首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guoqiang Wang  Zongxue Xu 《水文研究》2011,25(16):2506-2517
A grid‐based distributed hydrological model, PDTank model, is used to simulate hydrological processes in the upper Tone River catchment. The Tone River catchment often suffers from heavy rainfall events during the typhoon seasons. The reservoirs located in the catchment play an important role in flood regulation. Through the coupling of the PDTank model and a reservoir module that combines the storage function and operation function, the PDTank model is used for flood forecasting in this study. By comparing the hydrographs simulated using gauging and radar rainfall data, it is found that the spatial variability of rainfall is an important factor for flood simulation and the accuracy of the hydrographs simulated using radar rainfall data is slightly improved. The simulation of the typhoon flood event numbered No. 9 shows that the reservoirs in the catchment attenuate the peak flood discharge by 423·3 m3/s and validates the potential applicability of the distributed hydrological model on the assessment of function of reservoirs for flood control during typhoon seasons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
This study evaluates two (of the many) modelling approaches to flood forecasting for an upland catchment (the River South Tyne at Haydon Bridge, England). The first modelling approach utilizes ‘traditional’ hydrological models. It consists of a rainfall–runoff model (the probability distributed model, or PDM) for flow simulation in the upper catchment. Those flows are then routed to the lower catchment using two kinematic wave (KW) routing models. When run in forecast‐mode, the PDM and KW models utilize model updating procedures. The second modelling approach uses neural network models, which use a ‘pattern‐matching’ process to produce model forecasts.Following calibration, the models are evaluated in terms of their fit to continuous stage data and flood event magnitudes and timings within a validation period. Forecast times of 1 h, 2 h and 4 h are selected (the catchment has a response time of approximately 4 h). The ‘traditional’ models generally perform adequately at all three forecast times. The neural networks produce reasonable forecasts of small‐ to medium‐sized flood events but have difficulty in forecasting the magnitude of the larger flood events in the validation period. Possible modifications to the latter approach are discussed. © Crown copyright 2002. Reproduced with the permission of Her Majesty's stationery office. Published by John Wiley & Sons, Ltd.  相似文献   

3.
ABSTRACT

Selecting the best structure and parameterization of rainfall–runoff models is not straightforward and depends on a broad number of factors. In this study, the “Modello Idrologico Semi-Distribuito in continuo” (MISDc) was tested on 63 mountainous catchments in the western Po Valley (Italy) and the optimal model parameters were regionalized using different strategies. The model performance was evaluated through several indexes analysing hydrological regime, high-flow condition and flow–duration curve (FDC). In general, MISDc provides a good fit behaviour with a Kling-Gupta Efficiency index greater than 0.5 for 100% and 84% of cases for calibration and validation, respectively. Concerning the regionalization, spatial proximity approach is the most accurate solution obtaining satisfactory performance. Lastly, the predicted FDCs showed an excellent similarity with the observed ones. Results encourage to apply MISDc over the study area for flood forecasting and for assessing water resources availability thanks to the modest computational efforts and data requirements.  相似文献   

