首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 232 毫秒
1.
To predict the long‐term sustainability of water resources on the Boreal Plain region of northern Alberta, it is critical to understand when hillslopes generate runoff and connect with surface waters. The sub‐humid climate (PET) and deep glacial sediments of this region result in large available soil storage capacity relative to moisture surpluses or deficits, leading to threshold‐dependent rainfall‐runoff relationships. Rainfall simulation experiments were conducted using large magnitude and high intensity applications to examine the thresholds in precipitation and soil moisture that are necessary to generate lateral flow from hillslope runoff plots representative of Luvisolic soils and an aspen canopy. Two adjacent plots (areas of 2·95 and 3·4 m2) of contrasting antecedent moisture conditions were examined; one had tree root uptake excluded for two months to increase soil moisture content, while the second plot allowed tree uptake over the growing season resulting in drier soils. Vertical flow as drainage and soil moisture storage dominated the water balances of both plots. Greater lateral flow occurred from the plot with higher antecedent moisture content. Results indicate that a minimum of 15–20 mm of rainfall is required to generate lateral flow, and only after the soils have been wetted to a depth of 0·75 m (C‐horizon). The depth and intensity of rainfall events that generated runoff > 1 mm have return periods of 25 years or greater and, when combined with the need for wet antecendent conditions, indicate that lateral flow generation on these hillslopes will occur infrequently. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The impact of road‐generated runoff on the hydrological response of a zero‐order basin was monitored for a sequence of 24 storm events. The study was conducted in a zero‐order basin (C1; 0·5ha) with an unpaved mountain road; an adjacent unroaded zero‐order basin (C2; 0·2 ha) with similar topography and lithology was used to evaluate the hydrological behaviour of the affected zero‐order basin prior to construction of the road. The impact of the road at the zero‐order basin scale was highly dependent on the antecedent soil‐moisture conditions, total storm precipitation, and to some extent rainfall intensity. At the beginning of the monitoring period, during dry antecedent conditions, road runoff contributed 50% of the total runoff and 70% of the peak flow from the affected catchment (C1). The response from the unroaded catchment was almost insignificant during dry antecedent conditions. As soil moisture increased, the road exerted less influence on the total runoff from the roaded catchment. For very wet conditions, the influence of road‐generated runoff on total outflow from the roaded catchment diminished to only 5·4%. Both catchments, roaded and unroaded, produced equivalent amount of outflow during very wet antecedent conditions on a unit area basis. The lag time between the rainfall and runoff peaks observed in the unroaded catchment during the monitoring period ranged from 0 to 4 h depending on the amount of precipitation and antecedent conditions, owing mainly to much slower subsurface flow pathways in the unroaded zero‐order basin. In contrast, the lag time in the roaded zero‐order basin was virtually nil during all storms. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The loss of P in overland flow from most cultivated soils is controlled by erosion, and in‐turn soil moisture. We evaluated the effect of soil moisture on erosion and P transport in overland flow by applying rainfall (7 cm h?1) to packed soil boxes (1 m long and 0·15 m wide) and field plots (1 and 10 m long by 1 m wide) of silt loams in a central Pennsylvania (USA) catchment. Flow from packed soil boxes took longer to initiate as antecedent soil moisture decreased from field capacity (2 min) to air dried (8 to 9 min). Even in the more complex field plots (i.e. soil heterogeneity and topography), the wetter site (1 by 10 m plot; 70% field capacity) produced flow more quickly (3 min) and in greater volume (439 L) than the drier site (1 by 10 m plot; 40% field capacity, 15 min, and 214 L, respectively). However, less suspended sediment was transported from wetter soil boxes (1·6 to 2·5 g L?1) and field plots (0·9 g L?1) than drier boxes (2·9 to 4·2 g L?1) and plots (1·2 g L?1). Differences are attributed to their potential for soil aggregate breakdown, slaking and dispersion, which contribute to surface soil sealing and crusting, as dry