首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this first part of the work, we develop macroscopic models for migration and diffusion–migration of ionic species in saturated porous media, based on periodic homogenization. The prior application is chloride transport in cementitious materials. The dimensional analysis of Nernst–Planck equation lets appear to dimensionless numbers characterizing the ionic transfer in the porous medium. Using experimental data obtained from electrodiffusion tests on cement‐based materials (Part II), these dimensionless numbers are linked to the perturbation parameter ?. For a strong imposed electrical field, the asymptotic expansion of Nernst–Planck equation leads to a macroscopic model where the migration is predominant. For a weak imposed electrical field or in natural diffusion, we obtain a macroscopic model coupling diffusion and migration at the same order. In both models, the expression of the homogenized diffusion tensor is identical and only involves the geometric properties of the material microstructure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Experimental observations clearly show that the relative humidity (hr) conditions influence significantly the creep behavior of cement‐based materials, indicating that the water present within these materials plays a crucial role. This work presents a creep model for hardened cement pastes (HCP), based on a multiscale homogenization approach. It takes into account both free and adsorbed water contained in the porosity and investigates their effects on the HCP macroscopic creep behavior. The calcium silicate hydrate phase is assumed to be linear viscoelastic, and the Mori–Tanaka scheme is applied in the Laplace–Carson space to the composite formed of porosity, calcium silicate hydrate, and the other main hydrated compounds (which behavior is linearly elastic) by making use of the correspondence principle. With this model, estimations of the evolution of the macroscopic creep behavior of HCP submitted to constant external loading are examined under different hr and compared with available experimental data. Finally, a method for implementing the model in a finite element code is proposed, and simulations of standard creep tests are performed to assess its validity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
For materials of very low hydraulic conductivity used in the landfill liner systems, e.g., natural clay liners, soil-cement liners, etc., diffusion characteristics should be evaluated, as the transport mechanism of contaminant through them is diffusion controlled. Studies on the diffusion characteristics of the hardened liner materials, such as the soil cement, are relatively few compared with those of clayey soils. In this paper, diffusive characteristics of hardened liner materials (HLMs) applied to the liner system of Sudokwon Metropolitan Landfill in Korea, were studied. Laboratory pure diffusion column tests in the pure- and the advection-diffusion status were performed for the chemicals, NaCl, KCl, and CaCl2. To evaluate the diffusion coefficient of a HLMs system, a one-dimensional numerical transport program was developed for use in a multi-layered HLMs system. The range of dispersion coefficients of advection diffusion column tests was a little narrower than that of diffusion coefficients of pure diffusion tests, although the two coefficients were quite close. The effective diffusion coefficients of chloride ions of a HLMs were about a half of those in clayey soil due to the high density by compaction and curing. Diffusion coefficients of chloride ions in this study were correlated closely with hydraulic conductivities of the materials tested and were consistent with work in the literature.  相似文献   

4.
5.
Based on relevant experimental data of a petroleum cement paste under mechanical loading and chemical leaching, an elastic‐plastic model is first proposed by taking into account plastic shearing and pore collapse. The degradation of mechanical properties induced by the chemical leaching is characterized by a chemical damage variable which is defined as the increase of porosity. Both elastic and plastic properties of the cement paste are affected by the chemical damage. The proposed model is calibrated from and applied to describe mechanical responses in triaxial compression tests respectively on sound and fully leached samples. In the second part, a phenomenological chemical model is defined to establish the relationship between porosity change and calcium dissolution process. The dissolution kinetics is governed by a diffusion law taking into account the variation of diffusion coefficient with calcium concentration. The chemical model is coupled with the mechanical model, and both are applied to describe mechanical response of cement paste samples subjected to progressive chemical leaching and compressive stresses. Comparisons between experimental data and numerical results are presented.  相似文献   

