首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Flow diversion terraces (FDT) are commonly used beneficial management practice (BMP) for soil conservation on sloped terrain susceptible to water erosion. A simple GIS‐based soil erosion model was designed to assess the effectiveness of the FDT system under different climatic, topographic, and soil conditions at a sub‐basin level. The model was used to estimate the soil conservation support practice factor (P‐factor), which inherently considered two major outcomes with its implementation, namely (1) reduced slope length, and (2) sediment deposition in terraced channels. A benchmark site, the agriculture‐dominated watershed in northwestern New Brunswick (NB), was selected to test the performance of the model and estimated P‐factors. The estimated P‐factors ranged from 0·38–1·0 for soil conservation planning objectives and ranged from 0·001 to 0·45 in sediment yield calculations for water‐quality assessment. The model estimated that the average annual sediment yield was 773 kg ha?1 yr ?1 compared with a measured value of 641 kg ha?1 yr?1. The P‐factors estimated in this study were comparable with predicted values obtained with the revised universal soil loss equation (RUSLE2). The P‐factors from this study have the potential to be directly used as input in hydrological models, such as the soil and water assessment tool (SWAT), or in soil conservation planning where only conventional digital elevation models (DEMs) are available. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Ashok Mishra  S. Kar  V. P. Singh 《水文研究》2007,21(22):3035-3045
The Hydrologic Simulation Programme‐Fortran (HSPF), a hydrologic and water quality computer model, was employed for simulating runoff and sediment yield during the monsoon months (June–October) from a small watershed situated in a sub‐humid subtropical region of India. The model was calibrated using measured runoff and sediment yield data for the monsoon months of 1996 and was validated for the monsoon months of 2000 and 2001. During the calibration period, daily‐calibrated runoff had a Nash‐Sutcliffe efficiency (ENS) value of 0·68 and during the validation period it ranged from 0·44 to 0·67. For daily sediment yield ENS was 0·71 for the calibration period and it ranged from 0·68 to 0·90 for the validation period. Sensitivity analysis was performed to assess the impact of important watershed characteristics. The model parameters obtained in this study could serve as reference values for model application in similar climatic regions, with practical implications in watershed planning and management and designing best management practices. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Minha Choi 《水文研究》2012,26(4):597-603
In the past few decades, there have been great developments in remotely sensed soil moisture, with validation efforts using land surface models (LSMs) and ground‐based measurements, because soil moisture information is essential to understanding complex land surface–atmosphere interactions. However, the validation of remotely sensed soil moisture has been very limited because of the scarcity of the ground measurements in Korea. This study validated Advanced Microwave Scanning Radiometer E (AMSR‐E) soil moisture data with the Common Land Model (CLM), one of the most widely used LSMs, and ground‐based measurements at two Korean regional flux monitoring network sites. There was reasonable agreement regarding the different soil moisture products for monitoring temporal trends except National Snow and Ice Data Centre (NSIDC) AMSR‐E soil moisture, albeit there were essential comparison limitations by different spatial scales and soil depths. The AMSR‐E soil moisture data published by the National Aeronautics and Space Administration and Vrije Universiteit Amsterdam (VUA) showed potential to replicate temporal variability patterns (root‐mean‐square errors = 0·10–0·14 m3 m?3 and wet BIAS = 0·09 ? 0·04 m3 m?3) with the CLM and ground‐based measurements. However, the NSIDC AMSR‐E soil moisture was problematic because of the extremely low temporal variability and the VUA AMSR‐E soil moisture was relatively inaccurate in Gwangneung site characterized by complex geophysical conditions. Additional evaluations should be required to facilitate the use of recent and forthcoming remotely sensed soil moisture data from Soil Moisture and Ocean Salinity and Soil Moisture Active and Passive missions at representative future validation sites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Z. X. Xu  J. P. Pang  C. M. Liu  J. Y. Li 《水文研究》2009,23(25):3619-3630
