首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The differential equations of the self-rotation of a celestial body have been evaluated. From an integral of these equations a formula for angular velocity of the celestial body was obtained. This formula after being applied to the rotation of the Sun and of the Earth gives, respectively, the following angular velocity ranges: 0.588×10–6<<18, 187×10–6 and 0.7533×10–5<<12,4266×10–5. These are up to three times narrower than those previously obtained by Savi and Kaanin [1].  相似文献   

2.
A general Hamiltonian for a rotating Moon in the field of the Earth is expanded in terms of parameters orienting the spin angular momentum relative to the pricipal axes of the Moon and relative to coordinate axes fixed in the orbital plane. The effects of elastic distortion are included as modifications of the moment of inertia tensor, where the magnitude of the distortion is parameterized by the Love numberk 2. The principal periodic terms in the longitude of a point on the Moon due to variations of the tide caused by the Earth are shown to have amplitudes between 3.9 × 10–3 and 1.6 × 10–2 with a period of an anomalistic month, 3.0 × 10–4 and 1.2 × 10–3 with a period of one-half an anomalistic month and 2.4 × 10–4 and 9.6 × 10–4 with a period of one-half of a nodical month. The extremes in the amplitudes correspond to rigidities of 8 × 1011 cgs and 2 × 1011 cgs, respectively, the former rigidity being comparable to that of the Earth. Only the largest amplitude given above is comparable to that detectable by the projected precision of the laser ranging to the lunar retrorereflectors, and this amplitude corresponds to an improbably low rigidity for the Moon. A detailed derivation of the free wobble of the lunar spin axis about the axis of maximum moment of inertia is given, where it is shown that elasticity can alter the period of the free wobble of 75.3 yr by only 3 × 10–4 to 10–3 of this period. Also, the effect of elasticity on the period of free libration is completely negligible by many orders of magnitude. If the Moon's rigidity is close to that of the Earth there is no effect of elasticity on the rotation which can be measured with the laser ranging and, therefore, no elastic properties of the Moon can be determined from variations in the rotation.Currently on leave from the Dept. of Physics, University of California, Santa, Barbara, California.Communication presented at the conference on Lunar Dynamics and Observational Coordinate Systems held January 15–17, 1973 at the Lunar Science Institute, Houston, Tex., U.S.A.  相似文献   

3.
IntegratedUBV colours have been computed for synthetic clusters older than one billion years and for two chemical composition: (a)Y=0.30;Z=10–4 and (b)Y=0.30;Z=10–2, taking into account the contribution to the integrated light of Main Sequence, subgiant, red giant and horizontal branch stars. It has been found that integrated colours depend onZ and allow an estimate of the metal content, however not generally. Horizontal branch stars contribute to the integrated colours of clusters not significantly and the contribution of stars in more advanced phases (e.g., asymptotic branch stars) is almost negligible.Old clusters in LMC and SMC have been studied in terms of colour calibrations and this analysis has been supplemented, when possible, by photometric and spectroscopic data of individual stars. It was found that in the LMC clusters withZ=10–2 andt>5×109 yr are lacking, clusters with relatively blue colours are similar, both in age and chemical composition, to the halo galactic globular clusters. Moreover, there is a group of clusters with 1×109t5×109. In the SMC clusters withZ=10–2 andt>5×109 yr are lacking and clusters with 1×109t5×109 are rare. Clusters with relatively blue colours are interpreted with the following parameters:t=5×109 yr, 10–4Z10–3 andY=0.20.The implication of these results on the chemical history of the two galaxies is discussed.  相似文献   

4.
The detailed evolution of low-mass main-sequence stars (M < 1M ) with a compact companion is studied. For angular momentum loss associated with magnetic braking it is found that about 10–11–10–12 M yr–1 in stellar wind loss would be required. This wind is 102–103 times stronger than the solar wind, so we believe here magnetic stellar wind is insufficient. It is well known that there is mass outflow in low-mass close binary systems. We believe here that these outflows are centrifugal driven winds from the outer parts of the accretion disks. The winds extract angular momentum from these systems and therefore drive secular evolution. Disk winds are preferred to winds from the secondary, because of the lower disk surface gravity.  相似文献   