soils are subject to rapid wetting (by rainfall). During flow, selective erosion and antecedent moisture conditions affected P transport. At field capacity, DRP and PP transport varied little during overland flow. Whereas P transport from previously dry soil decreased rapidly after the initiation of flow (6 to 1·5 mg TP L?1), owing to the greater slaking and dispersion of P‐rich particles into flow at the beginning than end of the flow event. These results indicate that soil moisture fluctuations greatly effect erosion and P transport potential and that management to decrease the potential for loss should consider practices such as conservation tillage and cover crops, particularly on areas where high soil P and erosion coincide. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
The Soil Conservation Service curve number (CN) method commonly uses three discrete levels of soil antecedent moisture condition (AMC), defined by the 5‐day antecedent rainfall depth, to describe soil moisture prior to a runoff event. However, this way may not adequately represent soil water conditions of fields and watersheds in the Loess Plateau of China. The objectives of this study were: (1) to determine the effective soil moisture depth to which the CN is most related; (2) to evaluate a discrete and a linear relationship between AMC and soil moisture; and (3) to develop an equation between CN and soil moisture to predict runoff better for the climatic and soil conditions of the Loess Plateau of China. The dataset consisted of 10 years of rainfall, runoff and soil moisture measurements from four experimental plots cropped with millet, pasture and potatoes. Results indicate that the standard CN method underestimated runoff depths for 85 of the 98 observed plot‐runoff events, with a model efficiency E of only 0·243. For our experimental conditions, the discrete and linear approaches improved runoff estimation, but still underestimated most runoff events, with E values of 0·428 and 0·445 respectively. Based on the measured CN values and soil moisture values in the top 15 cm of the soil, a non‐linear equation was developed that predicted runoff better with an E value of 0·779. This modified CN equation was the most appropriate for runoff prediction in the study area, but may need adjustments for local conditions in the Loess Plateau of China. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Flume experiments simulating concentrated runoff were carried out on remolded silt loam soil samples (0·36 × 0·09 × 0·09 m3) to measure the effect of rainfall‐induced soil consolidation and soil surface sealing on soil erosion by concentrated flow for loess‐derived soils and to establish a relationship between soil erodibility and soil bulk density. Soil consolidation and sealing were simulated by successive simulated rainfall events (0–600 mm of cumulative rainfall) alternated by periods of drying. Soil detachment measurements were repeated for four different soil moisture contents (0·04, 0·14, 0·20 and 0·31 g g?1). Whereas no effect of soil consolidation and sealing is observed for critical flow shear stress (τcr), soil erodibility (Kc) decreases exponentially with increasing cumulative rainfall depth. The erosion‐reducing effect of soil consolidation and sealing decreases with a decreasing soil moisture content prior to erosion due to slaking effects occurring during rapid wetting of the dry topsoil. After about 100 mm of rainfall, Kc attains its minimum value for all moisture conditions, corresponding to a reduction of about 70% compared with the initial Kc value for the moist soil samples and only a 10% reduction for the driest soil samples. The relationship estimating relative Kc values from soil moisture content and cumulative rainfall depth predicts Kc values measured on a gradually consolidating cropland field in the Belgian Loess Belt reasonably well (MEF = 0·54). Kc is also shown to decrease linearly with increasing soil bulk density for all moisture treatments, suggesting that the compaction of thalwegs where concentrated flow erosion often occurs might be an alternative soil erosion control measure in addition to grassed waterways and double drilling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Two‐component hydrograph separation was performed on 19 low‐to‐moderate intensity rainfall events in a 4·1‐km2 urban watershed to infer the relative and absolute contribution of surface runoff (e.g. new water) to stormflow generation between 2001 and 2003. The electrical conductivity (EC) of water was used as a continuous and