首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a synthesis of the works performed by various teams from France, Italy and Canada around the question of second‐order work criterion. Because of the non‐associative character of geomaterials plastic strains, it is now recognized that a whole bifurcation domain exists in the stress space with various possible modes of failure. In a first part these failure modes are observed in lab experimental tests and in discrete element modelling. Then a theoretical study of second‐order work allows to establish a link with the kinetic energy, giving a basis to explain the transition from a prefailure (quasi)static regime to a postfailure dynamic regime. Eventually the main features of geomaterials failure are obtained by applying second‐order work criterion to five different constitutive rate‐independent models—three being phenomenological and two micromechanical. As a whole this paper tries to gather together all the elements for a proper understanding and use of second‐order work criterion in geomechanics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The bifurcation and instability conditions in geomechanics are closely related to the elasto‐plastic behaviour. In this paper the potential of a multimechanism elasto‐plastic model to predict various modes of failure is examined. First, a brief overview for the essential aspects of the constitutive model and the development of the elasto‐plastic constitutive matrix for this model are presented. Then, numerical simulations of different drained and undrained paths in the axisymmetric and plane‐strain conditions for the Hostun sand are illustrated. These examples confirm the capacity of the model to reproduce instability and strain localization phenomena. The obtained response is in agreement with experimental observations, theoretical developments and numerical analyses existing in the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The present paper investigates bifurcation analysis based on the second‐order work criterion, in the framework of rate‐independent constitutive models and rate‐independent boundary‐value problems. The approach applies mainly to nonassociated materials such as soils, rocks, and concretes. The bifurcation analysis usually performed at the material point level is extended to quasi‐static boundary‐value problems, by considering the stiffness matrix arising from finite element discretization. Lyapunov's definition of stability (Annales de la faculté des sciences de Toulouse 1907; 9 :203–274), as well as definitions of bifurcation criteria (Rice's localization criterion (Theoretical and Applied Mechanics. Fourteenth IUTAM Congress, Amsterdam, 1976; 207–220) and the plasticity limit criterion are revived in order to clarify the application field of the second‐order work criterion and to contrast these criteria. The first part of this paper analyses the second‐order work criterion at the material point level. The bifurcation domain is presented in the 3D stress space as well as 3D cones of unstable loading directions for an incrementally nonlinear constitutive model. The relevance of this criterion, when the nonlinear constitutive model is expressed in the classical form (dσ = Mdε) or in the dual form (dε = Ndσ), is discussed. In the second part, the analysis is extended to the boundary‐value problems in quasi‐static conditions. Nonlinear finite element computations are performed and the global tangent stiffness matrix is analyzed. For several examples, the eigenvector associated with the first vanishing eigenvalue of the symmetrical part of the stiffness matrix gives an accurate estimation of the failure mode in the homogeneous and nonhomogeneous boundary‐value problem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Fluctuations of temperature and degree of saturation have considerable influence on the mechanical, hydraulic and retention properties of unsaturated soils. Localized failure is a ubiquitous feature of geomaterials. Major research on localized failure of geomaterials has been focused on geomaterials under the isothermal condition. In this article, we study the localized failure of unsaturated soils under non-isothermal conditions. In particular, we derive the isothermal and adiabatic bifurcation conditions from a homogeneous deformation at the constitutive level under a locally drained condition. A recently proposed meso-scale constitutive model for thermal unsaturated soils is used to derive the isothermal and adiabatic acoustic tensors. We present the spectral form of the consistent tangential elasto-plastic operator from a local material integration algorithm. The numerical simulations at the material level are conducted to study the impact of temperature on localized failure of unsaturated soils under the plane strain condition. The numerical results show that the timing and the critical angle of bifurcation are dependent on temperature.  相似文献   

5.
Shear bands with characteristic spatial patterns observed in an experiment for a cubic or parallelepiped specimen of dry dense sand were simulated by numerical bifurcation analysis using the Cam‐clay plasticity model. By incorporating the subloading surface concept into the plasticity model, the model became capable of reproducing hardening/softening and contractive/dilative behavior observed in the experiment. The model was reformulated to be compatible with the multiplicative hyperelasto‐plasticity for finite strains. This enhanced constitutive model was implemented into a finite‐element code reinforced by a stress updating algorithm based on the return‐mapping scheme, and by an efficient numerical procedure to compute critical eigenvectors of elastoplastic tangent stiffness matrix at bifurcation points. The emergence of diamond‐ and column‐like diffuse bifurcation modes breaking uniformity of the materials, followed by the evolution of shear bands through strain localization, was observed in the analysis. In the bifurcation analysis of plane strain compression test, unexpected bifurcation modes, which broke out‐of‐plane uniformity and led to 3‐dimensional diamond‐like patterns, were detected. Diffuse bifurcations, which were difficult to observe by experiments, have thus been found as a catalyst creating diverse shear band patterns.  相似文献   

