首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We present a new method of three-dimensional (3-D) seismic ray tracing, based on an improvement to the linear traveltime interpolation (LTI) ray tracing algorithm. This new technique involves two separate steps. The first involves a forward calculation based on the LTI method and the dynamic successive partitioning scheme, which is applied to calculate traveltimes on cell boundaries and assumes a wavefront that expands from the source to all grid nodes in the computational domain. We locate several dynamic successive partition points on a cell's surface, the traveltimes of which can be calculated by linear interpolation between the vertices of the cell's boundary. The second is a backward step that uses Fermat's principle and the fact that the ray path is always perpendicular to the wavefront and follows the negative traveltime gradient. In this process, the first-arriving ray path can be traced from the receiver to the source along the negative traveltime gradient, which can be calculated by reconstructing the continuous traveltime field with cubic B-spline interpolation. This new 3-D ray tracing method is compared with the LTI method and the shortest path method (SPM) through a number of numerical experiments. These comparisons show obvious improvements to computed traveltimes and ray paths, both in precision and computational efficiency.  相似文献   

2.
A linearized eikonal equation is developed for transversely isotropic (TI) media with a vertical symmetry axis (VTI). It is linear with respect to perturbations in the horizontal velocity or the anisotropy parameter η. An iterative linearization of the eikonal equation is used as the basis for an algorithm of finite-difference traveltime computations. A practical implementation of this iterative technique is to start with a background model that consists of an elliptically anisotropic, inhomogeneous medium, since traveltimes for this type of medium can be calculated efficiently using eikonal solvers, such as the fast marching method. This constrains the perturbation to changes in the anisotropy parameter η (the parameter most responsible for imaging improvements in anisotropic media). The iterative implementation includes repetitive calculation of η from traveltimes, which is then used to evaluate the perturbation needed for the next round of traveltime calculations using the linearized eikonal equation. Unlike isotropic media, interpolation is needed to estimate η in areas where the traveltime field is independent of η, such as areas where the wave propagates vertically.
Typically, two to three iterations can give sufficient accuracy in traveltimes for imaging applications. The cost of each iteration is slightly less than the cost of a typical eikonal solver. However, this method will ultimately provide traveltime solutions for VTI media. The main limitation of the method is that some smoothness of the medium is required for the iterative implementation to work, especially since we evaluate derivatives of the traveltime field as part of the iterative approach. If a single perturbation is sufficient for the traveltime calculation, which may be the case for weak anisotropy, no smoothness of the medium is necessary. Numerical tests demonstrate the robustness and efficiency of this approach.  相似文献   

3.
一种改进的线性走时插值射线追踪算法   总被引:9,自引:2,他引:7       下载免费PDF全文
线性走时插值法(LTI)在走时的计算中,由于射线方向考虑不全,计算得到的节点走时不一定最小,导致追踪的射线路径无法满足最小走时.针对这一问题,本文提出了一种改进的射线追踪算法,通过采用多方向的循环计算,得到所有计算节点的最小走时,使追踪到的射线路径能真正满足最小走时,以确保射线追踪的精度.模拟实验结果表明,在介质速度变化剧烈的结构中,该算法与传统的LTI算法相比,有效地提高了射线追踪的精度.  相似文献   

4.
The first-order perturbation theory is used for fast 3D computation of quasi-compressional (qP)-wave traveltimes in arbitrarily anisotropic media. For efficiency we implement the perturbation approach using a finite-difference (FD) eikonal solver. Traveltimes in the unperturbed reference medium are computed with an FD eikonal solver, while perturbed traveltimes are obtained by adding a traveltime correction to the traveltimes of the reference medium. The traveltime correction must be computed along the raypath in the reference medium. Since the raypath is not determined in FD eikonal solvers, we approximate rays by linear segments corresponding to the direction of the phase normal of plane wavefronts in each cell. An isotropic medium as a reference medium works well for weak anisotropy. Using a medium with ellipsoidal anisotropy as a background medium in the perturbation approach allows us to consider stronger anisotropy without losing computational speed. The traveltime computation in media with ellipsoidal anisotropy using an FD eikonal solver is fast and accurate. The relative error is below 0.5% for the models investigated in this study. Numerical examples show that the reference model with ellipsoidal anisotropy allows us to compute the traveltime for models with strong anisotropy with an improved accuracy compared with the isotropic reference medium.  相似文献   