inexpensive tracer, with order of magnitude differences in precipitation (12–46 µS/cm) and pre‐event streamwater EC values (520–1297 µS/cm). While new water accounted for most of the increased discharge during storms (61–117%), the contribution of new water to total discharge during events was typically lower (18–78%) and negatively correlated with antecedent stream discharge (r2 = 0·55, p < 0·01). The amount of new water was positively correlated with total rainfall (r2 = 0·77), but hydrograph separation results suggest that less than half (9–46%) of the total rainfall on impervious surfaces is rapidly routed to the stream channel as new water. Comparison of hydrograph separation results using non‐conservative tracers (EC and Si) and a conservative isotopic tracer (δD) for two events showed similar results and highlighted the potential application of EC as an inexpensive, high frequency tracer for hydrograph separation studies in urban catchments. The use of a simple tracer‐based approach may help hydrologists and watershed managers to better understand impervious surface runoff, stormflow generation and non‐point‐source pollutant loading to urban streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Temporally weighted average curve number method for daily runoff simulation   总被引:1,自引:0,他引:1  
Nam Won Kim  Jeongwoo Lee 《水文研究》2008,22(25):4936-4948
The modified Soil Conservation Service curve number (CN) method is widely used in long‐term continuous models to predict daily surface runoff. However, it has been shown that this method gives poor results in reproducing peak flows in high rainfall periods. This is because there is an inaccuracy stemming from the model algorithm as it adjusts the daily runoff curve number as a function of soil moisture content at the end of the previous day. This paper proposes an alternative daily based curve number technique that can provide better prediction of daily runoff during the high flow season. The proposed method uses the temporally weighted average curve number (TWA‐CN) to estimate daily surface runoff, while considering the effect of rainfall during a given day as well as the antecedent soil moisture condition. To test the applicability of the TWA‐CN method, it was incorporated with the long‐term, continuous simulation watershed models SWAT and SWAT‐G. Simulations were conducted for the Miho River watershed located in the middle of South Korea. The graphical displays and statistics of the determination coefficient (R2) and the Nash–Sutcliffe model efficiency (NSE) of the observed and simulated daily runoff indicated that the modified SWAT with the TWA‐CN method may provide better runoff prediction (R2 = 0·837, NSE = 0·833) than the original SWAT (R2 = 0·815, NSE = 0·824). Likewise, the determination coefficient (R2 = 0·816) and the Nash–Sutcliffe efficiency (NSE = 0·834) for the modified SWAT‐G are also higher than the original version (R2 = 0·782, NSE = 0·825). It is expected that the improved capability in predicting surface runoff using the suggested CN estimate method will provide a sound contribution to the accurate simulations of water yield. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Soil moisture is highly variable both spatially and temporally. It is widely recognized that improving the knowledge and understanding of soil moisture and the processes underpinning its spatial and temporal distribution is critical. This paper addresses the relationship between near‐surface and root zone soil moisture, the way in which they vary spatially and temporally, and the effect of sampling design for determining catchment scale soil moisture dynamics. In this study, catchment scale near‐surface (0–50 mm) and root zone (0–300 mm) soil moisture were monitored over a four‐week period. Measurements of near‐surface soil moisture were recorded at various resolutions, and near‐surface and root zone soil moisture data were also monitored continuously within a network of recording sensors. Catchment average near‐surface soil moisture derived from detailed spatial measurements and continuous observations at fixed points were found to be significantly correlated (r2 = 0·96; P = 0·0063; n = 4). Root zone soil moisture was also found to be highly correlated with catchment average near‐surface, continuously monitored (r2 = 0·81; P < 0·0001; n = 26) and with detailed spatial measurements of near‐surface soil moisture (r2 = 0·84). The weaker relationship observed between near‐surface and root zone soil moisture is considered to be caused by the different responses to rainfall