首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Column and field experiments have shown that the hydrologic response to increases in rainfall rates can be more rapid than expected from simple estimates. Physics‐based hydrologic response simulation, with the Integrated Hydrology Model (InHM), is used here to investigate rapid hydrologic response, within the variably saturated near surface, to temporal variations in applied flux at the surface boundary. The factors controlling the speed of wetting front propagation are discussed within the Darcy–Buckingham conceptual framework, including kinematic wave approximations. The Coos Bay boundary‐value problem is employed to examine simulated discharge, pressure head, and saturation responses to a large increase in applied surface flux. The results presented here suggest that physics‐based simulations are capable of representing rapid hydrologic response within the variably saturated near surface. The new InHM simulations indicate that the temporal discretization and measurement precision needed to capture the rapid subsurface response to a spike increase in surface flux, necessary for both data‐based analyses and evaluation of physics‐based models, are smaller than the capabilities of the instrumentation deployed at the Coos Bay experimental catchment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
In the paper that is the foundation for this study, VanderKwaak and Loague (2001. Water Resources Research 37 : 999–1013) reported a demonstration of a fully coupled comprehensive physics‐based hydrologic‐response model, InHM (Integrated Hydrology Model), for two rainfall‐runoff events from the small rangeland catchment known as R‐5. The InHM simulations reported herein address (in three phases) limitations in the VanderKwaak and Loague (2001. Water Resources Research 37 : 999–1013) simulations. In Phase I, a new finite‐element mesh was selected to represent R‐5. In Phase II, with the new mesh in place, evaporation was considered for the R‐5 events. In Phase III, with the new mesh in place and evaporation considered, the geology of R‐5 was approximated. Each phase, compared with the results reported by VanderKwaak and Loague (2001. Water Resources Research 37 : 999–1013), shows a change in the simulated near‐surface response. The performance of InHM for 15 R‐5 events is also reported herein. The results from two stages of model calibration are presented. The uncertainty in initial soil‐water content estimates for event‐based simulation is shown to be a major limitation for physics‐based models. The performance of InHM, relative to past event‐based simulation efforts with a quasi‐physically based rainfall‐runoff model, is better for both peak stormflow and the time to peak stormflow, but worse for stormflow depth. The InHM simulations reported here set the stage for continuous simulation of near‐surface response for the R‐5 catchment with InHM. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
This study demonstrates that comprehensive hydrologic‐response simulation can be a useful tool for studying cumulative watershed effects. The simulations reported here were conducted with the Integrated Hydrology Model (InHM). The location of the 473 ha study site is the North Fork of the Caspar Creek Experimental Watershed, near Fort Bragg, California. Existing information from a long‐term monitoring programme and new soil‐hydraulic property measurements made for this study were used to parameterize InHM. Long‐term continuous wet‐season simulations were conducted for the North Fork catchments and main stem for second‐growth, clear‐cut and new‐growth scenarios. The simulation results show that the increases and decreases, respectively, for throughfall and potential evapotranspiration related to clear‐cutting had quantifiable impacts on the simulated hydrologic response at both the catchment and watershed scales. Model performance was best for the new‐growth simulation scenarios. To improve upon the simulations reported here would require additional soil‐hydraulic property information from across the study area. Although principally focused on the integrated hydrologic response, the effort reported here demonstrates the potential for characterizing distributed responses with physics‐based simulation. The search for a comprehensive understanding of hydrologic response will require both data‐intensive discovery and concept‐development simulation, from both integrated and distributed perspectives. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In the work reported here the comprehensive physics‐based Integrated Hydrology Model (InHM) was employed to conduct both three‐ and two‐dimensional (3D and 2D) hydrologic‐response simulations for the small upland catchment known as C3 (located within the H. J. Andrews Experimental Forest in Oregon). Results from the 3D simulations for the steep unchannelled C3 (i) identify subsurface stormflow as the dominant hydrologic‐response mechanism and (ii) show the effect of the down‐gradient forest road on both the surface and subsurface flow systems. Comparison of the 3D results with the 2D results clearly illustrates the importance of convergent subsurface flow (e.g. greater pore‐water pressures in the hollow of the catchment for the 3D scenario). A simple infinite‐slope model, driven by subsurface pore‐water pressures generated from the 3D and 2D hydrologic‐response simulations, was employed to estimate slope stability along the long‐profile of the C3 hollow axis. As expected, the likelihood of slope failure is underestimated for the lower pore pressures from the 2D hydrologic‐response simulation compared, in a relative sense, to the higher pore pressures from the 3D hydrologic response simulation. The effort reported herein provides a firm quantitative foundation for generalizing the effects that forest roads can have on near‐surface hydrologic response and slope stability at the catchment scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Information shortage is a fundamental constraint in catchment hydrology that severely affects the possibilities for secure inference of the generic hydrologic landscape, as well as for secure validation of physically deduced distributed models. The introduction of databases with high enough spatiotemporal resolution to properly reflect generic hydrological catchment characteristics may therefore be considered as an inferential breakthrough. The work presented here is part of a project where observations from such an Australian catchment (the Tarrawarra) are utilised to estimate the discrepancy for individual soil moisture monitoring sites in reflecting generic catchment characteristics. With low enough discrepancy, observation sites may be considered as catchment characteristic soil moisture monitoring (CASMM) sites, thus capturing unbiased catchment characteristics and being well suited to represent the catchment in a monitoring effort. In this particular study, covariance structures in the temporal domain are inferred in order to enable subsequent enquiries regarding CASMM discrepancies. This is accomplished with ARMAX filters applied to the conditional auto- and cross-covariance structures that connect observations of soil moisture to the temporal variation of meteorology. The results suggest that weekly observations of Tarrawarra soil moisture are quite consistent realisations of first order auto-regressive processes, which means that the present state of soil moisture is generally acquired through the past week. With auto-correlative effects filtered out, cross-correlative meteorological effects on Tarrawarra soil moisture are identified and generally represented by the present week's accumulation of rainfall, the present week's accumulation of global radiation, and the previous week's maximum wind speed. After successive filtering of conditional cross-correlative effects, residual time-series observations may be considered as temporally independent, and therefore are well suited for subsequent inferences regarding covariance structures in the spatial domain. Since the exclusion of auto-correlative effects is necessary for unambiguous model interpretation, the estimated cross-correlative parameters should reflect the true nature of underlying physical processes.  相似文献   

6.
Soil moisture influences many hydrologic applications including agriculture, land management and flood prediction. Most remote‐sensing methods that estimate soil moisture produce coarse resolution patterns, so methods are required to downscale such patterns to the resolutions required by these applications (e.g. 10‐ to 30‐m grid cells). At such resolutions, topography is known to affect soil moisture patterns. Although methods have been proposed to downscale soil moisture based on topography, they usually require the availability of past high‐resolution soil moisture patterns from the application region. The objective of this article is to determine whether a single topographic‐based downscaling method can be used at multiple locations without relying on detailed local observations. The evaluated downscaling method is developed on the basis of empirical orthogonal function (EOF) analysis of space–time soil moisture data at a reference catchment. The most important EOFs are then estimated from topographic attributes, and the associated expansion coefficients are estimated on the basis of