6.
In nature, due to complex geological process, some geomaterials with block-in-matrix texture exist that characterized by a heterogeneous structure including rock blocks embedded in a small-grained matrix. In literature, these materials also referred as bimrock (block-in-matrix rock). Typical examples of these complex materials are conglomerates, breccias, glacial till, coarse-grained alluviums, and mélanges formations. When dealing with these complex media in engineering, it is important to understand the process by which the geomaterials fail under common loading conditions. In this paper, artificial bimrock specimens were prepared for different percentage of rock block proportions. The failure mechanism under uniaxial compression and indirect tension loading were studied. In order to compare the failure modes with homogeneous specimens, a numerical simulation of laboratory tests including uniaxial compression and Brazilian test was conducted on a typical bimrock and a homogenous specimen. The results showed different features of failure pattern for bimrocks with high proportions of rock blocks in comparison with homogeneous specimens. According to the experimental results, three main features were observed including a continuous tortuous failure surface, multiple localized shear failure surfaces, and detachment of rock blocks from the periphery of specimens.  相似文献   

7.
This paper deals with the hydromechanical modelling of the initiation of failure in soils with particular reference to landslides. To this end, localized and diffused failure modes are simulated with a finite element model for coupled elasto-plastic variably saturated porous geomaterials, in which the material point instability is detected with the second-order work criterion based on Hill’s sufficient condition of stability. Three different expressions of the criterion are presented, in which the second-order work is expressed in terms of generalized effective stress, of total stress and thirdly by taking into account the hydraulic energy contribution for partially saturated materials. The above-mentioned computational framework has been applied to study two initial boundary value problems: shear failure of a plane strain compression test of globally undrained water-saturated dense sand (where cavitation occurs at strain localization) and isochoric grain matter, and the onset of a flowslide from southern Italy due to rainfall (Sarno-Quindici events, May 5–6 1998). It is shown that the second-order work criterion applied at the material point level detects the local material instability and gives a good spatial indication of the extent of the potentially unstable domains in both the localized and diffused failure mechanisms of the cases analyzed, is able to capture the instability induced by cavitation of the liquid water and gives results according to the time evolution of plastic strains and displacement rate.  相似文献   