and the different factors controlling soil moisture for the soil depths of 0–50 mm and 0–300 mm. Aspect is considered to be the main factor influencing the spatial and temporal distribution of near‐surface soil moisture, while topography and soil type are considered important for root zone soil moisture. The ability of a limited number of monitoring stations to provide accurate estimates of catchment scale average soil moisture for both near‐surface and root zone is thus demonstrated, as opposed to high resolution spatial measurements. Similarly, the use of near‐surface soil moisture measurements to obtain a reliable estimate of deeper soil moisture levels at the small catchment scale was demonstrated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Frequent algal blooms in surface water bodies caused by nutrient loading from agricultural lands are an ongoing problem in many regions globally. Tile drains beneath poorly and imperfectly drained agricultural soils have been identified as key pathways for phosphorus (P) transport. Two tile drains in an agricultural field with sandy loam soil in southern Ontario, Canada were monitored over a 28‐month period to quantify discharge and the concentrations and loads of dissolved reactive P (DRP) and total P (TP) in their effluent. This paper characterizes seasonal differences in runoff generation and P export in tile drain effluent and relates hydrologic and biogeochemical responses to precipitation inputs and antecedent soil moisture conditions. The generation of runoff in tile drains was only observed above a clear threshold soil moisture content (~0.49 m3·m?3 in the top 10 cm of the soil; above field capacity and close to saturation), indicating that tile discharge responses to precipitation inputs were governed by the available soil‐water storage capacity of the soil. Soil moisture content approached this threshold throughout the non‐growing season (October – April), leading to runoff responses to most events. Concentrations of P in effluent were variable throughout the study but were not correlated with discharge (p > 0.05). However, there were significant relationships between discharge volume (mm) and DRP and TP loads (kg ha?1) for events occurring over the study period (R2 ≥ 0.49, p ≤ 0.001). This research has shown that the hydrologic and biogeochemical responses of tile drains in a sandy loam soil can be predicted to within an order of magnitude from simple hydrometric data such as precipitation and soil moisture once baseline conditions at a site have been determined. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Preferential flowpaths transport phosphorus (P) to agricultural tile drains. However, if and to what extent this may vary with soil texture, moisture conditions, and P placement is poorly understood. This study investigated (a) interactions between soil texture, antecedent moisture conditions, and the relative contributions of matrix and preferential flow and (b) associated P distributions through the soil profile when fertilizers were applied to the surface or subsurface. Brilliant blue dye was used to stain subsurface flowpaths in clay and silt loam plots during simulated rainfall events under wet and dry conditions. Fertilizer P was applied to the surface or via subsurface placement to plots of different soil texture and moisture condition. Photographs of dye stains were analysed to classify the flow patterns as matrix dominated or macropore dominated, and soils within plots were analysed for their water‐extractable P (WEP) content. Preferential flow occurred under all soil texture and moisture conditions. Dye penetrated deeper into clay soils via macropores and had lower interaction with the soil matrix, compared with silt loam soil. Moisture conditions influenced preferential flowpaths in clay, with dry clay having deeper infiltration (92 ± 7.6 cm) and less dye–matrix interaction than wet clay (77 ± 4.7 cm). Depth of staining did not differ between wet (56 ± 7.2 cm) and dry (50 ± 6.6 cm) silt loam, nor did dominant flowpaths. WEP distribution in the top 10 cm of the soil profile differed with fertilizer placement, but no differences in soil WEP were observed at depth. These results demonstrate that large rainfall events following drought conditions in clay soil may be prone to rapid P transport to tile drains due to increased preferential flow, whereas flow in silt loams is less affected by antecedent moisture. Subsurface placement of fertilizer may minimize the risk of subsurface P transport, particularily in clay.  相似文献   

11.
