首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The active acid gas (H2S–CO2 mixture) injection operations in North America provide practical experience for the operators in charge of industrial scale CO2 geological storage sites. Potential leakage via wells and their environmental impacts make well construction durability an issue for efficiency/safety of gas geological storage. In such operations, the well cement is in contact with reservoir brines and the injected gas, meaning that gas–water–solid chemical reactions may change the physical properties of the cement and its ability to confine the gas downhole. The cement-forming Calcium silicate hydrates carbonation (by CO2) and ferrite sulfidation (by H2S) reactions are expected. The main objective of this study is to determine their consequences on cement mineralogy and transfer ability. Fifteen and 60 days duration batch experiments were performed in which well cement bars were immersed in brine itself caped by a H2S–CO2 phase at 500 bar–120 °C. Scanning electron microscopy including observations/analyses and elemental mapping, mineralogical mapping by micro-Raman spectroscopy, X-ray diffraction and water porosimetry were used to characterize the aged cement. Speciation by micro-Raman spectroscopy of brine trapped within synthetic fluid inclusions were also performed. The expected calcium silicate hydrates carbonation and ferrite sulfidation reactions were evidenced. Furthermore, armouring of the cement through the fast creation of a non-porous calcite coating, global porosity decrease of the cement (clogging) and mineral assemblage conservation were demonstrated. The low W/R ratio of the experimental system (allowing the cement to buffer the interstitial and external solution pH at basic values) and mixed species diffusion and chemical reactions are proposed to explain these features. This interpretation is confirmed by reactive transport modelling performed with the HYTEC code. The observed cement armouring, clogging and mineral assemblage conservation suggest that the tested cement has improved transfer properties in the experimental conditions. This work suggests that in both acid gas and CO2 geological storage, clogging of cement or at least mineral assemblage conservation and slowing of carbonation progress could occur in near-well zones where slight water flow occurs e.g. in the vicinity of caprock shales.  相似文献   

2.
The objective of this study is to understand cement alteration processes with the evolution of porosity and hardness under geologic CO2 storage conditions. For this study, the cylindrical cement cores (class G) were reacted with CO2–saturated water in a vessel (40 °C and 8 MPa) for 10 and 100 days. After the experiment, the CO2 concentration and Vickers hardness were measured in the hydrated cement core to estimate the carbonation depth and to identify the change in hardness, respectively. Diffusive-reactive transport modeling was also performed to trace the alteration processes and subsequent porosity changes. The results show that cement alteration mainly results from carbonation. With alteration processes, four different reaction zones are developed: degradation zone, carbonation zone, portlandite depletion zone, and unreacted zone. In the degradation zone, the re-dissolution of calcite formed in the carbonation zone leads to the increase of porosity. In contrast, the carbonation zone is characterized by calcite formation resulting mainly from the dissolution of portlandite. The carbonation zone acts as a barrier to CO2 intrusion by consuming dissolved CO2. Especially in this zone, although the porosity decreases, the Vickers hardness increases. Our results show that cement alteration processes can affect the physical and hydrological properties of the hydrated cement under CO2-saturated conditions. Further long-term observation is required to confirm our results under in-situ fluid chemistry of a CO2 storage reservoir. Nonetheless, this study would be helpful to understand alteration processes of wellbore cements under CO2 storage conditions.  相似文献   