the spatial‐average soil moisture. To test the portability of this EOF‐based method, it is developed separately using four data sets (Tarrawarra, Tarrawarra 2, Cache la Poudre and Satellite Station), and the relationships that are derived from these data sets to estimate the EOFs and expansion coefficients are compared. In addition, each of these downscaling methods is applied not only for the catchment where it was developed but also to the other three catchments. The results suggest that the EOF downscaling method performs well for the location where it is developed, but its performance degrades when applied to other catchments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Hydrologic models have increasingly been used in forest hydrology to overcome the limitations of paired watershed experiments, where vegetative recovery and natural variability obscure the inferences and conclusions that can be drawn from such studies. Models are also plagued by uncertainty, however, and parameter equifinality is a common concern. Physically‐based, spatially‐distributed hydrologic models must therefore be tested with high‐quality experimental data describing a multitude of concurrent internal catchment processes under a range of hydrologic regimes. This study takes a novel approach by not only examining the ability of a pre‐calibrated model to realistically simulate watershed outlet flows over a four year period, but a multitude of spatially‐extensive, internal catchment process observations not previously evaluated, including: continuous groundwater dynamics, instantaneous stream and road network flows, and accumulation and melt period spatial snow distributions. Many hydrologic model evaluations are only on the comparison of predicted and observed discharge at a catchment outlet and remain in the ‘infant stage’ in terms of model testing. This study, on the other hand, tests the internal spatial predictions of a distributed model with a range of field observations over a wide range of hydroclimatic conditions. Nash‐Sutcliffe model efficiency was improved over prior evaluations due to continuing efforts in improving the quality of meteorological data collection. Road and stream network flows were generally well simulated for a range of hydrologic conditions, and snowpack spatial distributions were well simulated for one of two years examined. The spatial variability of groundwater dynamics was effectively simulated, except at locations where strong stream–groundwater interactions exist. Model simulations overall were quite successful in realistically simulating the spatiotemporal variability of internal catchment processes in the watershed, but the premature onset of simulated snowmelt for one of the simulation years has prompted further work in model development. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Highly seasonal boreal catchments are hydrologically complex and generally data poor and, hence, are ripe for investigation using tracer‐aided hydrologic models. The influence of physiography on isotopic metrics was assessed to identify the catchment characteristics dominating evaporative enrichment. A multiyear stable isotope of water dataset was collected at the outlets of 16 boreal catchments in central Canada ranging in area from 12 to 15,282 km2. Physiographic characteristics were obtained through raster analysis of freely available land cover images, stream networks, and digital elevation models. Correlation analysis indicated that as the percentage coverage of open water increased, so too did the evaporative effects observed at the catchment outlet. Correlation to wetland metrics indicated that increasing the percentage coverage of wetlands can reduce or increase evaporative effects observed, depending on the isotopic metric used and the corresponding drainage density, catchment slope, and presence of headwater lakes. The slopes of river evaporative‐mixing lines appear to reflect multifaceted relationships, strongest between catchment slope, headwater lakes, and connected wetlands, whereas mean line‐conditioned excess is more directly linked to physiographic variables. Hence, the slopes of river evaporative‐mixing lines and mean line‐conditioned excess are not interchangeable metrics of evaporative enrichment in a catchment. Relationships identified appear to be independent of catchment scale. These results suggest that adequate inclusion of the distribution of open water throughout a catchment, adequate representation of wetland processes, catchment slope, and drainage density are critical characteristics to include in tracer‐aided hydrologic models in boreal environments in order to minimize structural uncertainty.  相似文献   

9.