Using a large set of rainfall–runoff data from 234 watersheds in the USA, a catchment area‐based evaluation of the modified version of the Mishra and Singh (2002a) model was performed. The model is based on the Soil Conservation Service Curve Number (SCS‐CN) methodology and incorporates the antecedent moisture in computation of direct surface runoff. Comparison with the existing SCS‐CN method showed that the modified version performed better than did the existing one on the data of all seven area‐based groups of watersheds ranging from 0·01 to 310·3 km2. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Ten representative research sites were selected in eastern Spain to assess soil erosion rates and processes in new citrus orchards on sloping soils. The experimental plots were located at representatives sites on limestone, in areas with 498 to 715 mm year?1 mean annual rainfall, north‐facing slopes, herbicide treated, and new (less than 3 years old) plantations. Ten rainfall simulation experiments (1 h at 55 mm h?1 on 0·25 m2 plots) were carried out at each of the 10 selected study sites to determine the interill soil erosion and runoff rates. The 100 rainfall simulation tests (10 × 10 m) showed that ponding and runoff occurred in all the plots, and quickly: 121 and 195 s, respectively, following rainfall initiation. Runoff discharge was one third of the rainfall, and sediment concentration reached 10·4 g L?1. The soil erosion rates were 2·4 Mg ha?1 h?1 under 5‐year return period rainfall thunderstorms. These are among the highest soil erosion rates measured in the western Mediterranean basin, similar to badland, mine spoil and road embankment land surfaces. The positive relationship between runoff discharge and sediment concentration (r2 = 0·83) shows that the sediment availability is very high. Soil erosion rates on new citrus orchards growing on sloped soils are neither tolerable nor sustainable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The analysis of the physical processes involved in a conceptual model of soil water content balance is addressed with the objective of its application as a component of rainfall–runoff modelling. The model uses routinely measured meteorological variables (rainfall and air temperature) and incorporates a limited number of significant parameters. Its performance in estimating the soil moisture temporal pattern was tested through local measurements of volumetric water content carried out continuously on an experimental plot located in central Italy. The analysis was carried out for different periods in order to test both the representation of infiltration at the short time‐scale and drainage and evapotranspiration processes at the long time‐scale. A robust conceptual model was identified that incorporated the Green–Ampt approach for infiltration and a gravity‐driven approximation for drainage. A sensitivity analysis was performed for the selected model to assess the model robustness and to identify the more significant parameters involved in the principal processes that control the soil moisture temporal pattern. The usefulness of the selected model was tested for the estimation of the initial wetness conditions for rainfall–runoff modelling at the catchment scale. Specifically, the runoff characteristics (runoff depth and peak discharge) were found to be dependent on the pre‐event surface soil moisture. Both observed values and those estimated by the model gave good results. On the contrary, with the antecedent wetness conditions furnished by two versions of the antecedent precipitation index (API), large errors were obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
This paper compares artificial neural network (ANN), fuzzy logic (FL) and linear transfer function (LTF)‐based approaches for daily rainfall‐runoff modelling. This study also investigates the potential of Takagi‐Sugeno (TS) fuzzy model and the impact of antecedent soil moisture conditions in the performance of the daily rainfall‐runoff models. Eleven different input vectors under four classes, i.e. (i) rainfall, (ii) rainfall and antecedent moisture content, (iii) rainfall and runoff and (iv) rainfall, runoff and antecedent moisture content are considered for examining the effects of input data vector on rainfall‐runoff modelling. Using the rainfall‐runoff data of the upper Narmada basin, Central India, a suitable modelling technique with appropriate model input structure is suggested on the basis of various model performance indices. The results show that the fuzzy modelling approach is uniformly outperforming the LTF and also always superior to the ANN‐based models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Grazing is common in the foothills fescue grasslands and may influence the seasonal soil‐water patterns, which in turn determine range productivity. Hydrological modelling using the soil and water assessment tool (SWAT) is becoming widely adopted throughout North America especially for simulation of stream flow and runoff in small and large basins. Although applications of the SWAT model have been wide, little attention has been