3.
In this paper, we used a theoretical model for the variation of Eulerian porosity, which takes into account the adsorption process known to be the main mechanism of production or sequestration of gas in many reservoir of coal. This process is classically modeled using Langmuir's isotherm. After implementation in Code_Aster, a fully coupled thermo‐hydro‐mechanical analysis code for structures calculations, we used numerical simulations to investigate the influence of coal's hydro‐mechanical properties (Biot's coefficient, bulk modulus), Langmuir's adsorption parameters, and the initial liquid pressure in rock mass during CO2 injection in coal. These simulations showed that the increase in the values of Langmuir's parameters and Biot's coefficient promotes a reduction in porosity because of the adsorption process when the gas pressure increases. Low values of bulk modulus increase the positive effect (i.e., increase) of hydro‐mechanical coupling on the porosity evolution. The presence of high initial liquid pressure in the rock mass prevents the progression of injected gas pressure when CO2 dissolution in water is taken into account. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Geochemical interactions of brine–rock–gas have a significant impact on the stability and integrity of the caprock for long-term CO2 geological storage. Invasion of CO2 into the caprock from the storage reservoir by (1) molecular diffusion of dissolved CO2, (2) CO2-water two-phase flow after capillary breakthrough, and (3) CO2 flow through existing open fractures may alter the mineralogy, porosity, and mechanical strength of the caprock due to the mineral dissolution or precipitation. This determines the self-enhancement or self-sealing efficiency of the caprock. In this paper, two types of caprock, a clay-rich shale and a mudstone, are considered for the modeling analyses of the self-sealing and self-enhancement phenomena. The clay-rich shale taken from the Jianghan Basin of China is used as the base-case model. The results are compared with a mudstone caprock which is compositionally very different than the clay-rich shale. We focus on mineral alterations induced by the invasion of CO2, feedback on medium properties such as porosity, and the self-sealing efficiency of the caprock. A number of sensitivity simulations are performed using the multiphase reactive transport code TOUGHREACT to identify the major minerals that have an impact on the caprock’s self-sealing efficiency. Our model results indicate that under the same hydrogeological conditions, the mudstone is more suitable to be used as a caprock. The sealing distances are barely different in the two types of caprock, both being about 0.6 m far from the interface between the reservoir and caprock. However, the times of occurrence of sealing are considerably different. For the mudstone model, the self-sealing occurs at the beginning of simulation, while for the clay-rich shale model, the porosity begins to decline only after 100 years. At the bottom of the clay-rich shale column, the porosity declines to 0.034, while that of mudstone declines to 0.02. The sensitive minerals in the clay-rich shale model are calcite, magnesite, and smectite-Ca. Anhydrite and illite provide Ca2+ and Mg2+ to the sensitive minerals for their precipitation. The mudstone model simulation is divided into three stages. There are different governing minerals in different stages, and the effect of the reservoir formation water on the alteration of sensitive minerals is significant.  相似文献   

5.
Hydrated Portland cement was reacted with CO2 in supercritical, gaseous and aqueous phases to understand the potential cement alteration processes along the length of a wellbore, extending from a deep CO2 storage reservoir to the shallow subsurface during geologic carbon sequestration. The 3-D X-ray microtomography (XMT) images showed that the cement alteration was significantly more extensive with CO2-saturated synthetic groundwater than dry or wet supercritical CO2 at high P (10 MPa)-T (50 °C) conditions. Scanning electron microscopy with energy dispersive spectroscopy (SEM–EDS) analysis also exhibited a systematic Ca depletion and C enrichment in cement matrix exposed to CO2-saturated groundwater. Integrated XMT, XRD and SEM–EDS analyses identified the formation of an extensive carbonated zone filled with CaCO3(s), as well as a porous degradation front and an outermost silica-rich zone in cement after exposure to CO2-saturated groundwater. Cement alteration by CO2-saturated groundwater for 2–8 months overall decreased the porosity from 31% to 22% and the permeability by an order of magnitude. Cement alteration by dry or wet supercritical CO2 was slow and minor compared to CO2-saturated groundwater. A thin single carbonation zone was formed in cement after exposure to wet supercritical CO2 for 8 months or dry supercritical CO2 for 15 months. An extensive calcite coating was formed on the outside surface of a cement sample after exposure to wet gaseous CO2 for 1–3 months. The chemical–physical characterization of hydrated Portland cement after exposure to various phases of CO2 indicates that the extent of cement carbonation can be significantly heterogeneous depending on the CO2 phase present in the wellbore environment. Both experimental and geochemical modeling results suggest that wellbore cement exposure to supercritical, gaseous and aqueous phases of CO2 during geologic C sequestration is unlikely to damage the wellbore integrity because cement alteration by all phases of CO2 is dominated by carbonation reactions. This is consistent with previous field studies of wellbore cement with extensive carbonation after exposure to CO2 for three decades. However, XMT imaging indicates that preferential cement alteration by supercritical CO2 or CO2-saturated groundwater can occur along the cement–steel or cement–rock interfaces. This highlights the importance of further investigation of cement degradation along the interfaces of wellbore materials to ensure permanent geologic carbon storage.  相似文献   