Forest management practices often result in significant changes to hydrologic and geomorphic responses at or near the earth's surface. A well‐known, but not fully tested, hypothesis in hillslope hydrology[sol ]geomorphology is that a near‐surface permeability contrast, caused by the surface compaction associated with forest roads, can result in diverted subsurface flow paths that produce increased up‐slope pore pressures and slope failure. The forest road focused on in this study is located in a steep forested, zero‐order catchment within the H. J. Andrews Experimental Forest (Oregon). A three‐phase modelling effort was employed to test the aforementioned hypothesis: (i) two‐dimensional (vertical slice), steady‐state, heterogeneous, saturated subsurface flow simulations at the watershed scale for establishing the boundary conditions for the catchment‐scale boundary‐value problem in (ii); (ii) two‐dimensional (vertical slice), transient, heterogeneous, variably saturated subsurface flow simulations at the catchment scale for estimating near‐surface hydrologic response and pore pressure distributions; and (iii) slope stability analyses, using the infinite slope approach, driven by the pore pressure distributions simulated in (ii), for assessing the impact of the forest road. Both observed and hypothetical rainfall events are used to drive the catchment‐scale simulations. The results reported here support the hypothesis that a forest road can have an effect on slope stability. The permeability contrast associated with the forest road in this study led to a simulated altering of slope‐parallel subsurface flow with increased pore pressures up‐slope of the road and, for a large rainfall event, a slope failure prediction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
End users face a range of subjective decisions when evaluating climate change impacts on hydrology, but the importance of these decisions is rarely assessed. In this paper, we evaluate the implications of hydrologic modelling choices on projected changes in the annual water balance, monthly simulated processes, and signature measures (i.e. metrics that quantify characteristics of the hydrologic catchment response) under a future climate scenario. To this end, we compare hydrologic changes computed with four different model structures – whose parameters have been obtained using a common calibration strategy – with hydrologic changes computed with a single model structure and parameter sets from multiple options for different calibration decisions (objective function, local optima, and calibration forcing dataset). Results show that both model structure selection and the parameter estimation strategy affect the direction and magnitude of projected changes in the annual water balance, and that the relative effects of these decisions are basin dependent. The analysis of monthly changes illustrates that parameter estimation strategies can provide similar or larger uncertainties in simulations of some hydrologic processes when compared with uncertainties coming from model choice. We found that the relative effects of modelling decisions on projected changes in catchment behaviour depend on the signature measure analysed. Furthermore, parameter sets with similar performance, but located in different regions of the parameter space, provide very different projections for future catchment behaviour. More generally, the results obtained in this study prompt the need to incorporate parametric uncertainty in multi‐model frameworks to avoid an over‐confident portrayal of climate change impacts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The transferability of hydrologic models is of ever increasing importance for making improved hydrologic predictions and testing hypothesized hydrologic drivers. Here, we present an investigation into the variability and transferability of the recently introduced catchment connectivity model (Smith et al., 2013 ). The catchment connectivity model was developed following extensive experimental observations identifying the key drivers of streamflow in the Tenderfoot Creek Experimental Forest (Jencso et al., 2009 ; Jencso et al., 2010 ), with the goal of creating a simple model consistent with internal observations of catchment hydrologic connectivity patterns. The model was applied across seven catchments located within Tenderfoot Creek Experimental Forest to investigate spatial variability and transferability of model performance and parameterization. The results demonstrated that the model resulted in historically good fits (based on previous studies at the sites) to both the hydrograph and internal water table dynamics (corroborated with experimental observations). The impact of a priori parameter limits was also examined. It was observed that enforcing field‐based limits on model parameters resulted in slight reductions to streamflow hydrograph fits, but significant improvements to model process fidelity (as hydrologic connectivity), as well as moderate improvement in the transferability of model parameterizations from one catchment to the next. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