6.
7.
The character of porcelain wares made by Nicholas Crisp early and late in his career was assessed using microchemical and petrographic data for sherds excavated from the sites of the factories he operated at Vauxhall and Bovey Tracey. The results indicate that, over time, Crisp increasingly made use of diverse types of pastes as he struggled to produce a commercially viable line of porcelain. Based on the analysis of a limited number of samples, he appears to have largely restricted himself at Vauxhall to using soapstone (Mg‐rich)‐ and flint‐glass (Pb‐rich) frit‐bearing pastes that varied in the amount of calcite they contained. He also experimented with Mg+Pb‐rich pastes at Bovey Tracey, but included a novel ingredient (barite) and varied the proportion of other minor constituents (e.g., bone ash), apparently in an effort to resolve some of the firing problems that plagued him at Vauxhall. In addition, Crisp appears to have produced bone ash (phosphatic) porcelain at Bovey Tracey, and, in collaboration with William Cookworthy, the proprietor of the Plymouth factory, fired a range of true porcelain (Si+Al‐rich) pastes. Bulk compositional data indicate that Crisp's diopside‐bearing Mg+Pb‐rich wares were derived from pastes containing talc and calcite rather than dolomite. The mineralogy of these and some contemporary magnesian/plombian porcelains are interpreted using the SiO2‐CaO‐MgO phase diagram. This diagram shows that these wares can form and preserve diopside (Ca‐Mg silicate) given suitable bulk CaO contents and kiln‐firing temperatures. Phosphatic sherds from Bovey Tracey are compositionally distinct (lower SiO2 and higher Al2O3 and bone‐ash components) from a single bone‐ash sample from Vauxhall, indicating that Crisp experimented with novel bone‐ash pastes, and was not positively influenced by the Vauxhall phosphatic recipe, if indeed one existed. True porcelains from Bovey Tracey have more extreme SiO2/Al2O3 ratios (= 2.0 [two sherds]; 4.5 [one sherd]) than their Plymouth/Bristol counterparts (SiO2/Al2O3 = 2.3–3.0). Collectively, the analytical data underscore the experimental—and ultimately unsuccessful—character of the diverse wares produced by Nicholas Crisp. © 2000 John Wiley & Sons, Inc.  相似文献   

8.
Growth rates of wollastonite reaction rims between quartz and calcite were experimentally determined at 0.1 and 1 GPa and temperatures from 850 to 1200 °C. Rim growth follows a parabolic rate law indicating that this reaction is diffusion‐controlled. From the rate constants, the D′δ‐values of the rate‐limiting species were derived, i.e. the product of grain boundary diffusion coefficient D′ and the effective grain boundary width, δ. In dry runs at 0.1 GPa, wollastonite grew exclusively on quartz surfaces. From volume considerations it is inferred that (D′CaOδ)/(D′SiO2δ)≥1.33, and that SiO2 diffusion controls rim growth. D′SiO2δ increases from about 10?25 to 10?23 m3 s?1 as temperature increases from 850 to 1000 °C, yielding an apparent activation energy of 330±36 kJ mol?1. In runs at 1 GPa, performed in a piston‐cylinder apparatus, there were always small amounts of water present. Here, wollastonite rims always overgrew calcite. Rims around calcite grains in quartz matrix are porous and their growth rates are controlled by a complex diffusion‐advection mechanism. Rim growth on matrix calcite around quartz grains is controlled by grain boundary diffusion, but it is not clear whether CaO or SiO2 diffusion is rate‐limiting. D′δ increases from about 10?21 to 10?20 m3 s?1 as temperature increases from 1100 to 1200 °C. D′SiO2δ or D′CaOδ in rims on calcite is c. 10 times larger than D′SiO2δ in dry rims at the same temperature. Growth structures of the experimentally produced rims are very similar to contact‐metamorphic wollastonite rims between metachert bands and limestone in the Bufa del Diente aureole, Mexico, whereby noninfiltrated metacherts correspond to dry and brine‐infiltrated metacherts to water‐bearing experiments. However, the observed diffusivities were 4 to 5 orders of magnitude larger during contact‐metamorphism as compared to our experimental results.  相似文献   