6.
The CO2 migrated from deeper to shallower layers may change its phase state from supercritical state to gaseous state (called phase transition). This phase transition makes both viscosity and density of CO2 experience a sharp variation, which may induce the CO2 further penetration into shallow layers. This is a critical and dangerous situation for the security of CO2 geological storage. However, the assessment of caprock sealing efficiency with a fully coupled multi-physical model is still missing on this phase transition effect. This study extends our previous fully coupled multi-physical model to include this phase transition effect. The dramatic changes of CO2 viscosity and density are incorporated into the model. The impacts of temperature and pressure on caprock sealing efficiency (expressed by CO2 penetration depth) are then numerically investigated for a caprock layer at the depth of 800 m. The changes of CO2 physical properties with gas partial pressure and formation temperature in the phase transition zone are explored. It is observed that phase transition revises the linear relationship of CO2 penetration depth and time square root as well as penetration depth. The real physical properties of CO2 in the phase transition zone are critical to the safety of CO2 sequestration. Pressure and temperature have different impact mechanisms on the security of CO2 geological storage.  相似文献   

7.
Composite Portland cement–basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2–saturated groundwater at 50 °C and 10 MPa for 3 months under static conditions, while one cement–basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM–EDS data collected along the cement–basalt interface after 3-month reaction with CO2–saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement–basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.  相似文献   

8.
The sequestration of CO2 occurs naturally in (ultra)‐mafic rocks by carbonation processes and is commonly noted in areas of the seafloor where mantle lithologies are exhumed. As well as carbonation, mantle exhumation is also responsible for rock brecciation. The relationship between carbonation and brecciation is not well constrained. A temporal evolution from syn‐ to post‐tectonic carbonation and brecciation is proposed in line with progressive mantle exhumation. Using a petrological study of brecciated material from IODP drill cores of the Iberia–Newfoundland conjugated margins, we relate crack–seal veins to tectonic brecciation, authigenic calcite with scalenohedral structure to hydraulic brecciation and reworked clasts within cement to (tectono)‐sedimentary processes. Oxygen isotope compositions reveal late‐staged < 50°C carbonate generation in the proximal part of the ocean–continent transition, which have followed an earlier phase of sub‐seafloor carbonate generation. The results are crucial to understand CO2 exchange within the reworked sub‐seafloor in passive margins and oceanic systems.  相似文献   

9.
Numerical models are essential tools in fully understanding the fate of injected CO2 for commercial-scale sequestration projects and should be included in the life cycle of a project. Common practice involves modeling the behavior of CO2 during and after injection using site-specific reservoir and caprock properties. Little has been done to systematically evaluate and compare the effects of a broad but realistic range of reservoir and caprock properties on potential CO2 leakage through caprocks. This effort requires sampling the physically measurable range of caprock and reservoir properties, and performing numerical simulations of CO2 migration and leakage. In this study, factors affecting CO2 leakage through intact caprocks are identified. Their physical ranges are determined from the literature from various field sites. A quasi-Monte Carlo sampling approach is used such that the full range of caprock and reservoir properties can be evaluated without bias and redundant simulations. For each set of sampled properties, the migration of injected CO2 is simulated for up to 200 years using the water–salt–CO2 operational mode of the STOMP simulator. Preliminary results show that critical factors determining CO2 leakage rate through caprocks are, in decreasing order of significance, the caprock thickness, caprock permeability, reservoir permeability, caprock porosity, and reservoir porosity. This study provides a function for prediction of potential CO2 leakage risk due to permeation of intact caprock and identifies a range of acceptable seal thicknesses and permeability for sequestration projects. The study includes an evaluation of the dependence of CO2 injectivity on reservoir properties.  相似文献   

10.
In global carbon cycle models, orogenesis is often viewed as a sink for atmospheric CO2, acting on tectonic timescales. However, recent attempts to quantify fluxes for CO2 produced by metamorphic reactions and released to the atmosphere suggest that these are an order‐of‐magnitude greater than CO2 uptake by chemical weathering of silicate minerals, and that metamorphic CO2 is released on millennial timescales. These hypotheses have gained support from both measurements of CO2 emissions from present‐day orogenic hot springs and chromatographic modelling of carbonation reactions in metamorphic rocks from ancient orogens. In this article I review research that attempts to quantify metamorphic CO2 release fluxes, focussing specifically on studies conducted in the SW Scottish Highlands.  相似文献   