We used a conceptual modelling approach on two western Canadian mountainous catchments that were burned in separate wildfires in 2003 to explore the potential of using modelling approaches to generalize post‐wildfire catchment hydrology in cases where pre‐wildfire hydrologic data were present or absent. The Fishtrap Creek case study (McLure fire, British Columbia) had a single gauged catchment with both pre‐fire and post‐fire data, whereas the Lost Creek case study (Lost Ck. fire, Alberta) had several instrumented burned and reference catchments providing streamflows and climate data only for the post‐wildfire period. Wildfire impacts on catchment hydrology were assessed by comparing pre‐wildfire and post‐wildfire model calibrated parameter sets for Fishtrap Creek (Fishtrap Ck.) and the calibrated parameters of two burned (South York Ck. and Lynx Ck.) and two unburned (Star Ck. and North York Ck.) catchments for Lost Ck. Model predicted streamflows for burned catchments were compared with unburned catchments (pre‐fire in the case of Fishtrap Ck. and unburned in the case of the Lost Ck.). Similarly, model predicted streamflows from unburned catchments were compared with burned catchments (post‐fire in the case of Fishtrap Ck. and burned in the case of the Lost Ck.). For Fishtrap Ck., different model parameters and streamflow behaviour were observed for pre‐wildfire and post‐wildfire conditions. However, the burned and unburned model results from the Lost Ck. wildfire did not show differing streamflow responses to the wildfire. We found that this hydrological modelling approach is suitable where pre‐wildfire and post‐wildfire data are available but may provide limited additional insights where pre‐disturbance hydrologic data are unavailable. This may in part be because the conceptual modelling approach does not represent the physical catchment processes, whereas a physically based model may still provide insights into catchment hydrological response in these situations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Anthropogenic modifications to the landscape, with agricultural activities being a primary driver, have resulted in significant alterations to the hydrologic cycle. Artificial drainage, including surface and subsurface drainage (tile drains), is one of the most extensive manipulations in agricultural landscapes and thus is expected to provide a distinct signature of anthropogenic modification. This study adopts a data synthesis approach in an effort to characterize the signature of artificial subsurface drainage. Daily discharge data from 24 basins across the state of Iowa, which encapsulate a range of anthropogenic modifications, are assessed using a variety of flow metrics. Results indicate that the presence of artificial subsurface drainage leads to a homogenization of landscape hydrologic response. Non‐tiled watersheds exhibit a decrease in the area‐normalized peak discharge and an increase in the baseflow ratio (baseflow/streamflow) with increases in the spatial scale, while scale invariance is apparent in tiled basins. Within‐basin variability in hydrograph recession coefficients also appears to decrease with increases in the proportion of the catchment that is artificially drained. Finally, the differences between tiled and non‐tiled landscapes disappear at scales greater than approximately 2200 km2, indicating that this may be a threshold scale for studying the effects of tile drainage. This decrease in within‐basin variability and the scale invariance of hydrologic metrics in artificially drained watersheds are attributed to the creation of a bypass flow hydrologic pathway that bypasses the complexity of the catchment travel paths. Spatial homogeneity in responses implies that it may be possible to develop more parsimonious hydrologic models for these regions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The objective of this study was to test the practicability of defining hydrologic response units as combinations of soil, land use and topography for modelling infiltration at the hillslope and catchment scales. In an experimental catchment in the East African Highlands (Kwalei, Tanzania), three methods of measuring infiltration were compared for their ability to capture the spatial variability of effective hydraulic conductivity: the constant head (CH) method; the tension infiltration (TI) method; and the mini‐rainfall simulation (RS) method. The three methods yielded different probability distributions of effective hydraulic conductivity and suggested different types of hydrologic response units. Independently from these measurements, the occurrence of infiltration‐excess overland flow was monitored over an area of 6 ha by means of overland flow detectors. The observed pattern of overland flow occurrence did not match any of the patterns suggested by the infiltration measurements. Instead, clusters of spots with overland flow were practically independent from field borders. Geostatistical analysis of the overland flow confirmed the absence of spatial correlation for distances over 40 m. The RS method yielded the pattern closest to the observations, probably because the method simulated better the processes that trigger infiltration‐excess overland flow, i.e. soil sealing and infiltration through macroporosity. The RS hydrologic response unit correlated significantly with observed overland flow frequency. However, the location of clusters and ‘hot spots’ of overland flow remained largely unexplained by land use, soil and topographic variables. It is concluded that using such landscape variables to define hydrologic units may create artificial boundaries that do no correspond to physical realities, especially if the stochastic component within hydrologic units is neglected. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