5.
2D inversion of refraction traveltime curves using homogeneous functions   总被引:1,自引:0,他引:1  
A method using simple inversion of refraction traveltimes for the determination of 2D velocity and interface structure is presented. The method is applicable to data obtained from engineering seismics and from deep seismic investigations. The advantage of simple inversion, as opposed to ray‐tracing methods, is that it enables direct calculation of a 2D velocity distribution, including information about interfaces, thus eliminating the calculation of seismic rays at every step of the iteration process. The inversion method is based on a local approximation of the real velocity cross‐section by homogeneous functions of two coordinates. Homogeneous functions are very useful for the approximation of real geological media. Homogeneous velocity functions can include straight‐line seismic boundaries. The contour lines of homogeneous functions are arbitrary curves that are similar to one another. The traveltime curves recorded at the surface of media with homogeneous velocity functions are also similar to one another. This is true for both refraction and reflection traveltime curves. For two reverse traveltime curves, non‐linear transformations exist which continuously convert the direct traveltime curve to the reverse one and vice versa. This fact has enabled us to develop an automatic procedure for the identification of waves refracted at different seismic boundaries using reverse traveltime curves. Homogeneous functions of two coordinates can describe media where the velocity depends significantly on two coordinates. However, the rays and the traveltime fields corresponding to these velocity functions can be transformed to those for media where the velocity depends on one coordinate. The 2D inverse kinematic problem, i.e. the computation of an approximate homogeneous velocity function using the data from two reverse traveltime curves of the refracted first arrival, is thus resolved. Since the solution algorithm is stable, in the case of complex shooting geometry, the common‐velocity cross‐section can be constructed by applying a local approximation. This method enables the reconstruction of practically any arbitrary velocity function of two coordinates. The computer program, known as godograf , which is based on this theory, is a universal program for the interpretation of any system of refraction traveltime curves for any refraction method for both shallow and deep seismic studies of crust and mantle. Examples using synthetic data demonstrate the accuracy of the algorithm and its sensitivity to realistic noise levels. Inversions of the refraction traveltimes from the Salair ore deposit, the Moscow region and the Kamchatka volcano seismic profiles illustrate the methodology, practical considerations and capability of seismic imaging with the inversion method.  相似文献   

6.
Subsurface rocks (e.g. shale) may induce seismic anisotropy, such as transverse isotropy. Traveltime computation is an essential component of depth imaging and tomography in transversely isotropic media. It is natural to compute the traveltime using the wavefront marching method. However, tracking the 3D wavefront is expensive, especially in anisotropic media. Besides, the wavefront marching method usually computes the traveltime using the eikonal equation. However, the anisotropic eikonal equation is highly non‐linear and it is challenging to solve. To address these issues, we present a layer‐by‐layer wavefront marching method to compute the P‐wave traveltime in 3D transversely isotropic media. To simplify the wavefront tracking, it uses the traveltime of the previous depth as the boundary condition to compute that of the next depth based on the wavefront marching. A strategy of traveltime computation is designed to guarantee the causality of wave propagation. To avoid solving the non‐linear eikonal equation, it updates traveltime along the expanding wavefront by Fermat's principle. To compute the traveltime using Fermat's principle, an approximate group velocity with high accuracy in transversely isotropic media is adopted to describe the ray propagation. Numerical examples on 3D vertical transverse isotropy and tilted transverse isotropy models show that the proposed method computes the traveltime with high accuracy. It can find applications in modelling and depth migration.  相似文献   

7.
I introduce a new explicit form of vertical seismic profile (VSP) traveltime approximation for a 2D model with non‐horizontal boundaries and anisotropic layers. The goal of the new approximation is to dramatically decrease the cost of time calculations by reducing the number of calculated rays in a complex multi‐layered anisotropic model for VSP walkaway data with many sources. This traveltime approximation extends the generalized moveout approximation proposed by Fomel and Stovas. The new equation is designed for borehole seismic geometry where the receivers are placed in a well while the sources are on the surface. For this, the time‐offset function is presented as a sum of odd and even functions. Coefficients in this approximation are determined by calculating the traveltime and its first‐ and second‐order derivatives at five specific rays. Once these coefficients are determined, the traveltimes at other rays are calculated by this approximation. Testing this new approximation on a 2D anisotropic model with dipping boundaries shows its very high accuracy for offsets three times the reflector depths. The new approximation can be used for 2D anisotropic models with tilted symmetry axes for practical VSP geometry calculations. The new explicit approximation eliminates the need of massive ray tracing in a complicated velocity model for multi‐source VSP surveys. This method is designed not for NMO correction but for replacing conventional ray tracing for time calculations.  相似文献   