9.
采卤井固井时发生水泥浆漏失是一新问题。以江苏金坛盐矿区为例,提出了采用低比重特种水泥浆固井的新工艺及其他技术措施,实践证明工艺可。   相似文献   

10.
The diversity of Brownlow Hill porcelains of the Wm Reid & Co. era is due to the remarkably wide range in the composition of their pastes and glazes and inferred firing conditions relative to the initial vitrification temperature. Sixteen of 21 analyzed sherds from the factory site are bone‐ash wares that display large variations in their bulk chemical composition. The remaining samples have silicious‐aluminous (akin to “stone china” sensu Richard Pococke in 1750) and silicious‐aluminous‐calcic (“S‐A‐C”) compositions that resemble Limehouse (London) and Pomona (Staffordshire) porcelains produced during the 1740s. The mineralogy of the Brownlow Hill S‐A‐C sherds suggests firing at a relatively high temperature (Tmax approaching 1400°C, based on relations on the SiO2‐Al2O3‐CaO phase diagram), thereby obscuring the identity of some of the ingredients (e.g., the source of CaO) used in their manufacture. Limehouse and Brownlow Hill may have been linked through the activities of William Ball, who is mentioned in connection with both factories, or indirectly via former Limehouse staff later employed at the Pomona factory, located not far from a Wm Reid & Co. branch factory in Shelton, Stoke‐on‐Trent. In terms of a time line, knowledge of these pastes appears to have spread first from London to Staffordshire, and then to Liverpool. © 2003 Wiley Periodicals, Inc.  相似文献   

11.
Multipath diffusion in geochronology   总被引:5,自引:0,他引:5  
Recent developments in microanalytical tools such as the ion and laser microprobe have revealed spatial distributions of radiogenic isotopes in minerals which cannot be explained by a simple volume diffusion mechanism. Although it is known that diffusion of a substance along extended defects (such as dislocations, exsolution lamellae, micropores, microfractures, fission tracks, etc.), which may serve as high-diffusivity pathways in a crystal, can significantly influence the bulk diffusivity of a mineral, this has largely been ignored in the field of geochronology. A general numerical model has been developed, which solves coupled multipath diffusion equations that describe the simultaneous diffusion of a solute species through both the crystal lattice (via volume diffusion) and high-diffusivity pathways (via short-circuit diffusion) under non-steady state conditions. Addition of a radioactive source term to the appropriate equations further allows for the modelling of integrated cooling ages and closure temperatures, and has direct pertinence to geochronological and thermochronologial studies. Three key criteria can be used to distinguish multipath diffusion mechanisms from volume diffusion mechanisms: (a) non-Fickian concentration profiles, (b) enhanced solute diffusivity with increasing mineral grain size, and (c) a lack of any correlation between closure temperatures (and cooling ages) and larger grain sizes. With multipath diffusion, the effective diffusion dimension a for certain minerals appears to remain on the order of the grain size, and the model can adequately explain observed increases in the bulk diffusion coefficient D b with a in the hydrothermal bomb data of previous Ar diffusion studies. Arrhenius diagrams of a multipath diffusion D b vs 1/T will consist of curves that have a kink in them, reflecting a continuous change in the relative importance of the different diffusion mechanisms with temperature. The most important consequence of multipath diffusion is that the overall bulk diffusion coefficient D b of a diffusing species can be enhanced significantly above its volume diffusion coefficient D v . As a result, integrated ages and effective closure temperatures (T c ) can be much lower than those predicted assuming only a volume diffusion mechanism, to the extent that minerals normally characterized by low volume-diffusion T c may potentially have older integrated ages that minerals normally associated with higher volume-diffusion T c .  相似文献   

12.
Previous studies suggest that the metamorphic evolution of the ultrahigh‐pressure garnet peridotite from Alpe Arami was characterized by rapid subduction to a depth of c. 180 km with partial chemical equilibration at c. 5.9 Gpa/1180 °C and an initial stage of near‐isothermal decompression followed by enhanced cooling. In this study, average cooling rates were constrained by diffusion modelling on retrograde Fe–Mg zonation profiles across garnet porphyroclasts. Considering the effects of temperature, pressure and garnet bulk composition on the Fe–Mg interdiffusion coefficient, cooling rates of 380–1600 °C Myr?1 for the interval from 1180 to 800 °C were obtained. Similar or even higher average cooling rates resulted from thermal modelling, whereby the characteristics of the calculated temperature‐time path depend on the shape and size of the hot peridotite body and the boundary conditions of the cooling process. The very high cooling rates obtained from both geospeedometry and thermal modelling imply extremely fast exhumation rates of c. 15 mm yr?1 or more. These results agree with the range of exhumation rates (16–50 mm yr?1) deduced from geochronological results. It is suggested that the Alpe Arami peridotite passively returned towards the surface as part of a buoyant sliver, caused as a consequence of slab breakoff.  相似文献   