A study of the hydrologic effects of catchment change from pasture to plantation was carried out in Gatum, south‐western Victoria, Australia. This study describes the hydrologic characteristics of two adjacent catchments: one with 97% grassland and the other one with 62% Eucalyptus globulus plantations. Streamflow from both catchments was intermittent during the 20‐month study period. Monthly streamflow was always greater in the pasture‐dominated catchment compared with the plantation catchment because of lower evapotranspiration in the pasture‐based catchment. This difference in streamflow was also observed even during summer 2010/2011 when precipitation was 74% above average (1954–2012) summer rainfall. Streamflow peaks in the plantation‐based catchment were smaller than in the pasture‐dominated system. Flow duration curves show differences between the pasture and plantation‐dominated catchments and affect both high‐flow and low‐flow periods. Groundwater levels fell (up to 4.4 m) in the plantation catchment during the study period but rose (up to 3.2 m) in the pasture catchment. Higher evapotranspiration in the plantation catchment resulted in falling groundwater levels and greater disconnection of the groundwater system from the stream, resulting in lower baseflow contribution to streamflow. Salt export from each catchment increases with increasing flow and is higher at the pasture catchment, mainly because of the higher flow. Reduced salt loading to streams due to tree planting is generally considered environmentally beneficial in saline areas of south‐eastern Australia, but this benefit is offset by reduced total streamflow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This paper provides a procedure for evaluating model performance where model predictions and observations are given as time series data. The procedure focuses on the analysis of error time series by graphing them, summarizing them, and predicting their variability through available information (recalibration). We analysed two rainfall–runoff events from the R‐5 data set, and evaluated 12 distinct model simulation scenarios for these events, of which 10 were conducted with the quasi‐physically‐based rainfall–runoff model (QPBRRM) and two with the integrated hydrology model (InHM). The QPBRRM simulation scenarios differ in their representation of saturated hydraulic conductivity. Two InHM simulation scenarios differ with respect to the inclusion of the roads at R‐5. The two models, QPBRRM and InHM, differ strongly in the complexity and number of processes included. For all model simulations we found that errors could be predicted fairly well to very well, based on model output, or based on smooth functions of lagged rainfall data. The errors remaining after recalibration are much more alike in terms of variability than those without recalibration. In this paper, recalibration is not meant to fix models, but merely as a diagnostic tool that exhibits the magnitude and direction of model errors and indicates whether these model errors are related to model inputs such as rainfall. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Amount and composition of dissolved organic matter (DOM) were evaluated for multiple, nested stream locations in a forested watershed to investigate the role of hydrologic flow paths, wetlands and drainage scale. Sampling was performed over a 4‐year period (2008–2011) for five locations with drainage areas of 0.62, 3.5, 4.5, 12 and 79 ha. Hydrologic flow paths were characterized using an end‐member mixing model. DOM composition was determined using a suite of spectrofluorometric indices and a site‐specific parallel factor analysis model. Dissolved organic carbon (DOC), humic‐like DOM and fluorescence index were most sensitive to changes with drainage scale, whereas dissolved organic nitrogen, specific UV absorbance, Sr and protein‐like DOM were least sensitive. DOM concentrations and humic‐like DOM constituents were highest during both baseflow and stormflow for a 3.5‐ha catchment with a wetland near the catchment outlet. Whereas storm‐event concentrations of DOC and humic DOM constituents declined, the mass exports of DOC increased with increasing catchment scale. A pronounced dilution in storm‐event DOC concentration was observed at peak stream discharge for the 12‐ha drainage location, which was not as apparent at the 79‐ha scale, suggesting key differences in supply and transport of DOM. Our observations indicate that hydrologic flow paths, especially during storms, and the location and extent of wetlands in the catchment are key determinants of DOM concentration and composition. This study furthers our understanding of changes in DOM with drainage scale and the controls on DOM in headwater, forested catchments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates the specific contributions of river network geomorphology, hillslope flow dynamics and channel routing to the scaling behavior of the hydrologic response as function of drainage area. Scaling relationships emerged from the observations of geomorphological and hydrological data and were reproduced in previous works through mathematical models, for both idealized self-similar networks and natural basins. Recent literature highlighted that scale invariance of hydrological quantities depends not only on the metrics of the drainage catchment but also on effective flow routing. In this study we employ a geomorphological width function scheme to test the simple scaling hypothesis adopting more realistic dynamic conditions than in previous approaches, specifically taking into account the role of hillslopes. The analysis is based on the derivation of the characteristic distributions of path lengths and travel times, inferred from DEM processing and measurements of rainfall and runoff data. The study area is located in the Tiber River region (central Italy).Results indicate that, while scaling properties clearly emerge when the hydrologic response is defined on the basis of the sole geomorphology, scale invariance is broken when less idealized flow dynamics are taken into account. Lack of scaling appears in particular as a consequence of the catchment to catchment variability of hillslope velocities.  相似文献   

19.