paid to the model's ability to simulate soil‐water patterns in small watersheds. Thus a daily profile of soil water was simulated with SWAT using data collected from the Stavely Range Sub‐station in the foothills of south‐western Alberta, Canada. Three small watersheds were established using a combination of natural and artificial barriers in 1996–97. The watersheds were subjected to no grazing (control), heavy grazing (2·4 animal unit months (AUM) per hectare) or very heavy grazing (4·8 AUM ha?1). Soil‐water measurements were conducted at four slope positions within each watershed (upper, middle, lower and 5 m close to the collector drain), every 2 weeks annually from 1998 to 2000 using a downhole CPN 503 neutron moisture meter. Calibration of the model was conducted using 1998 soil‐water data and resulted in Nash–Sutcliffe coefficient (EF or R2) and regression coefficient of determination (r2) values of 0·77 and 0·85, respectively. Model graphical and statistical evaluation was conducted using the soil‐water data collected in 1999 and 2000. During the evaluation period, soil water was simulated reasonably with an overall EF of 0·70, r2 of 0·72 and a root mean square error (RMSE) of 18·01. The model had a general tendency to overpredict soil water under relatively dry soil conditions, but to underpredict soil water under wet conditions. Sensitivity analysis indicated that absolute relative sensitivity indices of input parameters in soil‐water simulation were in the following order; available water capacity > bulk density > runoff curve number > fraction of field capacity (FFCB) > saturated hydraulic conductivity. Thus these data were critical inputs to ensure reasonable simulation of soil‐water patterns. Overall, the model performed satisfactorily in simulating soil‐water patterns in all three watersheds with a daily time‐step and indicates a great potential for monitoring soil‐water resources in small watersheds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
In cold regions, the response and related antecedent mechanisms that produce flood flows from rainfall events have received limited study. In 2007, a small watershed at Cape Bounty, Melville Island, Nunavut, was studied in detail during the melt season. Two rainfall events on June 30 and July 22, totalling 9·2 and 10·8 mm, respectively, represented significant contributions to seasonal discharge and sediment transport in a year with a low winter snowpack. The precipitation events elevated discharge and suspended sediment concentrations to twice the magnitude of the nival melt, and generated the only measurable downstream lacustrine turbidity current of the season. In two days, rainfall runoff transported 35% of the seasonal suspended sediment load, in contrast to 29% transported over the nival freshet. The magnitude and intensity of the rain events were not unusual in this setting, but the rainfall response was substantial in comparison with equivalent past events. Exceptional temperatures of July 2007 generated early, deep permafrost thaw, and ground ice melt. The resultant increase in soil moisture amplified the subsequent rainfall runoff and sediment transport response. These results demonstrate the importance of antecedent moisture conditions and the role of permafrost active layer development as an important factor in the rainfall runoff and sediment transport response to precipitation events. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Todd Redding  Kevin Devito 《水文研究》2010,24(21):2995-3010
Rainfall simulation experiments by Redding and Devito ( 2008 , Hydrological Processes 23: 4287–4300) on two adjacent plots of contrasting antecedent soil moisture storage on an aspen‐forested hillslope on the Boreal Plain showed that lateral flow generation occurred only once large soil storage capacity was saturated combined with a minimum event precipitation of 15–20 mm. This paper extends the results of Redding and Devito ( 2008 , Hydrological Processes 23: 4287–4300) with detailed analysis of pore pressure, soil moisture and tracer data from the rainfall simulation experiments, which is used to identify lateral flow generation mechanisms and flow pathways. Lateral flow was not generated until soils were wet into the fine textured C horizon. Lateral flow occurred dominantly through the clay‐rich Bt horizon by way of root channels. Lateral flow during the largest event was dominated by event water, and precipitation intensity was critical in lateral flow generation. Lateral flow was initiated as preferential flow near the soil surface into root channels, followed by development of a perched water table at depth, which also interacted with preferential flow pathways to move water laterally by the transmissivity feedback mechanism. The results indicate that lateral flow generated by rainfall on these hillslopes is uncommon because of the generally high available soil moisture storage capacity and the low probability of rainfall events of sufficient magnitude and intensity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
