwater occurs under water table condition. In the study area, groundwater is being exploited only through dugwells which are not capable of sustaining long duration pumping. Groundwater exploration involves the investigation of depth and nature of weathered and fractured horizon. To understand the groundwater storage and retrieval in the area, the basement topography derived from Digital Basement Topography Modelling (DBTM), the lineaments identified on remotely sensed data and geohydrological and physiographic data have been analysed. From DBTM, fracture zones have also been inferred. Lineaments (probable fractures) identified with the help of remotely sensed data are linear features representated on a planner surface. Lineaments in the area are subtle in expression due to deeply buried pediplian. Correlation of lineaments with DBTM reveals that a few lineaments/fractures are deep seated and a few have no sub-surface extensions. Also some sub-surface fractures inferred from DBTM have no expressions on the image. Attempt has been made to delineate more authentic lineaments/fractures with the help of remotely sensed data and DBTM. Correlation of probable fractures inferred from remotely sensed data and fracture zones inferred from DBTM indicated that 40 per cent of lineaments seems to be real fractures. Higher correlation may be achieved where lineaments are prominent and reproducible. It has also been observed that those lineaments which correlate with the fracture zones inferred from DBTM, are also not completely traceable in their linear extent. The exaggeration in length of lineaments may be due to subtle nature of lineaments. Correlation shows that remotely sensed lineaments are improtant for groundwater exploration and its authenticity can be further ascertained with DBTM.  相似文献   

17.
The importance of groundwater is growing based on an increase in need and decrease in the availability of fresh surface water sources and adequate rainfall. Remote Sensing and Geographic Information System (GIS) has become one of the leading tools in the field of hydrogeological science, which helps in assessing, monitoring and conserving groundwater resources. This paper describes the results of a groundwater potentiality and quality assessment conducted in Koduvan ár sub-watershed of Meenachil river basin, Kottayam district of Kerala state, in the Republic of India. Shallow groundwater is the main source of drinking water in urban and rural areas, but reliable spatial data on its potentiality and quality are currently insufficient for developing the water-supply systems with standard designs. The methodology used in the present study includes an integrated approach of remote sensing and GIS for the construction of groundwater potentiality map and the assessment of water quality of identified wells. Different spatial data layers such as, geomorphology, lithology, slope and land use/ land cover are generated and the interrelationship between these layers were analyzed to identify and assess the groundwater potentiality of the area. The final result depicts the favourable prospective zones in the study area with its quality parameters and can be helpful to formulate recommendations to reduce the water scarcity and quality risks for public health.  相似文献   

18.
The present study attempts to delineate different groundwater potential units using remote sensing and geographic information system (GIS) in Khallikote block of Ganjam disrict, Orissa. Thematic maps of geology, geomorphology, land use and land cover, drainage density, lineament density, slope and DEM (digital elevation model) were prepared using the Landsat Thematic Mapper data in 3 spectral bands, band 7 (mid-infrared light), band 4 (near-infrared light), Band 2 (visible green light). Relationship of each layer to the groundwater regime has been evaluated through detailed analysis of the individual hydrological parameters. The SMCE (Spatial Multi-Criteria Evaluation) module in ILWIS (Integrated Land and Water Information System) supports the decision-making process for evaluating the ground water potential zones in the area. The study shows that more than 70% of the block is covered by medium to excellent category having good ground water potential.  相似文献   

19.
The significance of neotectonic lineaments for groundwater prospecting was studied for the area around Bhinmal — a semi-arid part of Thar desert. The application of Directional Filtering procedures on IRS LISS I Band 4 digital image of the study area revealed NE-SW, NW-SE and E-W trending lineaments which are very subtle and in two cases, even unnoticed otherwise. The use of exploratory borehole lithologs and field evidences indicated that the identified lineaments are long rectilinear buried and partly exposed channels and the intersection zones are characterised by thick lenses of coarse sand and gravel. These buried channels and zones of coarse sediments thus represent potential sites for the accumulation of freshwater during rain. The present work has highlighted the suitability of Directional Filtering procedures for lineament mapping and buried channel studies in a desertic terrain.  相似文献   

20.
The area of upper Vaigai river basin covering parts of Madurai and Theni Districts, in Tamil Nadu, faces acute water scarcity and chronically drought prone. The groundwater resources in the area have not been fully exploited. The present investigation has been made to evaluate the potential zones for groundwater targeting using IRS - ID LISS III geocoded data on 1:50,000 scale. The geology, geomorphology, lineament tectonic maps are generated and integrated to evaluate the hydrogeomorphological characteristics of the upper Vaigai river basin and demarcate the groundwater potential zones. A number of geomorphic units have been observed. Out this the more groundwater prospective units are buried pediment medium, buried pediment deep, flood plain, bajada and lineament and intersection of lineaments. Non potential areas like pediment, pediment inselberg, shallow pediment and pediplain were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号