4.
Flash floods represent one of the deadliest and costliest natural disasters worldwide. The hydrological analysis of a flash flood event contributes in the understanding of the runoff creation process. This study presents the analysis of some flash flood events that took place in a complex geomorphological Mediterranean River basin. The objective of the present work is to develop the thresholds for a real‐time flash flood forecasting model in a complex geomorphological watershed, based on high‐frequency data from strategically located hydrological and meteorological telemetric stations. These stations provide hourly real‐time data which were used to determine hydrological and meteorological parameters. The main characteristics of various hydrographs specified in this study were the runoff coefficients, lag time, time to peak, and the maximum potential retention. The estimation of these hydrometeorological parameters provides the necessary information in order to successfully manage flash floods events. Especially, the time to peak is the most significant hydrological parameter that affects the response time of an oncoming flash flood event. A study of the above parameters is essential for the specification of thresholds which are related to the geomorphological characteristics of the river basin, the rainfall accumulation of an event, the rainfall intensity, the threshold runoff through karstic area, the season during which the rainfall takes place and the time intervals between the rainstorms that affect the soil moisture conditions. All these factors are combined into a real‐time‐threshold flash flood prediction model. Historical flash flood events at the downstream are also used for the validation of the model. An application of the proposed model is presented for the Koiliaris River basin in Crete, Greece. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Two lumped conceptual hydrological models, namely tank and NAM and a neural network model are applied to flood forecasting in two river basins in Thailand, the Wichianburi on the Pasak River and the Tha Wang Pha on the Nan River using the flood forecasting procedure developed in this study. The tank and NAM models were calibrated and verified and found to give similar results. The results were found to improve significantly by coupling stochastic and deterministic models (tank and NAM) for updating forecast output. The neural network (NN) model was compared with the tank and NAM models. The NN model does not require knowledge of catchment characteristics and internal hydrological processes. The training process or calibration is relatively simple and less time consuming compared with the extensive calibration effort required by the tank and NAM models. The NN model gives good forecasts based on available rainfall, evaporation and runoff data. The black‐box nature of the NN model and the need for selecting parameters based on trial and error or rule‐of‐thumb, however, characterizes its inherent weakness. The performance of the three models was evaluated statistically. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presented a new classified real-time flood forecasting framework by integrating a fuzzy clustering model and neural network with a conceptual hydrological model. A fuzzy clustering model was used to classify historical floods in terms of flood peak and runoff depth, and the conceptual hydrological model was calibrated for each class of floods. A back-propagation (BP) neural network was trained by using real-time rainfall data and outputs from the fuzzy clustering model. BP neural network provided a rapid on-line classification for real-time flood events. Based on the on-line classification, an appropriate parameter set of hydrological model was automatically chosen to produce real-time flood forecasting. Different parameter sets was continuously used in the flood forecasting process because of the changes of real-time rainfall data and on-line classification results. The proposed methodology was applied to a large catchment in Liaoning province, China. Results show that the classified framework provided a more accurate prediction than the traditional non-classified method. Furthermore, the effects of different index weights in fuzzy clustering were also discussed.  相似文献   

7.
The Xinanjiang model, which is a conceptual rainfall‐runoff model and has been successfully and widely applied in humid and semi‐humid regions in China, is coupled by the physically based kinematic wave method based on a digital drainage network. The kinematic wave Xinanjiang model (KWXAJ) uses topography and land use data to simulate runoff and overland flow routing. For the modelling, the catchment is subdivided into numerous hillslopes and consists of a raster grid of flow vectors that define the water flow directions. The Xinanjiang model simulates the runoff yield in each grid cell, and the kinematic wave approach is then applied to a ranked raster network. The grid‐based rainfall‐runoff model was applied to simulate basin‐scale water discharge from an 805‐km2 catchment of the Huaihe River, China. Rainfall and discharge records were available for the years 1984, 1985, 1987, 1998 and 1999. Eight flood events were used to calibrate the model's parameters and three other flood events were used to validate the grid‐based rainfall‐runoff model. A Manning's roughness via a linear flood depth relationship was suggested in this paper for improving flood forecasting. The calibration and validation results show that this model works well. A sensitivity analysis was further performed to evaluate the variation of topography (hillslopes) and land use parameters on catchment discharge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
This paper analyses the skills of fuzzy computing based rainfall–runoff model in real time flood forecasting. The potential of fuzzy computing has been demonstrated by developing a model for forecasting the river flow of Narmada basin in India. This work has demonstrated that fuzzy models can take advantage of their capability to simulate the unknown relationships between a set of relevant hydrological data such as rainfall and river flow. Many combinations of input variables were presented to the model with varying structures as a sensitivity study to verify the conclusions about the coherence between precipitation, upstream runoff and total watershed runoff. The most appropriate set of input variables was determined, and the study suggests that the river flow of Narmada behaves more like an autoregressive process. As the precipitation is weighted only a little by the model, the last time‐steps of measured runoff are dominating the forecast. Thus a forecast based on expected rainfall becomes very inaccurate. Although good results for one‐step‐ahead forecasts are received, the accuracy deteriorates as the lead time increases. Using the one‐step‐ahead forecast model recursively to predict flows at higher lead time, however, produces better results as opposed to different independent fuzzy models to forecast flows at various lead times. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Rainfall runoff (RR) models are fundamental tools for reducing flood hazards. Although several studies have highlighted the potential of soil moisture (SM) observations to improve flood modelling, much research has still to be done for fully exploiting the evident connection between SM and runoff. As a way of example, improving the quality of forcing data, i.e. rainfall observations, may have a great benefit in flood simulation. Such data are the main hydrological forcing of classical RR models but may suffer from poor quality and record interruption issues. This study explores the potential of using SM observations to improve rainfall observations and set a reliable initial wetness condition of the catchment for improving the capability in flood modelling. In particular, a RR model, which incorporates SM for its initialization, and an algorithm for rainfall estimation from SM observations are coupled using a simple integration method. The study carried out at the Valescure experimental catchment (France) demonstrates the high information content retained by SM for RR transformation, thus giving new possibilities for improving hydrological applications. Results show that an appropriate configuration of the two models allows obtaining improvement in flood simulation up to 15% in mean and 34% in median Nash Sutcliffe performances as well as a reduction of the median error in volume and on peak discharge of about 30% and 15%, respectively.  相似文献   