The Soil and Water Assessment Tool (SWAT) was used to simulate the transport of runoff and sediment into the Miyun Reservoir, Beijing in this study. The main objective was to validate the performance of SWAT and the feasibility of using this model as a simulator of runoff and sediment transport processes at a catchment scale in arid and semi‐arid area in North China, and related processes affecting water quantity and soil erosion in the catchment were simulated. The investigation was conducted using a 6‐year historical streamflow and sediment record from 1986 to 1991; the data from 1986 to 1988 was used for calibration and that from 1989 to 1991 for validation. The SWAT generally performs well and could accurately simulate both daily and monthly runoff and sediment yield. The simulated daily and monthly runoff matched the observed values satisfactorily, with a Nash‐Sutcliffe coefficient of greater than 0·6, 0·9 and a coefficient of determination 0·75, 0·9 at two outlet stations (Xiahui and Zhangjiafen stations) during calibration. These values were 0·6, 0·85 and 0·6, 0·9 during validation. For sediment simulation, the efficiency is lower than that for runoff. Even so, the Nash‐Sutcliffe coefficient and coefficient of determination were greater than 0·48 and 0·6 for monthly sediment yield during calibration, and these values were greater than 0·84 and 0·95 during validation. Sensitivity analysis shows that sensitive parameters for the simulation of discharge and sediment yield include curve number, base flow alpha factor, soil evaporation compensation factor, soil available water capacity, soil profile depth, surface flow lag time and channel re‐entrained linear parameter, etc. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1130–1131. Humid tropical regions are often characterized by extreme variability of fluvial processes. The Rio Terraba drains the largest river basin, covering 4767 km2, in Costa Rica. Mean annual rainfall is 3139±419sd mm and mean annual discharge is 2168±492sd mm (1971–88). Loss of forest cover, high rainfall erosivity and geomorphologic instability all have led to considerable degradation of soil and water resources at local to basin scales. Parametric and non‐parametric statistical methods were used to estimate sediment yields. In the Terraba basin, sediment yields per unit area increase from the headwaters to the basin mouth, and the trend is generally robust towards choice of methods (parametric and LOESS) used. This is in contrast to a general view that deposition typically exceeds sediment delivery with increase in basin size. The specific sediment yield increases from 112±11·4sd t km?2 year?1 (at 317·9 km2 on a major headwater tributary) to 404±141·7sd t km?2 year?1 (at 4766·7 km2) at the basin mouth (1971–92). The analyses of relationships between sediment yields and basin parameters for the Terraba sub‐basins and for a total of 29 basins all over Costa Rica indicate a strong land use effect related to intensive agriculture besides hydro‐climatology. The best explanation for the observed pattern in the Terraba basin is a combined spatial pattern of land use and rainfall erosivity. These were integrated in a soil erosion index that is related to the observed patterns of sediment yield. Estimated sediment delivery ratios increase with basin area. Intensive agriculture in lower‐lying alluvial fans exposed to highly erosive rainfall contributes a large part of the sediment load. The higher elevation regions, although steep in slope, largely remain under forest, pasture, or tree‐crops. High rainfall erosivity (>7400 MJ mm ha?1 h?1 year ?1) is associated with land uses that provide inadequate soil protection. It is also associated with steep, unstable slopes near the basin mouth. Improvements in land use and soil management in the lower‐lying regions exposed to highly erosive rainfall are recommended, and are especially important to basins in which sediment delivery ratio increases downstream with increasing basin area. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
An overall approach to assess the effectiveness of soil conservation measures at catchment scale is the comparison of sediment budgets before and after implementation of a catchment management programme. In the May Zeg‐zeg catchment (187 ha) in Tigray, north Ethiopia, integrated catchment management has been implemented since 2004: stone bunds were built in the whole catchment, vegetation was allowed to re‐grow on steep slopes and other marginal land, stubble grazing abandoned, and check dams built in gullies. Land use and management were mapped and analysed for 2000 and 2006, whereby particular attention was given to the quantification of changes in soil loss due to the abandonment of stubble grazing. Sediment yield was