13.
The paper examines ion (chloride) transport equations in porous media (concrete) integrated over a representative elementary volume, that is to say, averaging over the macroscopic level the phenomena that occur really at the pore scale. There are three basic variables to be used: chloride concentration, moisture and temperature. The diffusion process is examined, in addition to other phenomena such as convection (the motion of dissolved substances caused by flow of water in a pore solution of partially saturated media) or chloride binding (the capacity of free chloride of being chemically bound, particularly with C3A to form Friedel salts). Contrary to other approaches, such effects are not considered by means of apparent diffusion coefficients but by developing the complete set of time‐dependent equations for both the chloride concentration within the pore solution and the moisture content within the pore space. Once the general model is described, the system of equations can be solved numerically by means of a two‐dimensional finite element formulation. The main objective is to reproduce results of experimental tests by means of a priori parameter estimation, according to the characteristics of materials and external environment conditions, thereby superseding the well‐known best fit a posteriori through Fick's second equation. While the introduction of hygrometric conditions and convection phenomena appears to be of high significance, other factors like temperature, surface concentration, chloride binding or equivalent hydration time are analysed too. The proposed model can reproduce bidimensional complex geometries, for example, cracked concrete cover, as well as variable surface condition. An application case is developed through a realistic model of the geometry of a crack. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In porous media, chemical species that dissolve in pore water can be transported via diffusion mechanisms or advective fluxes, close to or far away from where precipitation occurs. In the case of a high‐level radioactive waste disposal system, compacted bentonite is used in a buffer material in an engineering barrier system to minimize the amount of specific nuclides that breach into the surrounding host rock. To minimize breaching, it is very important to understand the transport mechanism of multiple chemical species in porous media. In the following research, we introduced FEM analysis methods using the results of the molecular dynamics simulation and homogenization analysis (MD/HA) method. First, the diffusion coefficients of ions (Cl?, I?, and Na+) in different water layers of Na‐beidellite were calculated using the MD/HA procedure under various dry density (1.2, 1.6, and 2.0 Mg/m3) and temperature (293, 323, and 363 K) conditions. Next, using FEM analysis that used the MD/HA results as input parameters, the diffusion behaviors of ions in porous media were calculated. The results indicate that the diffusion coefficients of the interlayer water in Na‐beidellite are different from the diffusion coefficients under dry density conditions. Further, the concentration profiles (Ct/C0) of iodine and chloride are proportional to temperature but inversely proportional to dry density. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Accurate prediction of solute transport processes in surface water and its underlying bed is an important task not only for proper management of the surface water but also for pollution control in these water bodies. Key issue in this task is an estimation of parameters as diffusion coefficient and velocity for solute transport both in water body and in the underlying bed. This estimation would greatly help us to understand the deposition and release mechanism of solute across the water-bed interface. In this study, a column experiment was conducted in laboratory to estimate the velocity and diffusion coefficient of sodium chloride (NaCl) in water body and underlying sand layer (bed). The column used with a diameter of 30 cm and a height of 100 cm, was filled with sand at the lower half part and water at the upper half part. Total 64 stainless steel electrodes were installed on its surface around. The sodium chloride solution was injected from the top of the column, and electrical resistance between electrodes was monitored for 71 h. Then the dimensionless resistance breakthrough curve was fitted with one dimensional analytic solution for solute transport and the related diffusion coefficient and velocity parameters were estimated. The results show that the NaCl transport velocity was high in the water body but extremely low in the underlying sand layer (bed). The diffusion coefficient estimated in sand layer coincides with those reported well. This indicates that the electrical resistance based solute transport parameter estimation method is not only effective but also has an advantage of multipoints monitoring. This is useful both in mapping solute transport parameter for solute transport process analysis and in providing parameter input for solute transport numerical modeling.  相似文献   