11.
12.
Experimental observations clearly show that the relative humidity (hr) conditions influence significantly the creep behavior of cement‐based materials, indicating that the water present within these materials plays a crucial role. This work presents a creep model for hardened cement pastes (HCP), based on a multiscale homogenization approach. It takes into account both free and adsorbed water contained in the porosity and investigates their effects on the HCP macroscopic creep behavior. The calcium silicate hydrate phase is assumed to be linear viscoelastic, and the Mori–Tanaka scheme is applied in the Laplace–Carson space to the composite formed of porosity, calcium silicate hydrate, and the other main hydrated compounds (which behavior is linearly elastic) by making use of the correspondence principle. With this model, estimations of the evolution of the macroscopic creep behavior of HCP submitted to constant external loading are examined under different hr and compared with available experimental data. Finally, a method for implementing the model in a finite element code is proposed, and simulations of standard creep tests are performed to assess its validity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
At sub‐arc depths, the release of carbon from subducting slab lithologies is mostly controlled by fluid released by devolatilization reactions such as dehydration of antigorite (Atg‐) serpentinite to prograde peridotite. Here we investigate carbonate–silicate rocks hosted in Atg‐serpentinite and prograde chlorite (Chl‐) harzburgite in the Milagrosa and Almirez ultramafic massifs of the palaeo‐subducted Nevado‐Filábride Complex (NFC, Betic Cordillera, S. Spain). These massifs provide a unique opportunity to study the stability of carbonate during subduction metamorphism at PT conditions before and after the dehydration of Atg‐serpentinite in a warm subduction setting. In the Milagrosa massif, carbonate–silicate rocks occur as lenses of Ti‐clinohumite–diopside–calcite marbles, diopside–dolomite marbles and antigorite–diopside–dolomite rocks hosted in clinopyroxene‐bearing Atg‐serpentinite. In Almirez, carbonate–silicate rocks are hosted in Chl‐harzburgite and show a high‐grade assemblage composed of olivine, Ti‐clinohumite, diopside, chlorite, dolomite, calcite, Cr‐bearing magnetite, pentlandite and rare aragonite inclusions. These NFC carbonate–silicate rocks have variable CaO and CO2 contents at nearly constant Mg/Si ratio and high Ni and Cr contents, indicating that their protoliths were variable mixtures of serpentine and Ca‐carbonate (i.e., ophicarbonates). Thermodynamic modelling shows that the carbonate–silicate rocks attained peak metamorphic conditions similar to those of their host serpentinite (Milagrosa massif; 550–600°C and 1.0–1.4 GPa) and Chl‐harzburgite (Almirez massif; 1.7–1.9 GPa and 680°C). Microstructures, mineral chemistry and phase relations indicate that the hybrid carbonate–silicate bulk rock compositions formed before prograde metamorphism, likely during seawater hydrothermal alteration, and subsequently underwent subduction metamorphism. In the CaO–MgO–SiO2 ternary, these processes resulted in a compositional variability of NFC serpentinite‐hosted carbonate–silicate rocks along the serpentine‐calcite mixing trend, similar to that observed in serpentinite‐hosted carbonate‐rocks in other palaeo‐subducted metamorphic terranes. Thermodynamic modelling using classical models of binary H2O–CO2 fluids shows that the compositional variability along this binary determines the temperature of the main devolatilization reactions, the fluid composition and the mineral assemblages of reaction products during prograde subduction metamorphism. Thermodynamic modelling considering electrolytic fluids reveals that H2O and molecular CO2 are the main fluid species and charged carbon‐bearing species occur only in minor amounts in equilibrium with carbonate–silicate rocks in warm subduction settings. Consequently, accounting for electrolytic fluids at these conditions slightly increases the solubility of carbon in the fluids compared with predictions by classical binary H2O–CO2 fluids, but does not affect the topology of phase relations in serpentinite‐hosted carbonate‐rocks. Phase relations, mineral composition and assemblages of Milagrosa and Almirez (meta)‐serpentinite‐hosted carbonate–silicate rocks are consistent with local equilibrium between an infiltrating fluid and the bulk rock composition and indicate a limited role of infiltration‐driven decarbonation. Our study shows natural evidence for the preservation of carbonates in serpentinite‐hosted carbonate–silicate rocks beyond the Atg‐serpentinite breakdown at sub‐arc depths, demonstrating that carbon can be recycled into the deep mantle.  相似文献   