also measured at the catchment's outlet. A combination of decreased soil loss (from 14·3 t ha–1 y–1 in 2000 to 9·0 t ha–1 y–1 in 2006) and increased sediment deposition (from 5·8 to 7·1 t ha–1 y–1) has led to strongly decreased sediment yield (from 8·5 to 1·9 t ha–1 y–1) and sediment delivery ratio (from 0·6 to 0·21). This diachronic comparison of sediment budgets revealed that integrated catchment management is most effective and efficient and is the advisable and desirable way to combat land degradation in Tigray and other tropical mountains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This study was conducted under the USDA‐Conservation Effects Assessment Project (CEAP) in the Cheney Lake watershed in south‐central Kansas. The Cheney Lake watershed has been identified as ‘impaired waters’ under Section 303(d) of the Federal Clean Water Act for sediments and total phosphorus. The USDA‐CEAP seeks to quantify environmental benefits of conservation programmes on water quality by monitoring and modelling. Two of the most widely used USDA watershed‐scale models are Annualized AGricultural Non‐Point Source (AnnAGNPS) and Soil and Water Assessment Tool (SWAT). The objectives of this study were to compare hydrology, sediment, and total phosphorus simulation results from AnnAGNPS and SWAT in separate calibration and validation watersheds. Models were calibrated in Red Rock Creek watershed and validated in Goose Creek watershed, both sub‐watersheds of the Cheney Lake watershed. Forty‐five months (January 1997 to September 2000) of monthly measured flow and water quality data were used to evaluate the two models. Both models generally provided from fair to very good correlation and model efficiency for simulating surface runoff and sediment yield during calibration and validation (correlation coefficient; R2, from 0·50 to 0·89, Nash Sutcliffe efficiency index, E, from 0·47 to 0·73, root mean square error, RMSE, from 0·25 to 0·45 m3 s?1 for flow, from 158 to 312 Mg for sediment yield). Total phosphorus predictions from calibration and validation of SWAT indicated good correlation and model efficiency (R2 from 0·60 to 0·70, E from 0·63 to 0·68) while total phosphorus predictions from validation of AnnAGNPS were from unsatisfactory to very good (R2 from 0·60 to 0·77, E from ? 2·38 to 0·32). The root mean square error–observations standard deviation ratio (RSR) was estimated as excellent (from 0·08 to 0·25) for the all model simulated parameters during the calibration and validation study. The percentage bias (PBIAS) of the model simulated parameters varied from unsatisfactory to excellent (from 128 to 3). This study determined SWAT to be the most appropriate model for this watershed based on calibration and validation results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Despite widespread bench‐terracing, stream sediment yields from agricultural hillsides in upland West Java remain high. We studied the causes of this lack of effect by combining measurements at different spatial scales using an erosion process model. Event runoff and sediment yield from two 4‐ha terraced hillside subcatchments were measured and field surveys of land use, bench‐terrace geometry and storage of sediment in the drainage network were conducted for two consecutive years. Runoff was 3·0–3·9% of rainfall and sediment yield was 11–30 t ha−1 yr−1 for different years, subcatchments and calculation techniques. Sediment storage changes in the subcatchment drainage network were less than 2 t ha−1, whereas an additional 0·3–1·5 t ha−1 was stored in the gully between the subcatchment flumes and the main stream. This suggests mean annual sediment delivery ratios of 86–125%, or 80–104% if this additional storage is included. The Terrace Erosion and Sediment Transport (TEST) model developed and validated for the studied environment was parameterized using erosion plot studies, land use surveys and digital terrain analysis to simulate runoff and sediment generation on the terraced hillsides. This resulted in over‐estimates of runoff and under‐estimates of runoff sediment concentration. Relatively poor model performance was attributed to sample bias in the six erosion plots used for model calibration and unaccounted covariance between important terrain attributes such as slope, infiltration capacity, soil conservation works and vegetation cover. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Phosphorus (P) export from agricultural lands above known threshold levels can result in adverse impacts to receiving water quality. Phosphorus loss occurs in dissolved and sediment‐bound, or particulate phosphorous (PP), forms, with the latter often dominating losses from row‐cropped systems. To target practices, land managers need good computer models and model developers need good monitoring data. Sediment monitoring data (e.g. radiometric finger printing and sediment P sorption capacity) can help identify sediment source areas and improve models, but require more sediment mass than is typically obtained by automatic sampling. This study compares a simple suspended sediment sampler developed at the University of Exeter (UE) with automatic sampling in intermittent channels draining corn and alfalfa fields. The corn field had a greater runoff coefficient (27%) than alfalfa (11%). No differences were found in enrichment ratios (sediment constituent/soil constituent) in PP (PPER) or percent loss on ignition (LOIER) between paired UE samplers on corn. The median LOIER for the UE samplers (1·9%) did not differ significantly (p > 0·13) from the automatic sampler (2·0%). The PPER from the UE samplers was on average 20% lower than the automatic samplers. A correlation (r2 = 0·75) was found between sediment PP and % LOI from automatic samplers and UE samplers for particles < 50 µm, while for > 50 µm PP concentration did not change with changes in % LOI. Sediment ammonium‐oxalate extractable metals were similarly related to LOI, with the strongest correlation for iron (r2 = 0·71) and magnesium (r2 = 0·70). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Most semi‐distributed watershed water quality models divide the watershed into hydrologic response units (HRU) with no flow among them. This is problematic when watersheds are delineated to include variable source areas (VSAs) because it is the lateral flows from upslope areas to downslope areas that generate VSAs. Although hydrologic modellers have often successfully calibrated these types of models, there can still be considerable uncertainty in model results. In this paper, a topographic‐index‐based method is described and tested to distribute effective soil water holding capacity among HRUs, which can be subsequently adjusted using the watershed baseflow coefficient. The method is tested using a version of the Soil and Water Assessment Tool (SWAT) model that simulates VSA runoff and is applied to two watersheds: a New York State (NYS) watershed, and one in the head waters of the Blue Nile Basin (BNB) in Ethiopia. Daily streamflow predicted using effective soil water storage capacities based only on the topographic index were reassuringly accurate in both the NYS watershed (daily Nash Sutcliffe (E) = 0·73) and in the BNB (E = 0·70). Using the baseflow coefficient to adjust the effective soil water storage capacity only slightly improved streamflow predictions in NYS (E = 0·75) but substantially improved the BNB predictions (E = 0·80). By comparison, the standard SWAT model, which uses the traditional look‐up tables to determine a runoff curve number, performed considerably less accurately in un‐calibrated form (E = 0·51 for NYS and E = 0·45 for BNB), but improved substantially when explicitly calibrated to streamflow measurements (E = 0·76 for NYS and E = 0·67 for the BNB). The calibration method presented here provides a parsimonious, systematic approach to using established models in VSA watersheds that reduces the ambiguity inherent in model calibration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

The process-based Soil and Water Assessment Tool (SWAT) model and the data-driven radial basis neural network (RBNN) model were evaluated for simulating sediment load for the Nagwa watershed in Jharkhand, India, where soil erosion is a severe problem. The SWAT model calibration and uncertainty analysis were performed with the Sequential Uncertainty Fitting algorithm version 2 and the bootstrap technique was applied on the RBNN model to analyse uncertainty in model output. The percentage of data bracketed by the 95% prediction uncertainty (95PPU) and the r factor were the two measures used to assess the goodness of calibration. Comparison of the results of the two models shows that the value of r factor (r = 0.41) in the RBNN model is less than that of SWAT model (r = 0.79), which means there is a wider prediction interval for the SWAT model results. More values of observed sediment yield were bracketed by the 95PPU in the RBNN model. Thus, the RBNN model estimates the sediment yield values more accurately and with less uncertainty.

Editor D. Koutsoyiannis; Associate editor H. Aksoy

Citation Singh, A., Imtiyaz, M., Isaac, R.K., and Denis, D.M., 2014. Assessing the performance and uncertainty analysis of the SWAT and RBNN models for simulation of sediment yield in the Nagwa watershed, India. Hydrological Sciences Journal, 59 (2), 351–364.  相似文献   

12.
Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near‐saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double‐ring and tension infiltrometers at ?0·3, ?0·7, ?1·5 and ?2·2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field‐saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at ?0·3 kPa pressure head, inverse capillary length scale (α) and water‐conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p < 0·1) higher than that of the cultivated sites. At the ?0·3 kPa pressure head, hydraulic conductivity of grasslands was two to three times greater than that of cultivated lands. Values of α were about two times and values of Kfs about four times greater in grasslands than in cultivated fields. Water‐conducting macroporosity of grasslands and cultivated fields were 0·04% and 0·01% of the total soil volume, respectively. Over 90% of the total water flux at ?0·06 kPa pressure head was transmitted through pores > 1·36 × 10?4 m in diameter in the three land uses. Land use modified near‐saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Temporally weighted average curve number method for daily runoff simulation   总被引:1,自引:0,他引:1  
Nam Won Kim  Jeongwoo Lee 《水文研究》2008,22(25):4936-4948
The modified Soil Conservation Service curve number (CN) method is widely used in long‐term continuous models to predict daily surface runoff. However, it has been shown that this method gives poor results in reproducing peak flows in high rainfall periods. This is because there is an inaccuracy stemming from the model algorithm as it adjusts the daily runoff curve number as a function of soil moisture content at the end of the previous day. This paper proposes an alternative daily based curve number technique that can provide better prediction of daily runoff during the high flow season. The proposed method uses the temporally weighted average curve number (TWA‐CN) to estimate daily surface runoff, while considering the effect of rainfall during a given day as well as the antecedent soil moisture condition. To test the applicability of the TWA‐CN method, it was incorporated with the long‐term, continuous simulation watershed models SWAT and SWAT‐G. Simulations were conducted for the Miho River watershed located in the middle of South Korea. The graphical displays and statistics of the determination coefficient (R2) and the Nash–Sutcliffe model efficiency (NSE) of the observed and simulated daily runoff indicated that the modified SWAT with the TWA‐CN method may provide better runoff prediction (R2 = 0·837, NSE = 0·833) than the original SWAT (R2 = 0·815, NSE = 0·824). Likewise, the determination coefficient (R2 = 0·816) and the Nash–Sutcliffe efficiency (NSE = 0·834) for the modified SWAT‐G are also higher than the original version (R2 = 0·782, NSE = 0·825). It is expected that the improved capability in predicting surface runoff using the suggested CN estimate method will provide a sound contribution to the accurate simulations of water yield. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Continuing long and extensive wildfire seasons in the Western US emphasize the need for better understanding of wildfire impacts including post-fire management scenarios. Advancements in our understanding of post-fire hillslope erosion and watershed response such as flooding, sediment yield, and debris flows have recently received considerable attention. The potential impacts of removing dead trees, called salvage logging, has been studied, however the use of remotely sensed imagery after salvage logging to evaluate spatial patterns and recovery is novel. The 2015 North Star Fire provided an opportunity to evaluate hillslope erosion reduction using two field experiments and coincidental remotely sensed imagery over 3 years. Simulated rill experiments with four flow rates were used to quantify hillslope erosion on skidder trails with and without added logging slash compared with a burned-only control. Seven replicated hillslope silt fence plots with the same treatments were also evaluated for natural rainfall events. WorldView-2 satellite imagery was used to relate ground cover and erodible bare soil between the two experiments using multi-temporal Normalized Differenced Vegetation Index (NDVI) values. Results indicate that the skid trails produced significantly more sediment (0.70 g s−1) than either the slash treated skid trail (0.34 g s−1) or controls (0.04 g s−1) with the simulated rill experiment. Similarly, under natural rainfall conditions sediment yield from hillslope silt fence plots was significantly greater for the skid trail (3.42 Mg ha−1) than either the slash treated skid trail (0.18 Mg ha−1) or controls (0 Mg ha−1). An NDVI value of 0.32 on all plots over all years corresponded to a ground cover of about 60% which is an established threshold for erosion reduction. Significant relationships between NDVI, ground cover, and sediment values suggest that NDVI may help managers evaluate ground cover and erosion potential remotely after disturbances such as a wildfire or salvage logging.  相似文献   

15.