8.
Diffuse and localized failure modes: Two competing mechanisms   总被引:1,自引:0,他引:1  
The concept of failure is one of the most debated in soil mechanics, for two reasons essentially. First, this is a crucial issue in the engineering of structures and geotechnical project design. Second, this is still a challenging academic issue mobilizing significant scientific interest in the development of a unique framework to describe the different failure modes. In this respect, this paper revisits the localized failure mode, replacing the well‐known Rice criterion within the wider context of bifurcation. Considering a micro‐mechanical model, the main theoretical results are covered. In particular, it is established that localized failure is a particular case of failures observed within the so‐called bifurcation domain: the incremental strain within the localization band is associated with a vanishing value of the second‐order work. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The mathematical properties of diffuse and localized failure modes in fluid‐saturated sands are investigated. The granular medium is modeled as an elastoplastic solid, and a recently proposed set of scalar indices, here referred to as moduli of instability, is used to identify the onset of potential bifurcations of the incremental response. First, the analytical properties of these moduli are discussed, stressing their dependence on the kinematic constraints associated with the imposed deformation modes. Then, by using an elastoplastic model for sands, drained and undrained loading paths are simulated under axisymmetric, plane‐strain and simple shear conditions. For each deformation mode, the instability moduli are computed and monitored throughout the simulations, with the purpose of elucidating the consequences of changes in control conditions. In addition, it is illustrated that suitable linear transformations allow the same strategy to be used to perform drained or undrained shear band analyses and predict the interval of possible band inclinations. The final comparison against literature experiments on loose Hostun sand shows that the instability moduli are indicators of the loss of resistance against specific modes of deformation. As a result, they can be used to identify and explain a number of failure mechanisms that can be commonly observed in experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The volumetric compaction due to wetting processes is a phenomenon observed quite often in unsaturated soils. Under certain circumstances, saturation events can result into a sudden and unexpected collapse of the system. These phenomena are usually referred to as wetting‐induced collapses, without providing any detailed theoretical justification for this terminology. In order to predict in a general fashion the occurrence of coupled instabilities induced by saturation processes, a generalization of the theoretical approaches usually employed for saturated geomaterials is here provided. More specifically, this paper addresses the problem of hydro‐mechanical instability in unsaturated soils from an energy standpoint. For this purpose, an extension of the definition of the second‐order work is here suggested for the case of unsaturated porous media. On the basis of some examples of numerical simulations of laboratory tests, coupled hydro‐mechanical instabilities are then interpreted in the light of this second‐order energy measure. Finally, the implications of the theoretical results here presented are commented from a constitutive modelling perspective. Two possible alternative approaches to formulate incremental coupled constitutive relations are indeed discussed, showing how the onset of hydro‐mechanical instabilities can be predicted using an extended form of Hill's stability criterion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The mechanical behaviour of bonded geomaterials is described by means of an elastoplastic strain‐hardening model. The internal variables, taking into account the ‘history’ of the material, depend on the plastic strains experienced and on a conveniently defined scalar measure of damage induced by weathering and/or chemical degradation. For the sake of simplicity, it is assumed that only internal variables are affected by mechanical and chemical history of the material. Despite this simplifying assumption, it can be shown that many interesting phenomena exhibited by weathered bonded geomaterials can be successfully described. For instance, (i) the transition from brittle to ductile behaviour with increasing pressure of a calcarenite with collapsing internal structure, (ii) the complex behaviour of chalk and other calcareous materials in oedometric tests, (iii) the chemically induced variation of the stress and strain state of such kind of materials, are all phenomena that can be qualitatively reproduced. Several comparisons with experimental data show that the model can capture the observed behaviour also quantitatively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
平面应变状态下土体的软化特性与本构模拟   总被引:3,自引:2,他引:1  
在平面应变状态下,由于土体在应力峰值状态出现了应变局部化现象,从而变形模式失去了原有的均匀性而呈现软化特性。为此,采用常规的弹塑性本构模型模拟土体峰值前的均匀变形,对应力峰值状态则采用非共轴的分叉理论进行预测,而土样在峰值后出现不均匀变形的宏观力学特性则通过复合体理论加以描述。理论预测表明,构建这样的软化本构模型能真实反映平面应变状态下的应力-应变特性。理论分析还表明,经典的变形分叉理论中引入非共轴弹塑性模型,才能准确地预测土体的应力峰值,这是构建平面应变状态下土体软化本构模型的关键所在。  相似文献   

13.
The paper investigates aspects of the localization analysis of frictional materials. We derive closed formulas and diagrams for the inclination angle of critical discontinuity surfaces which develop in homogeneous compression and biaxial loading tests. The localization analysis is based on a Drucker–Prager‐type elastoplastic hardening model for non‐associated plastic flow at small strains, which we represent in spectral form. For this type of constitutive model, general analytical formulas for the so‐called critical hardening modulus and the inclination angle of critical discontinuity surfaces are derived for the plane strain case. The subsequent treatment then specializes these formulas for the analysis of compression and biaxial loading modes. The key contribution here is a detailed analysis of plane strain deformation modes where the localized failure occurs after subsequent plastic flow. The derived formulas and diagrams can be applied to the checking of an accompanying localization analysis of frictional materials in finite‐element computations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Geotechnical experiments show that Lode angle‐dependent constitutive formulations are appropriate to describe the failure of geomaterials. In the present study, we have adopted one such class of failure criteria along with a versatile constitutive relationship to theoretically analyze the effects of Lode angle on localized shear deformation or shear band formation in loose sand for both drained and undrained conditions. We determine the variation in the possible stress states for shear localization due to the introduction of Lode angle by considering the localized deformation as a bifurcation problem. Further, similar bifurcation analysis is performed for the stress states along a specific loading path, namely, plane strain compression at the constitutive level. In addition, the plane strain compression tests have been simulated as a boundary value finite element problem to see how Lode angle affects the post‐localization response. Results show that the inclusion of a Lode angle parameter within the failure criterion has considerable effects on the onset, plastic strain, and propagation of shear localization in loose sand specimens. For drained condition, we notice early inception of shear localization and multiple band formation when the Lode angle‐dependent failure criterion is used. Undrained localization characteristics, however, found to be independent of Lode angle consideration.  相似文献   