14.
The Nuri Cu‐W‐Mo deposit is located in the southern subzone of the Cenozoic Gangdese Cu‐Mo metallogenic belt. The intrusive rocks exposed in the Nuri ore district consist of quartz diorite, granodiorite, monzogranite, granite porphyry, quartz diorite porphyrite and granodiorite porphyry, all of which intrude in the Cretaceous strata of the Bima Group. Owing to the intense metasomatism and hydrothermal alteration, carbonate rocks of the Bima Group form stratiform skarn and hornfels. The mineralization at the Nuri deposit is dominated by skarn, quartz vein and porphyry type. Ore minerals are chalcopyrite, pyrite, molybdenite, scheelite, bornite and tetrahedrite, etc. The oxidized orebodies contain malachite and covellite on the surface. The mineralization of the Nuri deposit is divided into skarn stage, retrograde stage, oxide stage, quartz‐polymetallic sulfide stage and quartz‐carbonate stage. Detailed petrographic observation on the fluid inclusions in garnet, scheelite and quartz from the different stages shows that there are four types of primary fluid inclusions: two‐phase aqueous inclusions, daughter mineral‐bearing multiphase inclusions, CO2‐rich inclusions and single‐phase inclusions. The homogenization temperature of the fluid inclusions are 280°C–386°C (skarn stage), 200°C–340°C (oxide stage), 140°C–375°C (quartz‐polymetallic sulfide stage) and 160°C–280°C (quartz‐carbonate stage), showing a temperature decreasing trend from the skarn stage to the quartz‐carbonate stage. The salinity of the corresponding stages are 2.9%–49.7 wt% (NaCl) equiv., 2.1%–7.2 wt% (NaCl) equiv., 2.6%–55.8 wt% (NaCl) equiv. and 1.2%–15.3 wt% (NaCl) equiv., respectively. The analyses of CO2‐rich inclusions suggest that the ore‐forming pressures are 22.1 M Pa–50.4 M Pa, corresponding to the depth of 0.9 km–2.2 km. The Laser Raman spectrum of the inclusions shows the fluid compositions are dominated in H2O, with some CO2 and very little CH4, N2, etc. δD values of garnet are between ?114.4‰ and ?108.7‰ and δ18OH2O between 5.9‰ and 6.7‰; δD of scheelite range from ?103.2‰ to ?101.29‰ and δ18OH2O values between 2.17‰ and 4.09‰; δD of quartz between ?110.2‰ and ?92.5‰ and δ18OH2O between ?3.5‰ and 4.3‰. The results indicate that the fluid came from a deep magmatic hydrothermal system, and the proportion of meteoric water increased during the migration of original fluid. The δ34S values of sulfides, concentrated in a rage between ?0.32‰ to 2.5‰, show that the sulfur has a homogeneous source with characteristics of magmatic sulfur. The characters of fluid inclusions, combined with hydrogen‐oxygen and sulfur isotopes data, show that the ore‐forming fluids of the Nuri deposit formed by a relatively high temperature, high salinity fluid originated from magma, which mixed with low temperature, low salinity meteoric water during the evolution. The fluid flow through wall carbonate rocks resulted in the formation of layered skarn and generated CO2 or other gases. During the reaction, the ore‐forming fluid boiled and produced fractures when the pressure exceeded the overburden pressure. Themeteoric water mixed with the ore‐forming fluid along the fractures. The boiling changed the pressure and temperature, oxygen fugacity, physical and chemical conditions of the whole mineralization system. The escape of CO2 from the fluid by boiling resulted in scheelite precipitation. The fluid mixing and boiling reduced the solubility of metal sulfides and led the precipitation of chalcopyrite, molybdenite, pyrite and other sulfide.  相似文献   

15.
Geological sequestration of CO2 into depleted hydrocarbon reserviors or saline aquifers presents the enormous potential to reduce greenhouse gas emission from fossil fuels. However, it may give rise to a complicated coupling physical and chemical process. One of the processes is the hydro-mechanical impact of CO2 injection. During the injection project, the increase of pore pressures of storing formations can induce the instability, which finally results in a catastrophic failure of disposal sites. This paper focuses mainly on the role of CO2-saturated water in the fracturing behavior of rocks. To investigate how much the dissolved CO2 can influence the pore pressure change of rocks, acoustic emission (AE) experiments were performed on sandstone and granite samples under triaxial conditions. The main innovation of this paper is to propose a time dependent porosity method to simulate the abrupt failure process, which is observed in the laboratory and induced by the pore pressure change due to the volume dilatancy of rocks, using a finite element scheme associated with two-phase characteristics. The results successfully explained the phenomena obtained in the physical experiments.  相似文献   