16.
The present paper investigates bifurcation analysis based on the second‐order work criterion, in the framework of rate‐independent constitutive models and rate‐independent boundary‐value problems. The approach applies mainly to nonassociated materials such as soils, rocks, and concretes. The bifurcation analysis usually performed at the material point level is extended to quasi‐static boundary‐value problems, by considering the stiffness matrix arising from finite element discretization. Lyapunov's definition of stability (Annales de la faculté des sciences de Toulouse 1907; 9 :203–274), as well as definitions of bifurcation criteria (Rice's localization criterion (Theoretical and Applied Mechanics. Fourteenth IUTAM Congress, Amsterdam, 1976; 207–220) and the plasticity limit criterion are revived in order to clarify the application field of the second‐order work criterion and to contrast these criteria. The first part of this paper analyses the second‐order work criterion at the material point level. The bifurcation domain is presented in the 3D stress space as well as 3D cones of unstable loading directions for an incrementally nonlinear constitutive model. The relevance of this criterion, when the nonlinear constitutive model is expressed in the classical form (dσ = Mdε) or in the dual form (dε = Ndσ), is discussed. In the second part, the analysis is extended to the boundary‐value problems in quasi‐static conditions. Nonlinear finite element computations are performed and the global tangent stiffness matrix is analyzed. For several examples, the eigenvector associated with the first vanishing eigenvalue of the symmetrical part of the stiffness matrix gives an accurate estimation of the failure mode in the homogeneous and nonhomogeneous boundary‐value problem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Field, petrographic, microstructural and isotopic studies of mylonitic gneisses and associated pegmatites along the Hope Valley shear zone in southern Rhode Island indicate that late Palaeozoic deformation (c. 275 Ma) in this zone occurred at very high temperatures (>650 °C). High‐energy cuspate/lobate phase boundary microstructures, a predominance of equant to sub‐equant grains with low internal lattice strain, and mixed phase distributions indicate that diffusion creep was an important and possibly predominant deformation mechanism. Field and petrographic evidence are consistent with the presence of an intergranular melt phase during deformation, some of which collected into syntectonic pegmatites. Rb/Sr isotopic analyses of tightly sampled pegmatites and wall rocks confirm that the pegmatites were derived as partial melts of the immediately adjacent, isotopically heterogeneous mylonitic gneisses. The presence of syntectonic interstitial melts is inferred to have permitted a switch from dislocation creep to melt‐enhanced diffusion creep as the dominant mechanism in these relatively coarse‐grained mylonitic gneisses (200–500 µm syn‐deformational grain size). A switch to diffusion creep would lead to significant weakening, and may explain why the Hope Valley shear zone evolved into a major regional tectonic boundary. This work identifies conditions under which diffusion creep operates in naturally deformed granitic rocks and illuminates the deformation processes involved in the development of a tectonic boundary between two distinct Late Proterozoic (Avalonian) basement terranes.  相似文献   