Intense rainfall following wildfire can cause substantial soil and sediment redistribution. With concern for the increasing magnitude and frequency of wildfire events, research needs to focus on hydrogeomorphological impacts of fire, particularly downstream fluxes of sediment and nutrients. Here, we investigate variation in magnetic enhancement of soil by fire in burnt eucalypt forest slopes to explore its potential as a post‐fire sediment tracer. Low‐frequency magnetic susceptibility values (χlf) of <10 µm material sourced from burnt slopes (c. 8·0–10·4 × 10?6 m3 kg?1) are an order of magnitude greater than those of <10 µm material derived from long‐unburnt areas (0·8 × 10?6 m3 kg?1). Susceptibility of anhysteretic remanent magnetization (χARM) and saturation isothermal remanent magnetization (SIRM) values are similarly enhanced. Signatures are strongly influenced by soil and sediment particle size and storage of previously burnt material in footslope areas. Whilst observations indicate that signatures based on magnetic enhancement show promise for post‐fire sediment tracing, problems arise with the lack of dimensionality in such data. Magnetic grain size indicators χfd%, χARM/SIRM and χfd/χARM offer further discrimination of source material but cannot be included in numerical unmixing models owing to non‐linear additivity. This leads to complications in quantitatively ascribing downstream sediment to source areas of contrasting burn severity since sources represent numerical multiples of each other, indicating the need to involve additional indicators, such as geochemical evidence, to allow a more robust discrimination. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
To maintain a reasonable sediment regulation system in the middle reaches of the Yellow River, it is critical to determine the variation in sediment deposition behind check‐dams for different soil erosion conditions. Sediment samples were collected by using a drilling machine in the Fangta watershed of the loess hilly–gully region and the Manhonggou watershed of the weathered sandstone hilly–gully (pisha) region. On the basis of the check‐dam capacity curves, the soil bulk densities and the couplet thickness in these two small watersheds, the sediment yields were deduced at the watershed scale. The annual average sediment deposition rate in the Manhonggou watershed (702.0 mm/(km2·a)) from 1976 to 2009 was much higher than that in the Fangta watershed (171.6 mm/(km2·a)) from 1975 to 2013. The soil particle size distributions in these two small watersheds were generally centred on the silt and sand fractions, which were 42.4% and 50.7% in the Fangta watershed and 60.6% and 32.9% in the Manhonggou watershed, respectively. The annual sediment deposition yield exhibited a decreasing trend; the transition years were 1991 in the Fangta watershed and 1996 in the Manhonggou watershed (P < 0.05). In contrast, the annual average sediment deposition yield was much higher in the Manhonggou watershed (14011.1 t/(km2·a)) than in the Fangta watershed (3149.6 t/(km2·a)). In addition, the rainfalls that induced sediment deposition at the check‐dams were greater than 30 mm in the Fangta watershed and 20 mm in the Manhonggou watershed. The rainfall was not the main reason for the difference in the sediment yield between the two small watersheds. The conversion of farmland to forestland or grassland was the main reason for the decrease in the soil erosion in the Fangta watershed, while the weathered sandstone and bare land were the main factors driving the high sediment yield in the Manhonggou watershed. Knowledge of the sediment deposition process of check‐dams and the variation in the catchment sediment yield under different soil erosion conditions can serve as a basis for the implementation of improved soil erosion and sediment control strategies, particularly in semi‐arid hilly–gully regions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

17.