Many concepts have been proposed to explain hydrologic connectivity of hillslopes with streams. Hydrologic connectivity is most often defined by qualitative assessment of spatial patterns in perched water tables or soil moisture on hillslopes without a direct linkage to water flow from hillslopes to streams. This form of hydrologic connectivity may not explain the hydrologic response of catchments that have network(s) of preferential flow paths, for example, soil pipes, which can provide intrinsic connectivity between hillslopes and streams. Duplex soils are known for developing perched water tables on hillslopes and fostering lateral flows, but the connectivity of localized perched water tables on hillslopes with soil pipes has not been fully established. The objectives of this study were to characterize pipeflow dynamics during storm events, the relationships between perched water tables on hillslopes and pipeflows, and their threshold behaviour. Two well‐characterized catchments in loess soil with a fragipan were selected for study because they contain multiple, laterally extensive (over 100 m) soil pipe networks. Hillslopes were instrumented with shallow wells adjacent to the soil pipes, and the wells and pipe collapse features were equipped with pressure transducers. Perched water tables developed on hillslopes during a wetting up period (October–December) and became well connected spatially across hillslope positions throughout the high flow period (January–March). The water table was not spatially connected on hillslopes during the drying out (April–June) and low flow (July–September) periods. Even when perched water tables were not well‐connected, water flowing through soil pipes provided hydrologic connectivity between upper hillslopes and catchment outlets. Correlations between soil pipeflow and perched water tables depended on the size and location of soil pipes. The threshold relationship between available soil‐moisture index plus storm precipitation and pipeflow was dependent on the season and strongest during dry periods and not high‐flow seasons. This study demonstrated that soil pipes serve as a catchment backbone of preferential flow paths that provide intrinsic connectivity between upper hillslopes and streams.  相似文献   

20.
Stochastic weather generators have evolved as tools for creating long time series of synthetic meteorological data at a site for risk assessments in hydrologic and agricultural applications. Recently, their use has been extended as downscaling tools for climate change impact assessments. Non‐parametric weather generators, which typically use a K‐nearest neighbour (K‐NN) resampling approach, require no statistical assumptions about probability distributions of variables and can be easily applied for multi‐site use. Two characteristics of traditional K‐NN models result from resampling daily values: (1) temporal correlation structure of daily temperatures may be lost, and (2) no values less than or exceeding historical observations can be simulated. Temporal correlation in simulated temperature data is important for hydrologic applications. Temperature is a major driver of many processes within the hydrologic cycle (for example, evaporation, snow melt, etc.) that may affect flood levels. As such, a new methodology for simulation of climate data using the K‐NN approach is presented (named KnnCAD Version 4). A block resampling scheme is introduced along with perturbation of the reshuffled daily temperature data to create 675 years of synthetic historical daily temperatures for the Upper Thames River basin in Ontario, Canada. The updated KnnCAD model is shown to adequately reproduce observed monthly temperature characteristics as well as temporal and spatial correlations while simulating reasonable values which can exceed the range of observations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号