15.
Geomaterials such as sand and clay are highly heterogeneous multiphase materials. Nonlocality (or a characteristic length scale) in modeling geomaterials based on the continuum theory can be associated with several factors, for instance, the physical interactions of material points within finite distance, the homogenization or smoothing process of material heterogeneity, and the particle or problem size-dependent mechanical behavior (eg, the thickness of shear bands) of geomaterials. In this article, we formulate a nonlocal elastoplastic constitutive model for geomaterials by adapting a local elastoplastic model for geomaterials at a constant suction through the constitutive correspondence principle of the state-based peridynamics theory. We numerically implement this nonlocal constitutive model via the classical return-mapping algorithm of computational plasticity. We first conduct a one-dimensional compression test of a soil sample at a constant suction through the numerical model with three different values of the nonlocal variable (horizon) δ. We then present a strain localization analysis of a soil sample under the constant suction and plane strain conditions with different nonlocal variables. The numerical results show that the proposed nonlocal model can be used to simulate the inception and propagation of shear banding as well as to capture the thickness of shear bands in geomaterials at a constant suction.  相似文献   

16.
In this paper the second order characteristic (discontinuous bifurcation) condition is derived for the granular flow (fully plastic) equations. This second order bifurcation equation is shown to be formally identical to the first order localization requirement during steady elastoplastic deformation provided the elastic compliance tensor is substituted for the product of the plastic multiplier with the flow Hessian. For isotropic yield and flow functions the invariant form of the characteristic condition is given in detail, as well as an alternative expression in adapted co‐ordinates. The characteristic condition can be regarded as defining a hardening function which is maximized to identify the critical angles. When the method is applied to 3D Coulomb flow, Mohr's 3D fracture plane conditions are obtained uniquely. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The theoretical background and finite element simulations of Red Wildmoor sandstone hollow-cylinder experiments performed under various axial and radial loading conditions are presented together with borehole failure predictions. A non-linear, stress dependent elastic, Mohr–Coulomb elastoplastic constitutive model generalized for three-dimensional Cosserat continua is employed. The failure predictions are based on the bifurcation theory and incorporate the effect of microstructure. Two bifurcation instability criteria are formulated, one for lateral and one for axial failure modes. The effect of fluid flow on borehole failure is investigated with reservoir depletion and drawdown simulations and the results are corroborated through experimental data.  相似文献   

18.
含液各向异性多孔介质应变局部化分析   总被引:4,自引:0,他引:4  
张洪武  周雷  黄辉 《岩土力学》2004,25(5):675-680
工程中的含液多孔介质如饱和或非饱和岩土材料往往具有各向异性特性。采用Rudnicki建立的针对岩土材料的各向异性本构模型,对轴对称压缩试验中的含液多孔介质骨架的各向异性力学行为进行了分析;基于不连续分叉理论,导出了静态非渗流条件下处于轴对称应力状态的含液多孔介质应变局部化发生的临界模量、剪切带方向以及不连续速度矢量的显式表达式,在此基础上计算并讨论了材料参数变化和孔隙液体存在对各向异性多孔介质应变局部化的影响。  相似文献   

19.
The diffused and localized instabilities in sand under drained biaxial loading have been analyzed here following a plane strain bifurcation framework, where the rate independent material is defined using a generalized 3D non-associative constitutive model. This study is focused on how various instability modes emerge with respect to initial density, confining pressure, and the applied boundary conditions. Results from large deformation framework have been compared with those from small deformation approximation and the later is noticed to fail in capturing the emergence of diffused modes and predicts delayed onset of localization. The theoretical predictions compares well with existing experimental observations.  相似文献   

20.
针对岩土介质结构在破坏过程中局部化变形的问题,结合位移不连续的思想,提出内嵌局部软化带模型来捕捉结构中的局部化带。通过虚功原理建立了含局部化带影响的弹黏塑性的有限元计算模式,其中分叉理论作为局部化判断条件。模型将局部化带的形成视为一个黏塑性屈服流动过程,从而能够连续地描述局部化变形前后的力学性质。特点是计算量小、物理意义明确,可以方便地整合到传统有限元分析程序中。算例表明,计算模型是合理和有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号