8.
To carry out a 3D prestack migration of the Kirchhoff type is still a task of enormous computational effort. Its efficiency can be significantly enhanced by employing a fast traveltime interpolation algorithm. High accuracy can be achieved if secondorder spatial derivatives of traveltimes are included in order to account for the curvature of the wavefront. We suggest a hyperbolic traveltime interpolation scheme that permits the determination of the hyperbolic coefficients directly from traveltimes sampled on a coarse grid, thus reducing the requirements in data storage. This approach is closely related to the paraxial ray approximation and corresponds to an extension of the wellknown     method to arbitrary heterogeneous and complex media in 3D. Application to various velocity models, including a 3D version of the Marmousi model, confirms the superiority of our method over the popular trilinear interpolation. This is especially true for regions with strong curvature of the local wavefront. In contrast to trilinear interpolation, our method also provides the possibility of interpolating source positions, and it is 56 times faster than the calculation of traveltime tables using a fast finitedifference eikonal solver.  相似文献   

9.
动态网络最短路径射线追踪   总被引:38,自引:10,他引:28       下载免费PDF全文
最短路径射线追踪算法,用预先设置的网络节点的连线表示地震波传播路径,当网络节点稀疏时,获得的射线路径呈之字形,计算的走时比实际走时系统偏大. 本文在波前扩展和反向确定射线路径的过程中,在每个矩形单元内,通过对某边界上的已知走时节点的走时进行线性插值,并利用Fermat原理即时求出从该边界到达其他边界节点的最小走时及其子震源位置和射线路径,发展了相应的动态网络算法. 从而克服了最短路径射线追踪算法的缺陷,大大提高了最小走时和射线路径的计算精度.  相似文献   

10.
A first-order Eikonal solver is applied to modelling and inversion in refraction seismics. The method calculates the traveltime of the fastest wave at any point of a regular grid, including head waves as used in refraction. The efficiency, robustness and flexibility of the method give a very powerful modelling tool to find both traveltimes and raypaths. Comparisons with finite-difference data show the validity of the results. Any arbitrarily complex model can be studied, including the exact topography of the surface, thus avoiding static corrections. Later arrivals are also obtained by applying high-slowness masks over the high-velocity zones. Such an efficient modelling tool may be used interactively to invert for the model, but a better method is to apply the refractor-imaging principle of Hagedoorn to obtain the refractors from the picked traveltime curves. The application of this principle has already been tried successfully by previous authors, but they used a less well-adapted Eikonal solver. Some of their traveltimes were not correct in the presence of strong velocity variations, and the refractor-imaging principle was restricted to receiver lines along a plane surface. With the first-order Eikonal solver chosen, any topography of the receiving surface can be considered and there is no restriction on the velocity contrast. Based on synthetic examples, the Hagedoorn principle appears to be robust even in the case of first arrivals associated with waves diving under the refractor. The velocities below the refractor can also be easily estimated, parallel to the imaging process. In this way, the model can be built up successively layer by layer, the refractor-imaging and velocity-mapping processes being performed for each identified refractor at a time. The inverted model could then be used in tomographic inversions because the calculated traveltimes are very close to the observed traveltimes and the raypaths are available.  相似文献   

11.
近地表速度结构通常是利用射线走时层析或菲涅尔体走时层析等反演方法得到的,但它们的目标函数仍利用射线走时残差构建,导致反演精度不高.为此,本文提出了基于散射积分算法的初至波相位走时层析成像方法.该方法的核心是:(1)提出了依赖于频率的相位走时概念;(2)利用依赖于频率的相位走时信息,而非单一的无限频率射线走时;(3)发展了一种改进的相位展开方法,即通过监测相位不连续性和2π周期判定来消除相位折叠现象;(4)考虑了地震波传播的有限频特征,即基于波动理论而非传统的射线路径或有限空间的菲涅尔体构建核函数.通过利用Overthrust模型的数值实验及与传统射线走时层析和菲涅尔体走时层析的对比表明:本文提出的方法是一种有效的初至波走时反演方法.同时,基于Overthrust模型的数值试验还证明了下列结论,即通过挖掘更多的走时信息的确可以获得更高的反演精度和分辨率.  相似文献   