16.
In CO2 geological storage (CGS) context, the evolution of the caprock sealing capacity has received increasing attention, particularly on a geological time span (thousands of years). At this time scale, geochemical reactions may enhance or weaken the caprock quality. It is widely recognized that, for the reservoir, geological heterogeneities affect the concentration and spatial distribution of CO2, and then affect the extent of gas–water–rock interactions, which in turn alters the hydrogeological properties of the reservoir. However, much less attention of these effects has been paid to the caprock. In this study, we presented and applied a novel approach to evaluate the effects of permeability and porosity heterogeneities on the alteration of minerals, the associated evolution of the caprock sealing efficiency and the containment of supercritical CO2 (scCO2) within the caprock. Even though this is a generic study, several conditions and parameters such as pressure, permeability, and mineral composition, were extracted from a caprock layer of the Shiqianfeng Formation in the Ordos Basin demonstration site in China. For the sake of simplification, a 2-dimensional model was designed to represent the caprock domain. We firstly generated an appropriate heterogeneous random field of permeability with the average permeability taken from the uppermost mudstone layer of the Shiqianfeng Formation, and then the heterogeneity in porosity was incorporated using a joint normal distribution method based on the available data. Homogeneous mineral compositions of the reservoir and caprock were used in all simulations. Simulations of three cases were performed, including a homogeneous case, a case with only permeability heterogeneity and a case with both permeability and porosity heterogeneities. The results demonstrate dramatic influences of permeability and porosity heterogeneities on the migration of scCO2 within the caprock, the alteration of minerals, and therefore the evolution of the caprock sealing quality. Specific to the data used in this study, hydrogeological heterogeneities facilitated the overall penetration of scCO2 within the caprock and promoted the alteration of minerals, thereby weakening the caprock sealing efficiency over the simulation time.  相似文献   

17.
A hierarchical mathematical model for analyses of coupled chemo‐thermo‐hygro‐mechanical behaviour in concretes at high temperature is presented. The concretes are modelled as unsaturated deforming reactive porous media filled with two immiscible pore fluids, i.e. the gas mixture and the liquid mixture, in immiscible–miscible levels. The thermo‐induced desalination process is particularly integrated into the model. The chemical effects of both the desalination and the dehydration processes on the material damage and the degradation of the material strength are taken into account. The mathematical model consists of a set of coupled, partial differential equations governing the mass balance of the dry air, the mass balance of the water species, the mass balance of the matrix components dissolved in the liquid phases, the enthalpy (energy) balance and momentum balance of the whole medium mixture. The governing equations, the state equations for the model and the constitutive laws used in the model are given. A mixed weak form for the finite element solution procedure is formulated for the numerical simulation of chemo‐thermo‐hygro‐mechanical behaviours. Special considerations are given to spatial discretization of hyperbolic equation with non‐self‐adjoint operator nature. Numerical results demonstrate the performance and the effectiveness of the proposed model and its numerical procedure in reproducing coupled chemo‐thermo‐hygro‐mechanical behaviour in concretes subjected to fire and thermal radiation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The Triassic–Jurassic South Georgia Rift (SGR) Basin, buried beneath Coastal Plain sediments of southern South Carolina, southeastern Georgia, western Florida, and southern Alabama, consists of an assemblage of continental rift deposits (popularly called red beds), and mafic igneous rocks (basalt flows and diabase sills). The red beds are capped by basalts and/or diabase sills, and constitute the target for supercritical CO2 storage as part of a Department of Energy funded project to study the feasibility for safe and permanent sequestration. The purpose of this research is to evaluate subsurface suitability for underground CO2 storage in terms of the local and regional distribution of porous and permeable reservoirs. In addition, unlike shale-capped CO2 reservoirs, very little is known about the ability of basalts and diabase sills to act as viable seals for CO2 storage. New results demonstrate the presence of confined porous rocks that may be capable of storing significant quantities of supercritical CO2. Reservoir thicknesses as high as 420 m and an average porosity as high as 14 % were obtained. The SGR Basin manifests distinct porosity–permeability regimes that are influenced by the depositional environments. These are: a high-porosity, medium/low-permeability zone associated with lacustrine deposits, a medium/low-porosity, low-permeability zone dominated by fluvial fine- to very fine-grained sandstone, and an extremely low porosity and permeability zone characterized by fluvial and alluvial-fan deposits. Analyses further show that the basalt flows and diabase sills are characterized by low porosity as well as high seismic velocities and densities that are favorable to caprock integrity.  相似文献   