18.
In recent years, the authors have proposed a new double‐node zero‐thickness interface element for diffusion analysis via the finite element method (FEM) (Int. J. Numer. Anal. Meth. Geomech. 2004; 28 (9): 947–962). In the present paper, that formulation is combined with an existing mechanical formulation in order to obtain a fully coupled hydro‐mechanical (or HM) model applicable to fractured/fracturing geomaterials. Each element (continuum or interface) is formulated in terms of the displacements (u) and the fluid pressure (p) at the nodes. After assembly, a particular expression of the traditional ‘up’ system of coupled equations is obtained, which is highly non‐linear due to the strong dependence between the permeability and the aperture of discontinuities. The formulation is valid for both pre‐existing and developing discontinuities by using the appropriate constitutive model that relates effective stresses to relative displacements in the interface. The system of coupled equations is solved following two different numerical approaches: staggered and fully coupled. In the latter, the Newton–Raphson method is used, and it is shown that the Jacobian matrix becomes non‐symmetric due to the dependence of the discontinuity permeability on the aperture. In the part II companion paper (Int. J. Numer. Anal. Meth. Geomech. 2008; DOI: 10.1002/nag.730 ), the formulation proposed is verified and illustrated with some application examples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
An in situ method of estimating the effective diffusion coefficient for a chemical constituent that diffuses into the primary porosity of a rock is developed by abruptly changing the concentration of the dissolved constituent in a borehole in contact with the rock matrix and monitoring the time-varying concentration. The experiment was conducted in a borehole completed in mudstone on the campus of the University of the Free State in Bloemfontein, South Africa. Numerous tracer tests were conducted at this site, which left a residual concentration of sodium chloride in boreholes that diffused into the rock matrix over a period of years. Fresh water was introduced into a borehole in contact with the mudstone, and the time-varying increase of chloride was observed by monitoring the electrical conductivity (EC) at various depths in the borehole. Estimates of the effective diffusion coefficient were obtained by interpreting measurements of EC over 34 d. The effective diffusion coefficient at a depth of 36 m was approximately 7.8×10?6 m2/d, but was sensitive to the assumed matrix porosity. The formation factor and mass flux for the mudstone were also estimated from the experiment.  相似文献   

20.
Dolomite cement is a significant and widespread component of Phanerozoic sucrosic dolomites. Cements in dolomites that were never deeply buried are limpid, have planar faces (non‐saddle forms), often distinct zonation in cathodoluminescence and form syntaxial overgrowths on crystals facing pores. Five samples of sucrosic dolomites, interpreted as having had mostly lime‐mudstone or wackestone precursors in four carbonate aquifers, provide insights into the abundance of planar cements in sucrosic dolomites. Such cement comprises 11% to 45% (32% mean) of peritidal to sub‐tidal dolomites on an outcrop in the Edwards aquifer (Early Cretaceous) of central Texas; 19% to 33% (25% mean) of ramp dolomites in the Hawthorn Group (Oligo‐Miocene) and 50% to 70% in shelf dolomites of the Avon Park Formation (Eocene) in the Upper Floridan aquifer of sub‐surface peninsular Florida; 18% to 45% (32+% mean) of sub‐tidal shelf dolomites in quarry sections of the Burlington‐Keokuk Formation (Early Mississippian) in south‐eastern Iowa; and 18% to 76% (50% mean) in shallow cores and outcrops of outer‐shelf dolomites from the Gambier Limestone (Oligo‐Miocene) of South Australia. Backstripping the cement phases revealed by cathodoluminescence colour photomicrographs documents the effects of cements on textural coarsening, pore‐space reduction, induration and general ‘maturation’ of these dolomites. Most pre‐Holocene dolomites are multiphase crystalline rocks composed of: (i) seed crystals or ‘cores’; (ii) crystal cortices that concentrically enlarged the cores; and (iii) free‐space, syntaxial precipitates of limpid cement around the crystals. Remaining CaCO3 grains and micrite can be replaced by dolomite, but typically they are dissolved between stages (ii) and (iii), creating systems of intercrystal and mouldic pores typical of sucrosic dolomites. Networks of cement overgrowths, aided by water‐filled pore systems under hydrostatic to lithostatic pressure, are judged to slow or prevent compaction in sucrosic dolomites. It can be argued that cortex growth involves both replacement of CaCO3 particles and microcementation of their interparticle pores. This interpretation, and the abundance of cements in so many dolomites, would obviate the controversy over the volumetrics of ‘replacement dolomitization’. Limpid, planar and syntaxial dolomite cements of early diagenetic origin are interpreted to have precipitated from clear pore waters, at low temperatures (<30 to 35 °C) and shallow burial depths (<100 m), in water‐saturated networks of dolomite ‘silt’ and ‘sand’. Cements in many dolomites in island and continental–aquifer systems appear to result from event‐driven processes related to sea‐level highstands. Cementation events can follow ‘replacement dolomitization’ events by time intervals ranging from geologically ‘instantaneous’ to tens of million years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号