12.
迭代优化的网络最短路径射线追踪方法研究   总被引:1,自引:1,他引:0       下载免费PDF全文
网络最短路径射线追踪算法,用预先设置的网格节点的连线表示地震波传播路径,当网格节点稀疏时,获得的射线路径呈Z字形,计算的走时比实际走时偏差大.本文在网络最短路径射线追踪算法的基础上,提出了迭代法与网络最短路径相结合的射线追踪算法,运用迭代法优化计算由网络最短路径算法得到的射线路径,并对迭代法进行修正,从而克服了最短路径射线追踪算法的缺陷,大大提高了最小走时和射线路径的计算精度.  相似文献   

13.
Earthquake data include informative seismic phases that require identification for imaging the Earth's structural interior. In order to identify the phases, we created a numerical method to calculate the traveltimes and raypaths by a shooting technique based upon the IASP91 Earth model, and it can calculate the traveltimes and raypaths for not only the seismic phases in the traditional traveltime tables such as IASP91, AK135, but also some phases such as pPcP, pPKIKP, and PPPPP. It is not necessary for this method to mesh the Earth model, and the results from the numerical modeling and its application show that the absolute differences between the calculated and theoretical traveltimes from the ISAP91 tables are less than 0.1 s. Thus, it is simple in manipulation and fast in computation, and can provide a reliable theoretical prediction for the identification of a seismic phase within the acquired earthquake data.  相似文献   

14.
三维地震波走时计算技术是三维地震反演、层析成像、偏移成像等诸多地震数据处理技术中非常重要的正演计算工具.为了获得精度高且兼顾效率的三维走时计算方法:首先,在常规双线性插值公式推导过程中,充分利用平面波双线性假设的结论,获得了二元极小值超越方程的解析解,进而推导出了准确的局部走时计算公式,同时构造性地证明了该计算公式满足地震波的传播规律和Eikonal方程;其次,引入迎风差分的基本思想,提出迎风双线性插值的局部走时计算策略,该计算策略能简化算法、提高效率且保证无条件稳定性;然后,将上述计算公式和迎风双线性插值策略与常规快速推进法中的窄带技术结合,获得了一种新的基于快速推进迎风双线性插值法的三维地震波走时计算方法;最后,通过精度和效率分析检验了新算法的精度、效率和正确性,并通过计算实例验证了算法在面对复杂介质时的稳定性和有效性.  相似文献   

15.
利用联合反演技术进行反射地震的波速成象   总被引:5,自引:0,他引:5       下载免费PDF全文
本文介绍了根据反射地震数据进行波速成象的一种方法,其基础为多种反演技术的综合。由于要求的波速图象C(x,z)具有间断性,除利用走时数据T(x,t)外,在地层比较水平的情况下,还利用了均方根速度V(x,t)和统计子波W(t)的数据来成象。计算机层析成象过程分为三步:首先重做速度分析,取得与初次反射走时一致的均方根速度数据;然后用反射走时与均方根速度联合反演对应分析道的层速度和界面深度;最后由联合反演结果和反射面走时求波速图象函数的数字化版。文中还给出了波速成象方法在我国西北某沉积盆地上的应用及验证结果。  相似文献   

16.
We describe two practicable approaches for an efficient computation of seismic traveltimes and amplitudes. The first approach is based on a combined finite‐difference solution of the eikonal equation and the transport equation (the ‘FD approach’). These equations are formulated as hyperbolic conservation laws; the eikonal equation is solved numerically by a third‐order ENO–Godunov scheme for the traveltimes whereas the transport equation is solved by a first‐order upwind scheme for the amplitudes. The schemes are implemented in 2D using polar coordinates. The results are first‐arrival traveltimes and the corresponding amplitudes. The second approach uses ray tracing (the ‘ray approach’) and employs a wavefront construction (WFC) method to calculate the traveltimes. Geometrical spreading factors are then computed from these traveltimes via the ray propagator without the need for dynamic ray tracing or numerical differentiation. With this procedure it is also possible to obtain multivalued traveltimes and the corresponding geometrical spreading factors. Both methods are compared using the Marmousi model. The results show that the FD eikonal traveltimes are highly accurate and perfectly match the WFC traveltimes. The resulting FD amplitudes are smooth and consistent with the geometrical spreading factors obtained from the ray approach. Hence, both approaches can be used for fast and reliable computation of seismic first‐arrival traveltimes and amplitudes in complex models. In addition, the capabilities of the ray approach for computing traveltimes and spreading factors of later arrivals are demonstrated with the help of the Shell benchmark model.  相似文献   