Although the impact of sheet erosion on the selective transportation of mineral soil particles has been widely investigated, little is yet known about the specific mechanisms of organic carbon (OC) erosion, which constitutes an important link in the global carbon cycle. The present study was conducted to quantify the impact of sheet erosion on OC losses from soils. Erosion plots with the lengths of 1‐ and 5‐m were installed at different topographic positions along a hillslope in a mountainous South African region. A total of 32 rainfall events from a three years period (November 2010 up to February 2013), were studied and evaluated for runoff (R), particulate and dissolved organic carbon (POCL and DOCL). In comparison to the 0–0·05 m bulk soil, the sediments from the 1‐m plots were enriched in OC by a factor 2·6 and those from the 5‐m long plots by a factor of 2·2, respectively. These findings suggest a preferential erosion of OC. In addition, total organic carbon losses (TOCL) were incurred mainly in particulate form (~94%) and the increase in TOCL from 14·09 ± 0·68 g C m?1 yr?1 on 1‐m plots to 50·03 ± 2·89 g C m?1 yr?1 on 5‐m plots illustrated an increase in sheet erosion efficiency with increasing slope length. Both TOCL and sediment enrichment in OC correspondingly increased with a decrease in soil basal grass cover. The characteristics of rainstorms had no significant impact on the selectivity of OC erosion. The results accrued in this study investigating the links between sheet erosion and OC losses, are expected to be of future value in the generation of carbon specific erosion models, which can further help to inform and improve climate change mitigation measures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Obtaining good quality soil loss data from plots requires knowledge of the factors that affect natural and measurement data variability and of the erosion processes that occur on plots of different sizes. Data variability was investigated in southern Italy by collecting runoff and soil loss from four universal soil‐loss equation (USLE) plots of 176 m2, 20 ‘large’ microplots (0·16 m2) and 40 ‘small’ microplots (0·04 m2). For the four most erosive events (event erosivity index, Re ≥ 139 MJ mm ha?1 h?1), mean soil loss from the USLE plots was significantly correlated with Re. Variability of soil loss measurements from microplots was five to ten times greater than that of runoff measurements. Doubling the linear size of the microplots reduced mean runoff and soil loss measurements by a factor of 2·6–2·8 and increased data variability. Using sieved soil instead of natural soil increased runoff and soil loss by a factor of 1·3–1·5. Interrill erosion was a minor part (0·1–7·1%) of rill plus interrill erosion. The developed analysis showed that the USLE scheme was usable to predict mean soil loss at plot scale in Mediterranean areas. A microplot of 0·04 m2 could be used in practice to obtain field measurements of interrill soil erodibility in areas having steep slopes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
P. I. A. Kinnell 《水文研究》2008,22(16):3168-3175
The Universal Soil Loss Equation (USLE) or the revised USLE (RUSLE) are often used together with sediment delivery ratios in order to predict sediment delivery from hillslopes. In using sediment delivery ratios for this purpose, it is assumed that the sediment delivery ratio for a given hillslope does not vary with the amount of erosion occurring in the upslope area. This assumption is false. There is a perception that hillslope erosion is calculated on the basis that hillslopes are, in effect, simply divided into 22·1 m long segments. This perception fails to recognize the fact the inclusion of the 22·1 m length in the calculation has no physical significance but simply produces a value of 1·0 for the slope length factor when slopes have a length equal to that of the unit plot. There is a perception that the slope length factor is inappropriate because not all the dislodged sediment is discharged. This perception fails to recognize that the USLE and the RUSLE actually predict sediment yield from planar surfaces, not the total amount of soil material dislocated and removed some distance by erosion within an area. The application of the USLE/RUSLE to hillslopes also needs to take into account the fact that runoff may not be generated uniformly over that hillslope. This can be achieved by an equation for the slope length factor that takes account of spatial variations in upslope runoff on soil loss from a segment or grid cell. Several alternatives to the USLE event erosivity index have been proposed in order to predict event erosion better than can be achieved using the EI30 index. Most ignore the consequences of changing the event erosivity index on the values for the soil, crop and soil conservation protection factors because there is a misconception that these factors are independent of one another. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Z. Shi  H. J. Zhou 《水文研究》2004,18(15):2877-2892
Theoretical and experimental studies were undertaken to gain insight into physical parameters controlling the flocculation and settling properties of mud flocs in the Changjiang Estuary, China. The Rouse equation is applied to vertical profiles of suspended sediment concentration to determine the bulk mean settling velocity (ws) of sediment suspended in the Changjiang Estuary. Both in situ point‐sampled and acoustically measured profiles of suspended mud concentrations were fit selectively. The calculated settling velocities ws mainly ranged from 0·4 to 4·1 mm s?1 for the point‐sampled data set, and from 1·0 to 3·0 mm s?1 for the acoustically measured data set. Furthermore, the settling velocities of mud flocs increased with mean concentration (C?) of mud flocs in suspension and were proportional to increasing bottom shear stress (τb) of tidal flow. The best equation for the field settling velocity of mud flocs in the Changjiang Estuary can be expressed by the power law: ws = mC?n (m, 1·14–2·37; n, 0·84–1·03). It is suggested that C? and τb were the dominant physical parameters controlling the flocculation and ws of mud flocs in suspension. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号