5.
Pulsation period changes in Mira type variables are investigated using the stellar evolution and nonlinear stellar pulsation calculations. We considered the evolutionary sequence of stellar models with initial mass \({M_{ZAMS}} = \;3{M_ \odot }\) and population I composition. Pulsations of stars in the early stage of the asymptotic giant branch are shown to be due to instability of the fundamental mode. In the later stage of evolution when the helium shell source becomes thermally unstable the stellar oscillations occur in either the fundamental mode (for the stellar luminosuty \(L < 5.4 \times {10^3}{L_ \odot }\)) or the first overtone (\(L > 7 \times {10^3}{L_ \odot }\)). Excitation of pulsations is due to the κ-mechanism in the hydrogen ionization zone. Stars with intermediate luminosities \(5.4 \times {10^3}{L_ \odot } < L < 7 \times {10^3}{L_ \odot }\) were found to be stable against radial oscillations. The pulsation period was determined as a function of evolutionary time and period change rates \(\dot \Pi \) were evaluated for the first ten helium flashes. The period change rate becomes the largest in absolute value \((\dot \Pi /\Pi \approx - {10^{ - 2}}y{r^{ - 1}})\) between the helium flash and the maximum of the stellar luminosity. Period changes with rate \(\left| {\dot \Pi /\Pi } \right| \geqslant - {10^{ - 3}}y{r^{ - 1}}\) take place during ≈500 yr, that is nearly one hundredth of the interval between helium flashes.  相似文献   

6.
The figure of Mercury is estimated in terms of an isostatic form of equilibrium which tends to be controlled by the situation near perihelion passage at the 32 resonance spin rate. The ratios of the principal moments of inertia for Mercury are: (1)(C–A)/C7×10–5; (2)(C–B)/C5×10–5 and (3)(B–A)/C2×10–5. The thermal effect on Mercury's figure during solidification forces Mercury's rotation to be trapped in the 32 resonance lock as its spin rate is being slowed by tidal effects. It is shown that the process of trapping of Mercury has been naturally affected by the instantaneous solidification of Mercury into a shape with two thermal bulges, and that the two permanent thermal bulges stabilize the planet's rotation.  相似文献   

7.
Properties of solar-flare EUV flashes measured via a type of ionospheric event, called a sudden frequency deviation (SFD), are presented. SFD's are sensitive to bursts of radiation in the 1–1030 Å wavelength range. He ii 303.8 Å, O v 629.7 Å, HL 972.5 Å and C iii 977.0 Å have essentially the same impulsive time dependence as the 1–1030 Å flash responsible for SFD's. Soft X-rays (2–20 Å) and certain EUV lines have a much slower time dependence than the 1–1030 Å flash. Most SFD's have some fine structure, but marked quasi-periodicity in EUV flashes is quite rare. EUV flashes are closely associated with hard X-ray bursts, white-light emission, microwave radio bursts and small bright impulsive kernels in the H flare. The intensity of EUV flashes depends on the central meridian distance of the H flare location; the intensity decreases at the limb. The total energy radiated in the 10–1030 Å flash for the largest events observed is about 1031 ergs.  相似文献   

8.
Statistical analysis has been carried out of the relations between period and the ageP–t c, and the inclination of magnetic to rotation axis to the age –t cof pulsars have been done.Up to characteristic agest c=3×107 years the period increases as expected for magneto-dipole radiation energy lossesP=P m (1–exp(–t/ B ))1/n–1. Best-fitting parameters of this approximation are the time-scale of the magnetic moment decay B =4×106 years and breaking indexn=3.6. Fort c>3×107 years theP–t cdependence is significantly different.The inclination of magnetic to rotation axis decreases versus age, showing a secular alignment of the axis. But this decrease continues also only up tot c=3×107 years. Thus bothP–t cand –t cdependencies indicate that most of the pulsars of agest c>3×107 years are not evolutionary continuations of more younger ones, but apparently represent another population of pulsars, which differ by their genetic history or physical processes. This population includes all known millisecond pulsars. We suggest, that this population is a so-called recycled pulsar. The list of candidates of recycled pulsars is presented.A new evaluation of the inclination of the magnetic to the rotation axis for 105 pulsars is presented.  相似文献   