17.
提出一种对旅行时进行抛物线插值的地震射线追踪方法(简称PTI方法),它比基于旅行时线性插值方法(简称LTI方法)计算结果更准确.PTI和LTI方法都是基于2D网格单元模型,用于计算地震波的旅行时和射线路径.首先介绍了相关方法的一些基本概念.旅行时和射线路径都是在网格边界上进行计算的,因此,射线路径在同一恒速网格内是直线.其计算过程有两步.第一步,计算旅行时,第二步追踪射线路径.然后给出了LTI算法的基本公式.因为在炮点网格内可能存在折射波,文章也相应导出了其公式.最后详细推导了PTI 方法的公式.通过模型试算对比说明,用PTI方法较LTI算法更精确、更有效,PTI方法是一种很有发展前途的地震射线追踪算法.  相似文献   

18.
基于HAFMM的无射线追踪跨孔雷达走时层析成像   总被引:2,自引:2,他引:0       下载免费PDF全文
本文使用最小二乘线性迭代反演方法对跨孔雷达直达波初至时数据进行反演,每次迭代过程中,用有限差分法求解走时程函方程,并用高精度快速推进方法(HAFMM)进行波前扩展,通过追踪波前避免了进行射线追踪.为了验证该方案,我们对三组合成数据进行了测试,分析了单位矩阵算子、一阶差分算子和拉普拉斯算子等三种不同模型参数加权算子对模型的约束和平滑效果;讨论了FMM和HAFMM对反演精度的影响;测试了LSQR,GMRES和BICGSTAB等三种矩阵反演算法的反演效果.此外,我们还对一组野外实测数据进行了反演,对比了基于本方案以及基于平直射线追踪和弯曲射线追踪的走时层析成像反演效果.对比分析结果表明,使用拉普拉斯算子和HAFMM进行反演能较好地进行目标体重建,而三种矩阵反演方法对反演效果的影响差别不大;并且通过对波前等时线图的分析可以定性地判断异常体的性质和位置;而在对实测数据目标体的重建上,本方案能达到甚至优于弯曲射线算法的重建效果.  相似文献   

19.
三维复杂地形近地表速度估算及地震层析静校正   总被引:18,自引:6,他引:18  
在地表一致性模型的基础上提出一种可适用于宽线剖面、弯曲测线、传统的二维和目前广泛使用的三维地震观测.在地形及近地表低降速带地质结构复杂的探区,低降速带厚度及速度估算的精度是静校正处理的关键.本研究根据三维地震观测的初至走时数据,利用最小平方与QR分解相结合的算法,在三维空间重建近地表低降速带速度模型,根据重建速度模型实现了静校正长波长分量与短波长分量的同步计算.分析了复杂的近地表低降速带模型初至波的性质,在观测值的自动拾取以及理论值的计算中充分考虑了可能成为初至波的直达波、折射波和反射波的利用,提高了低降速带速度模型反演的精度.在初至走时观测数据的拾取中,本研究采用分形算法克服了初至波波形差异以及折射波相位反转导致的拾取误差,实现了三维初至拾取的大规模全自动化运算.在射线路径与初至波理论走时的计算中,本研究采用一种计算量与模型复杂程度无关的三维射线追踪方法,该方法以最小走时射线路径保证了与观测数据有同等意义的初至波的射线追踪及理论走时的计算.野外实际资料的处理结果表明了方法的有效性.  相似文献   

20.
起伏地形下的高精度反射波走时层析成像方法   总被引:1,自引:1,他引:0       下载免费PDF全文
全球造山带及中国大陆中西部普遍具有强烈起伏的地形条件.复杂地形条件下的地壳结构成像问题像一面旗帜引领了当前矿产资源勘探和地球动力学研究的一个重要方向.深地震测深记录中反射波的有效探测深度可达全地壳乃至上地幔顶部,而初至波通常仅能探测上地壳浅部.为克服和弥补初至波探测深度的不足,本文基于前人对复杂地形条件下初至波成像的已有研究成果,采用数学变换手段将笛卡尔坐标系的不规则模型映射到曲线坐标系的规则模型,并将快速扫描方法与分区多步技术相结合,发展了反射波走时计算和射线追踪的方法.进而利用反射波走时反演,实现起伏地形下高精度的速度结构成像,从而为起伏地形下利用反射波数据高精度重建全地壳速度结构提供了一种全新方案.数值算例从正演计算精度、反演中初始模型依赖性、反演精度、纵横向分辨率以及抗噪性等方面验证了算法的正确性和可靠性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号