19.
Fluid inclusions in the metamorphic aureole of the Eureka Valley‐Joshua Flat‐Beer Creek (EJB) pluton in the White‐Inyo Range, California, reveal the compositions and origin of fluids that were present during variable recrystallization of quartzite with sedimentary grain shapes to metaquartzite with granoblastic texture. Metamorphosed sedimentary formations, including quartzites, marbles, calcsilicates and schists, became ductile and strongly attenuated in the aureole during growth of the magma chamber. The microstructures of quartzites have an unusual distribution in that within ~250 m from the pluton, where temperatures exceeded 650 °C, they exhibit relict sedimentary grain shapes, only small amount of grain boundary migration (GBM), and crystallographic preferred orientations (CPOs) dominated by <a> slip. At distances >250 m, quartzites were completely recrystallized by GBM and CPOs are indicative of prism [c] slip, characteristics that are typically associated with H2O‐assisted, high‐T recrystallization. The lack of extensive GBM in the inner aureole can be attributed to rapid replacement of H2O by CO2 produced by reaction of quartz grains with calcite cement that also produced interstitial wollastonite. Fluid inclusions in the inner aureole generally occur in margins of quartz grains and are either wholly aqueous (Type 1) or also contain H2S, CO2 and CH4 (Type 2). Type 2 inclusions occur only in some stratigraphic layers. In both inclusion types, NaCl and CaCl2, in variable proportions, dominate the solutes in the aqueous phase, whereas FeCl2 and KCl are less abundant solutes. The solutes indicate attainment of a degree of equilibrium with carbonates and schists that are interbedded with the quartzites. Some Types 1 and 2 inclusions in the inner aureole show evidence of decrepitation due to high amounts of strain and/or heating suffered by the host rocks, which suggests that they represent pore fluids that existed in the rocks prior to contact metamorphism. In addition to Type 1 inclusions, outer aureole quartzites also contain inclusions that contain CO2 vapour bubbles in addition to aqueous phase (Type 3). These inclusions only occur in interiors of granoblastic quartz that was produced by large amounts of GBM. The aqueous phase has identical ranges of first melting and final ice melting temperatures as Type 1 inclusions, suggesting that they have the same solute compositions. These inclusions are thought to represent the interstitial pore H2O that promoted recrystallization of quartz and reacted with graphite to produce CO2. Absence of significant amounts of CH4 in Type 3 inclusions is attributed to elevated fO2 that was buffered by mineral assemblages in interbedded schists. As opposed to the large amount of CO2 that was produced by the wollastonite‐forming reaction in the inner aureole to inhibit GBM, the amount of CO2 produced in the outer aureole by reaction between H2O and graphite was apparently insufficient to inhibit recrystallization of quartz.  相似文献   

20.
The integrity of wells, which are key components for CO2 sequestration, depends mainly on the seal between the wellbore cement and the geologic formation. To identify the reaction products that may alter the cement/caprock interface, batch experiments and computer modelling were conducted and analysed. Over time, the dissolution and precipitation of minerals alters the physical properties of the interface, including its tightness. One main objective of the simulation was thus to analyse the evolution of the porosity of cement and caprock over time. The alteration of the cement/caprock interface was identified as a complex problem and differentiated depending on rock type. The characteristic feature of a cement/shale contact zone is the occurrence of a highly carbonated, compacted layer within the shale, which in turn causes cement/shale detachment. In the case of a cement/anhydrite interface, the most important reaction is severe anhydrite dissolution. Secondary calcite precipitation takes place in deeper parts of the rock. The cement/rock contact zone is prone to rapid mineral dissolution, which contributes to increased porosity and may alter the well integrity. Comparison of computer simulations with autoclave experiments enabled the adjustment of unknown parameters. This enhances the knowledge of these particular assemblages. Overall, a good match was obtained between experiments and simulations, which enhances confidence in using models to predict longer-term evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号