10.
In this paper, the controls of different indicators on the statistical moments (i.e. mean annual flood (MAF), coefficient of variation (CV) and skewness (CS)) of the maximum annual flood records of 459 Austrian catchments are analysed. The process controls are analysed in terms of the correlation of the flood moments within five hydrologically homogeneous regions to two different types of indicators. Indicators of the first type are static catchment attributes, which are associated with long‐term observations such as mean annual precipitation, the base flow index, and the percentage of catchment area covered by a geological unit or soil type. Indicators of the second type are dynamic catchment attributes that are associated with the event scale. Indicators of this type used in the study are event runoff coefficients and antecedent rainfall. The results indicate that MAF and CV are strongly correlated with indicators characterising the hydro‐climatic conditions of the catchments, such as mean annual precipitation, long‐term evaporation and the base flow index. For the catchments analysed, the flood moments are not significantly correlated with static catchment attributes representing runoff generation, such as geology, soil types, land use and the SCS curve number. Indicators of runoff generation that do have significant predictive power for flood moments are dynamic catchment attributes such as the mean event runoff coefficients and mean antecedent rainfall. The correlation analysis indicates that flood runoff is, on average, more strongly controlled by the catchment moisture state than by event rainfall. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A methodology is proposed for constructing a flood forecast model using the adaptive neuro‐fuzzy inference system (ANFIS). This is based on a self‐organizing rule‐base generator, a feedforward network, and fuzzy control arithmetic. Given the rainfall‐runoff patterns, ANFIS could systematically and effectively construct flood forecast models. The precipitation and flow data sets of the Choshui River in central Taiwan are analysed to identify the useful input variables and then the forecasting model can be self‐constructed through ANFIS. The analysis results suggest that the persistent effect and upstream flow information are the key effects for modelling the flood forecast, and the watershed's average rainfall provides further information and enhances the accuracy of the model performance. For the purpose of comparison, the commonly used back‐propagation neural network (BPNN) is also examined. The forecast results demonstrate that ANFIS is superior to the BPNN, and ANFIS can effectively and reliably construct an accurate flood forecast model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Vahid Nourani  Akira Mano 《水文研究》2007,21(23):3173-3180
Rainfall–runoff modelling, as a surface hydrological process, on large‐scale data‐poor basins is currently a major topic of investigation that requires the model parameters be identified by using basin physical characteristics rather than calibration. This paper describes the application of the TOPMODEL framework accompanied by a kinematic wave model to the Karun River sub‐basins in southwestern Iran with just one conceptual parameter for calibration. ISLSCP1, HYDRO1K and Reynolds data sets are presented in a geographical information system and used as data sources for meteorological information, hydrological features and soil characteristics of the study area respectively. The results show that although the model developed can adequately predict flood runoff in the catchment with only one calibrated parameter, it is suggested that the effect of surface reservoirs be considered in the proposed model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Real time updating of rainfall-runoff (RR) models is traditionally performed by state-space formulation in the context of flood forecasting systems. In this paper, however, we examine applicability of generalized likelihood uncertainty estimation (GLUE) approach in real time modification of forecasts. Real time updating and parameter uncertainty analysis was conducted for Abmark catchment, a part of the great Karkheh basin in south west of Iran. A conceptual-distributed RR model, namely ModClark, was used for basin simulation, such that the basin’s hydrograph was determined by the superposition of runoff generated by individual cells in a raster-based discretization. In real time updating of RR model by GLUE method, prior and posterior likelihoods were computed using forecast errors that were obtained from the results of behavioral models and real time recorded discharges. Then, prior and posterior likelihoods were applied to modify forecast confidence limits in each time step. Calibration of parameters was performed using historical data while distribution of parameters was modified in real time based on new data records. Two scenarios of rainfall forecast including prefect-rainfall-forecast and no-rainfall-forecast were assumed in absence of a robust rainfall forecast model in the study catchment. The results demonstrated that GLUE application could offer an acceptable lead time for peak discharge forecast at the expense of high computational demand.  相似文献   