For interrill erosion, raindrop‐induced detachment and transport of sediment by rainfall‐disturbed sheet flow are the predominant processes, while detachment by sheet flow and transport by raindrop impact are negligible. In general, interrill subprocesses are inter‐actively affected by rainfall, soil and surface properties. The objective of this work was to study the relationships among interrill runoff and sediment loss and some selected para‐meters, for cultivated soils in central Greece, and also the development of a formula for predicting single storm sediment delivery. Runoff and soil loss measurement field experiments have been conducted for a 3·5‐year period, under natural storms. The soils studied were developed on Tertiary calcareous materials and Quaternary alluvial deposits and were textured from sandy loam to clay. The second group of soils showed greater susceptibility to sealing and erosion than the first group. Single storm sediment loss was mainly affected by rain and runoff erosivity, being significantly correlated with rain kinetic energy (r = 0·64***), its maximum 30‐minute intensity (r = 0·64***) and runoff amount (r = 0·56***). Runoff had the greatest correlation with rain kinetic energy (r = 0·64***). A complementary effect on soil loss was detected between rain kinetic energy and its maximum 30‐minute intensity. The same was true for rain kinetic energy and topsoil aggregate instability, on surface seal formation and thus on infiltration characteristics and overland flow rate. Empirical analysis showed that the following formula can be used for the successful prediction of sediment delivery (Di): Di = 0·638βEI30tan(θ) (R2 = 0·893***), where β is a topsoil aggregate instability index, E the rain kinetic energy, I30 the maximum 30‐minute rain intensity and θ the slope angle. It describes soil erodibility using a topsoil aggregate instability index, which can be determined easily by a simple laboratory technique, and runoff through the product of this index and rain kinetic energy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
ABSTRACT

High-frequency monitoring was conducted to quantify the frequency and controlling factors of preferential flow (PF) in a monsoon-influenced sub-humid mountainous catchment (6.48 km2) of Northern China. Rainfall was measured using nine bucket raingauges. Soil moisture probes were set up at 12 sites to observe the PF. Overall, 129 rainfall events were identified during the years 2014–2016. The average PF occurrence was 41%, which increased to 71% during heavy rainfall events (>20 mm) revealing a strong influence of the amount and intensity of rainfall. The study also revealed that the PF increased with antecedent soil moisture. Soil moisture was much higher on flat sites compared to sloping sites, providing evidence that the topography has a strong influence on rainfall infiltration and runoff which, subsequently, influence soil moisture variation and the occurrence of PF. Our findings provide valuable insights into the hydrological processes for studies in regions with similar environmental conditions.  相似文献   

20.
A cell‐based long‐term hydrological model (CELTHYM) that can be integrated with a geographical information system (GIS) was developed to predict continuous stream flow from small agricultural watersheds. The CELTHYM uses a cell‐by‐cell soil moisture balance approach. For surface runoff estimation, the curve number technique considering soil moisture on a daily basis was used, and release rate was used to estimate baseflow. Evapotranspiration was computed using the FAO modified Penman equation that considered land‐use‐based crop coefficients, soil moisture and the influence of topography on radiation. A rice paddy field water budget model was also adapted for the specific application of the model to East Asia. Model sensitivity analysis was conducted to obtain operational information about the model calibration parameters. The CELTHYM was calibrated and verified with measured runoff data from the WS#1 and WS#3 watersheds of the Seoul National University, Department of Agricultural Engineering, in Hwaseong County, Kyounggi Province, South Korea. The WS#1 watershed is comprised of about 35·4% rice paddy fields and 42·3% forest, whereas the WS#3 watershed is about 85·0% forest and 11·5% rice paddy fields. The CELTHYM was calibrated for the parameter release rate, K, and soil moisture storage coefficient, STC, and results were compared with the measured runoff data for 1986. The validation results for WS#1 considering all daily stream flow were poor with R2, E2 and RMSE having values of 0·40, ?6·63 and 9·69 (mm), respectively, but validation results for days without rainfall were statistically significant (R2 = 0·66). Results for WS#3 showed good agreement with observed data for all days, and R2, E2 and RMSE were 0·92, 0·91 and 2·23 (mm), respectively, suggesting potential for CELTHYM application to other watersheds. The direct runoff and water balance components for watershed WS#1 with significant areas of paddy fields did not perform well, suggesting that additional study of these components is needed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号