9.
The theory of the Poynting-Robertson effect is applied to the motion of meteors relative to a parent-comet describing an undisturbed elliptic orbit. It is shown that initially any emitted particle proceeds to move retrogressively away from the comet to a certain maximum angular distance (as seen from the Sun) depending on its s-value, and thereafter undergoes relative motion in the opposite forward direction. The time taken to reach this greatest elongation behind the comet is the same for all particles, and after twice this time the particles will have returned to zero angular displacement relative to the comet. As the inward radial displacement is of far smaller order of magnitude, this means that a swarm of particles will come together again simultaneously, and then move on forwards relative to the comet as they are drawn in slowly towards the Sun. For comet Encke the time for the elongation to return to zero is about 6600 y, for Halley it is about 2×105 y, and for Tempel-Tuttle (1965 IV) just over 105 y. Since this last comet is known to have been deflected from a long-period orbit to a short-period orbit in the year 126 A.D., the theory yields an upper limit to the s-values of about 2.3×10–2 g cm–2 for such of its particles as have spread right round the orbit to give rise to the annual November Leonids. Also, for the great meteor-storms associated with this comet, the particles are still moving close behind the comet itself, and their s-values must be about 6.2×10–2 g cm–2. This result together with their observed brightnesses suggest that the particles have an effective density little more than 0.1 g cm–3.  相似文献   

10.
Cluster analysis (a Bayesian iteration procedure) was used to study the space-time distribution of sunspot groups in the time interval from 1965 to 1977. (Data were taken from the Greenwich and Debrecen Heliographic Results.) The distribution proved to be significantly non-random for the 8–10 groups cluster–1 (gr cl–1) level of clustering. Convincing evidence also favours non-random behaviour for other levels of clustering from the lowest (3–4 gr cl–1) up to the highest ( 150 gr cl–1) level. The rotation rate of the non-random pattern is generally slightly lower than the Carrington rate.The 8–10 gr cl–1 level, crudely corresponding to the sunspot nests investigated earlier, was studied in more detail. The cycle- and latitude-averaged rotational rate of the nests is slightly ( 1%) but significantly lower than the Carrington rate. Their differential rotation is strongly reduced: the cycle-averaged rotational rate varies only by 2–3% within the sunspot belt. A slight but significant bimodality is seen in the differential rotation curve: the intermediate latitudes ( 10°–20°) show a somewhat slower rotation than both the equatorial and the higher latitude regions. This might be explained by a time-dependence of the rotation rate coupled with the butterfly diagram.  相似文献   

11.
A first period study of the eclipsing binary XY Ceti is presented. A new period (P=2d.7807135), based on all available times of minima, is given. Period changes in different portions of the O–C diagram, with a new period, have been estimated. The total change in period (P/P) ranges from 1.1×10–5 d to 1.2×10–4 d, thus, P ranges from 3.1×10–5 d to 3.3×10–4 d. The O–C diagram suggests that the trend of the period has changed around the year 1959. Two portions of increasing and decreasing trends also reveal that the period changes (P/P) of the order of 10–5 d are present, which are appreciably large.  相似文献   

12.
We describe an imaging telescope for observations of celestial sources in the energy range between 30 keV and 1.8 MeV onboard stratospheric balloons. The detector is a 41 cm diameter, 5 cm thick NaI(Tl) crystal coupled to 19 photomultipliers in an Anger camera configuration. It is surrounded by a plastic scintillator 15 cm thick on the sides, 0.2 cm thick at the top and 20 cm thick at the bottom. The imaging device is based upon a 19 × 19 element square MURA (Modified Uniformly Redundant Array) coded mask mounted in an one-piece mask-antimask configuration. The detector's spatial resolution is about 10 mm at 100 keV. This is the first experiment to use such a mask pattern and configuration for astrophysical purposes. The expected 3 sensitivity for an on-axis source observed for 104 s at a residual atmosphere of 3.5 g cm–2 is 1.44 × 10–5 photons cm–2 s–1 keV–1 at 100 keV and 1.00 × 10–6 photons cm–2 s–1 keV–1 at 1 MeV. The angular resolution is approximately 14 arcminutes over a 13°field of view. The instrument is mounted in an automatic platform with a capability for pointing and stabilization in both azimuth and elevation axis with 2 arcmin accuracy.Presented at the 2nd UN/ESA Workshop, held in Bogotá, Colombia, 9-13 November, 1992.  相似文献   