14.
A rising exposure to flood risk is a predicted consequence of increased development in vulnerable areas and an increase in the frequency of extreme weather events due to climate change. In the face of this challenge, a continued reliance on engineered at‐a‐point flood defences is seen as both unrealistic and undesirable. The contribution of ‘soft engineering’ solutions (e.g. riparian forests, wood in rivers) to integrated, catchment scale flood risk management has been demonstrated at small scales but not larger ones. In this study we use reduced complexity hydrological modelling to analyse the effects of land use and channel changes resulting from river restoration upon flood flows at the catchment scale. Results show short sections of river‐floodplain restoration using engineered logjams, typical of many current restoration schemes, have highly variable impacts on catchment‐scale flood peak magnitude and so need to be used with caution as a flood management solution. Forested floodplains have a more general impact upon flood hydrology, with areas in the middle and upper catchment tending to show reductions in peak magnitude at the catchment outflow. The most promising restoration scenarios for flood risk management are for riparian forest restoration at the sub‐catchment scale, representing 20–40% of the total catchment area, where reductions in peak magnitude of up to 19% are observed through de‐synchronization of the timings of sub‐catchment flood waves. Sub‐catchment floodplain forest restoration over 10–15% of total catchment area can lead to reductions in peak magnitude of 6% at 25 years post‐restoration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

The rating curve model (RCM) proposed by Moramarco and co-authors is modified here for flood forecasting purposes without using rainfall information. The RCM is a simple approach for discharge assessment at a river site of interest based on relating the local recorded stage and the remote discharge monitored at an upstream gauged river site located some distance away. The proposed RCM for real-time application (RCM-RT), involves only two parameters and can be used for river reaches where significant lateral flows occur. The forecast lead time depends on the mean wave travel time of the reach. The model is found to be accurate for a long reach of the Po River (northern Italy) and for two branches of the Tiber River (central Italy) characterized by different intermediate drainage areas and wave travel times. Moreover, the assessment of the forecast uncertainty coming from the model parameters is investigated by performing a Monte Carlo simulation. Finally, the model capability to accurately forecast the exceedence of fixed hydrometric thresholds is analysed.

Editor D. Koutsoyiannis; Associate editor C. Perrin  相似文献   

16.
Nature‐based approaches to flood risk management are increasing in popularity. Evidence for the effectiveness at the catchment scale of such spatially distributed upstream measures is inconclusive. However, it also remains an open question whether, under certain conditions, the individual impacts of a collection of flood mitigation interventions could combine to produce a detrimental effect on runoff response. A modelling framework is presented for evaluation of the impacts of hillslope and in‐channel natural flood management interventions. It couples an existing semidistributed hydrological model with a new, spatially explicit, hydraulic channel network routing model. The model is applied to assess a potential flood mitigation scheme in an agricultural catchment in North Yorkshire, United Kingdom, comprising various configurations of a single variety of in‐channel feature. The hydrological model is used to generate subsurface and surface fluxes for a flood event in 2012. The network routing model is then applied to evaluate the response to the addition of up to 59 features. Additional channel and floodplain storage of approximately 70,000 m3 is seen with a reduction of around 11% in peak discharge. Although this might be sufficient to reduce flooding in moderate events, it is inadequate to prevent flooding in the double‐peaked storm of the magnitude that caused damage within the catchment in 2012. Some strategies using features specific to this catchment are suggested in order to improve the attenuation that could be achieved by applying a nature‐based approach.  相似文献   

17.
The capability of a simple kinematic‐storage model (KSM) is analysed to be used as a tool for a Decision Support System for the evaluation of probability inundation maps in near real time in poorly gauged areas. KSM simulates the floodplain as a storage and assumes no exchange of momentum with the channel. For the in‐bank flow, the storage is modified through a coefficient for taking the variations of channel cross sections into account. The generalized likelihood uncertainty estimation approach is used for addressing the probability flood maps along with their associated uncertainties. The model is tested on two river reaches along the Tiber River in Central Italy where observed inundation maps are available for two recent flood events. Despite the inherent uncertainties present in the input data and in the model structure, the results show that the model reproduces reasonably well, in terms of both precision and accuracy, the observed inundated areas. Tests were performed at different digital elevation model resolutions, showing a small effect of the geometry on the maximum performance obtained. The very low computational times, the parsimony of the model and its low sensitivity to the quality of the geometry representation of the channel and the floodplain makes KSM very appealing for flood forecasting and early warning system applications in poorly gauged and inaccessible areas. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Knowledge about flood generating processes can be beneficial for numerous applications. Especially in the context of climate change impact assessment, daily patterns of meteorological and catchment state conditions leading to flood events (i.e., storylines) may be of value. Here, we propose an approach to identify storylines of flood generation using daily weather and snow cover observations. The approach is tested for and applied to a typical pre‐Alpine catchment in the period between 1961 and 2014. Five precipitation parameters were determined that describe temporal and spatial characteristics of the flood associated precipitation events. The catchment's snow coverage was derived using statistical relationships between a satellite‐derived snow cover climatology and station snow measurements. Moreover, (pre‐) event snow melt sums were estimated using a temperature‐index model. Based on the precipitation and catchment state parameters, 5 storylines were identified with a cluster analysis: These are (a) long duration, low intensity precipitation events with high precipitation depths, (b) long duration precipitation events with high precipitation depths and episodes of high intensities, (c) shorter duration events with high or (d) low precipitation intensity, respectively, and (e) rain‐on‐snow events. The event groups have distinct hydrological characteristics that can largely be explained by the storylines' respective properties. The long duration, high intensity storyline leads to the most adverse hydrological response, namely, a combination of high peak magnitudes, high volumes, and long durations of threshold exceedance. The results show that flood generating processes in mesoscale catchments can be distinguished on the basis of daily meteorological and catchment state parameters and that these process types can explain the hydrological flood properties in a qualitative way. Hydrological simulations of daily resolution can thus be analysed with respect to flood generating processes.  相似文献   

19.
ABSTRACT

Poorly monitored catchments could pose a challenge in the provision of accurate flood predictions by hydrological models, especially in urbanized areas subject to heavy rainfall events. Data assimilation techniques have been widely used in hydraulic and hydrological models for model updating (typically updating model states) to provide a more reliable prediction. However, in the case of nonlinear systems, such procedures are quite complex and time-consuming, making them unsuitable for real-time forecasting. In this study, we present a data assimilation procedure, which corrects the uncertain inputs (rainfall), rather than states, of an urban catchment model by assimilating water-level data. Five rainfall correction methods are proposed and their effectiveness is explored under different scenarios for assimilating data from one or multiple sensors. The methodology is adopted in the city of São Carlos, Brazil. The results show a significant improvement in the simulation accuracy.  相似文献   

20.
Keith Beven was amongst the first to propose and demonstrate a combination of conceptual rainfall–runoff modelling and stochastically generated rainfall data in what is known as the ‘continuous simulation’ approach for flood frequency analysis. The motivations included the potential to establish better links with physical processes and to avoid restrictive assumptions inherent in existing methods applied in design flood studies. Subsequently, attempts have been made to establish continuous simulation as a routine method for flood frequency analysis, particularly in the UK. The approach has not been adopted universally, but numerous studies have benefitted from applications of continuous simulation methods. This paper asks whether industry has yet realized the vision of the pioneering research by Beven and others. It reviews the generic methodology and illustrates applications of the original vision for a more physically realistic approach to flood frequency analysis through a set of practical case studies, highlighting why continuous simulation was useful and appropriate in each case. The case studies illustrate how continuous simulation has helped to offer users of flood frequency analysis more confidence about model results by avoiding (or exposing) bad assumptions relating to catchment heterogeneity, inappropriateness of assumptions made in (UK) industry‐standard design event flood estimation methods, and the representation of engineered or natural dynamic controls on flood flows. By implementing the vision for physically realistic analysis of flood frequency through continuous simulation, each of these examples illustrates how more relevant and improved information was provided for flood risk decision‐making than would have been possible using standard methods. They further demonstrate that integrating engineered infrastructure into flood frequency analysis and assessment of environmental change are also significant motivations for adopting the continuous simulation approach in practice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号