13.
We present extensive numerical calculations for a model of thermal convection of a Boussinesq fluid in an equatorial annulus of a rotating spherical shell. The convection induces and maintains differential rotation and meridian circulation. The model is solved for an effective Prandtl number P = 1, with effective Taylor number T in the range 102 <T <106, and effective Rayleigh number R between the critical value for onset of convection, and a few times that value. With = 2.6 × 10–6 s–1, d = 1.4 × 1010 cm (roughly the depth of the solar convection zone) the range of Taylor number is equivalent to kinematic viscosities between 1014 and 1012 cm2 s–1, which encompasses eddy viscosities estimated from mixing length theory applied to the Sun.The convection does generally make equatorial regions rotate faster, the more so as T is increased, but local equatorial deceleration near the surface is also produced at intermediate T for large enough R above critical. The differential rotation is maintained primarily through momentum transport in the cells up the gradient, rather than by meridian circulation. Differential rotation energy increases relative to cell energy with increasing T, surpassing it near T = 3 × 104. The differential rotation tends to stretch out the convective cells, analogously to what is thought to happen to solar magnetic regions. Differential rotation and meridian circulation energies are nearly equal for T = 103, but the meridian circulation energy falls off relative to differential rotation like T –1 for larger T. The meridian circulation is always toward the poles near the surface, contrary to models of Kippenhahn, Cocke, Köhler, and Durney and Roxburgh. The radial shear produced in the differential rotation is almost always positive, as in the Köhler model, but contrary to the assumptions made by Leighton for his random walk solar cycle model.Solutions in the neighborhood of T = 3 × 104 seem to compare best with various solar observations including differential rotation amplitude, cell wavelength, tilted structure, horizontal momentum transport, and weak meridian circulation. The local equatorial deceleration (equatorward of 10–15°) has not been observed, although the techniques of data analysis may not have been sensitive to it. The most important deficiency of the model is that all the solutions with T 103 show the vertical heat transport a rather strong function of latitude, with a maximum at the equator, no evidence of which is seen at the solar surface.The National Center for Atmospheric Research is sponsored by The National Science Foundation.  相似文献   

14.
We have studied the thermonuclear runaways which develop on white dwarfs of 1.205M and 1.358M accreting hydrogen rich material at 10–10 M yr–1. It is found that ignition of this material occurs at densities in excess of about 104 gm cm–3 and that the critical accumulated mass required to initiate the runaway is 0.7(1.5)×10–4 M for a 1.358(1.205)M white dwarf.  相似文献   

15.
The possibility of measuring magnetic fields of solar active regions at coronal heights up to 1010 cm by observing the inversion of circular polarization of local sources at microwaves is demonstrated. The observations by the radiotelescope RATAN-600 were accomplished with the angular resolution 17–34 in the wavelength range 2–4 cm. It is found that the inversion of polarization occured within a core of local source situated above the largest sunspot of Mc Math 14822. The inversion was followed during the period of June 30–July 3, 1977. The measured coronal magnetic field of 16 G is found to be at the height 12 × 109 cm. This measured field proves to agree with a simulated potential structure of Mc Math 14822 coronal magnetic field. Our analysis of the inversion has been based on the theory of interaction (coupling) of the ordinary and extraordinary wave modes in the region of quasi-transverse propagation.  相似文献   

16.
The structure and stability of rapidly uniformly rotating supermassive stars is investigated using the full post-Newtonian equations of hydrodynamics. The standard model of a supermassive star, a polytrope of index three, is adopted. All rotation terms up to and including those of order 4, where is the angular velocity, are retained. The effects of rotation and post-Newtonian gravitation on the classical configuration are explicitly evaluated and shown to be very small. The dynamical stability of the model is treated by using the binding energy approach. The most massive objects are found to be dynamically unstable when =1/c 2.p c / c 2.2 × 10–3, wherep c and c are the central pressure and density, respectively. Hence, the higher-order terms considered in this analysis do not appreciably alter the previously known stability limits.The maximum mass that can be stabilized by uniform rotation in the hydrogen-burning phase is found to be 2.9×106 M , whereM is the solar mass. The corresponding nuclear-generated luminosity of 6×1044 erg/sec–1 is too small for the model to be applicable to the quasi-stellar objects. The maximum kinetic energy of a uniformly rotating supermassive star is found to be 3×10–5 Mc 2, whereM is the mass of the star. Masses in excess of 1010 M are required if an adequate store of kinetic energy is to be made available to a pulsar like QSO. However such large masses have rotation periods in excess of 100 yr and thus could not account for any short term periodic variability. It is concluded then that the uniformly rotating supermassive star does not provide a suitable base for a model of a QSO.  相似文献   

17.
New measurements of the radiative flux deficits of two large sunspots are presented, based on detailed isophotometric maps. Results are given separately for umbrae and penumbrae. The umbral and penumbral deficits are 4–5 × 1010 and 1–1.5 × 1010 erg cm–2 s–1 respectively, the larger figures ref to the larger spot. Over limited areas centered on the umbral cores the deficits for the two spots amount to 76 and 86% of the photospheric flux.  相似文献   

18.
We present simple two-layer models of Uranus with rocky core and polytropic envelope satisfying exactly the observed mass, radius and the gravitational moments. The models show that the value of the fourth order zonal harmonic isJ 4 –38×10–6, whileJ 6 10–6. More elaborate threelayer models fail to satisfy the observational constraints of the ice/rock ratio and/or of the rotation period. We conclude that three-layer models with uniform chemical composition in each layer may be too restrictive. More realistic models should account for variable chemical composition within each layer.  相似文献   

19.
The hydrodynamical axially symmetric collapse of a 3M -cloud with an initial density of 10–20 g cm–3 has been investigated. In order to first arrive at an equilibrium configuration a temperature of 15 K has been assumed. During about 9 free-fall times the cloud has artificially been cooled down to the (Jeans-) critical temperature of 8 K. Thus, the dynamical collapse studied in this paper starts from an equilibrium configuration following a slow quasi-hydrostatic contraction. Two sequences corresponding to a different choice of the initial angular velocity i = 10–14 s–1 (Case A) and i = 10–15 s–1 (Case B) have been computed. In both cases a fast spinning, optically thick disk-like core of low mass and temperature forms for which fission into two or even more pieces is very likely to occur.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.  相似文献   

20.
White-light flares are defined as those flares that produce significant enhancement of emission in the visible light continuum. The source of energy for this emission has not yet been identified with several possibilities being suggested: heating of the lower chromosphere by some mechanical or magnetic means, or by soft X-ray or extreme ultraviolet radiation from coronal loops being absorbed in the lower chromosphere and re-emitted in the visible.Using non-LTE radiative transfer calculations for hydrogen and helium in a simple model atmosphere we show that EUV ( < 912 Å) radiation cannot be the main energy source for white-light flares. Estimates of the observed energy emitted in the visible and the EUV indicate that there may be enough energy in the EUV to account for the white light flare with this mechanism. Using enhancements in the wavelength region below 912 Å of up to 7 × 109 ergs cm–2 s–1 ster–1 (5 × 105 times the estimated q radiation field) to represent flare EUV emission from above we investigated the non-LTE level populations for hydrogen and helium and the lower atmospheric heating resulting from this radiation. The basic result is that the opacities in the Lyman continuum and the helium I and II continua are so much larger than even the enhanced opacity in the visible hydrogen continuum that the EUV radiation is absorbed before it can have a significant effect in the visible light continuum. However, the EUV radiation can cause a significant enhancement of H emission.Operated by the Association of Universities for Research in Astronomy Inc. for the National Aeronautics and Space Administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号