首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The seedlings of Halocnermum strobilaceum were cultivated in 0.5% hoagland nutrient solution containing 0.0%, 0.9%, 2.7% and 5.4% of NaCl as well as composite salt (Na+, Ca2+, K+, Si4+) for 20 days; all the contents are in weight ratio. Succulent level, inorganic ions (Na+, K+), organics such as betaine, proline, malondialdehyde, and antioxidant enzyme activities including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), betaine aldehyde dehydrogenase (BADH) were measured to reveal its salt tolerance mechanism. When the composite salt concentration reaches 5.4%, SOD activity level, and MDA content is five times the control group; when it reaches 2.7%, the succulent level of seedlings, and the content of K+ in roots is nearly two times the NaCl treatment; the dry weight is more than three times the control group; with the NaCl treatment, MDA is three times the contrast; when the salt concentration is 2.7%, POD reaches the maximum. Results indicate that Si4+, K+, and Ca2+ from composite salt in the roots of H. strobilaceum improved the water-holding capacity. The activities of antioxidant enzyme were raised by the accumulation of proline and betaine, which increased the salt tolerance. The absorption of K+ promoted the high ratio of K+/Na+ and alleviated the damage of cell membranes of H. strobilaceum, which is associated with osmotic contents such as betaine and proline.  相似文献   

3.
NaCl胁迫对骆驼蓬幼苗液泡膜H+-ATPase和H+-PPase活性的影响   总被引:5,自引:3,他引:2  
 研究了不同浓度NaCl胁迫对骆驼蓬幼苗Na+、K+含量及液胞膜H+-ATP酶(H+-ATPase)和H+-焦磷酸酶(H+-PPase)活性的影响。结果表明,NaCl胁迫浓度的增加使骆驼蓬幼苗根、叶中的K+含量下降,Na+含量和Na+/K+比及K+对Na+的吸收和运输选择性增高;根、叶液胞膜H+-ATPase和H+-PPase活性升高,H+-ATP酶耦联比率无显著变化;根液胞膜依赖ATP和PPi的质子泵活性及Na+/H+逆向转运活性先升后降,叶依赖ATP的质子泵活性及Na+/H+逆向转运活性升高,依赖PPi的质子泵活性先升后降。说明液泡膜H+-ATPase和H+-PPase驱动的质子泵和Na+/H+逆向转运活性对Na+在液泡内的积累及其骆驼蓬的耐盐性起重要作用。  相似文献   

4.
Salinity-induced growth and some metabolic changes in three Salsola species   总被引:2,自引:0,他引:2  
Three Salsola species, Salsola dendroides Pall., S. richteri (Moq.) Karel ex Litw. and S. orientalis S.C. Gmel., were compared for their salt tolerance, inorganic ionic accumulation and their biomass production in saline conditions. Seeds were grown on sterilized quartz under five salinity levels in a factorial experimental design, with four replications, in greenhouse conditions.With salinity, Na+ accumulation increased while K+ accumulation decreased. All three species showed positive shoot growth for low levels of salinity. Root growth showed almost the same trend as shoot growth, with minor exceptions. At low levels of salinity, proline accumulated more in S. dendroides plant tissues than in the tissues of the other two species. These results suggest that the proline accumulation is a good index for salinity tolerance. Soluble sugars also increased as a result of salinity.  相似文献   

5.
We present 137Cs profiles for three low lying coastal lagoons in Southwest England that show a decline in activity with sediment depth. 137Cs inventories are lower than expected by comparison with local reference inventories despite the fact that sampling was undertaken in the deep-water zone of each lake where sediment and 137Cs focusing would be expected. At all three locations, lake sediment 7Be and unsupported 210Pb (210Pbun) inventories are not significantly lower than the local reference inventory. 137Cs inventories in the study cores range from 38 to 95% of local reference inventories. The standing water level and mud: water interface at two sites are below maximum tide level and, at all three sites, salinity increases significantly in the water columns between low and high tide and in the pore waters of the underlying sediments. We suggest that the difference in hydrostatic pressure between sea level and standing water levels in the lagoons forces salt water up through the sediment column and that monovalent cations (especially Na+ and K+) replace 137Cs on exchange sites leading to the upward migration and loss of 137Cs. Rising sea levels may therefore contribute to remobilisation and release of 137Cs to the aquatic environment from the sediments of coastal lagoons.  相似文献   

6.
Soils of different vegetation types of the Saudi Arabian Gulf coast, dominated by mangrove, salt marsh and desert plant communities have been analysed for their soil profiles, texture, salinity, pH, water content and ionic concentration (Ca2+, Cl, K+, Na+, SO42−). The results show some important relationships between soils and plants. Special emphasis was given to the dominant intertidal plantsAvicennia marina, Arthrocnemum macrostachyum, Salicornia europaea, Halocnemum strobilaceum, Halopeplis perfoliata, Limonium axillare, the terrestrialZygophyllum qatarense, and non-vegetated sabkhas.  相似文献   

7.
Soils of arid regions of Central Asia contain salts of different types that may differentially affect seed germination and plant development. We studied effect of NaCl, Na2SO4, 2NaCl + KCl + CaCl2 and 2Na2SO4+K2SO4+MgSO4 on germination of Kochia prostrata and Kochia scoparia seeds under a range of concentrations from 0.5 to 5% and at two constant temperature regimes +22 °C and +6 °C. The observed salt tolerance limit of germination at constant temperature +22 °C for both species was 5-6%, while at low temperature (+6 °C) this limit was 2%. The salt tolerance of young plants (before flowering) was 3% for NaCl. Low concentrations of sulfuric and mixed salts had a stimulating effect on seed germination in K. prostrata. Despite similarity of salt-tolerance limits the studied species showed a significant difference in seed recovery ability, i.e. the ability of ungerminated, salt-soaked seeds to germinate after transfer to fresh water. K. scoparia demonstrated a full germination recovery after seed transfer to distilled water while K. prostrata showed only a partial recovery.  相似文献   

8.
The alleviative effects of exogenous salicylic acid(SA) on plants against drought stress were assessed in Gardenia jasminoides seedlings treated with different concentrations of SA.Drought stress was simulated to a moderate level by 15% polyethylene glycol(PEG) 6000 treatment.Seedlings exposed to 15% PEG for 14 days exhibited a decrease in aboveground and underground dry mass,seedling height,root length,relative water content,photosynthetic pigment content,net photosynthetic rate(Pn),transpiration rate(Tr),stomatal conductance(Gs),and water use efficiency.In PEG-stressed plants,the levels of proline,malondialdehyde(MDA),hydrogen peroxide(H_2O_2),and electrolyte leakage rose significantly,whereas antioxidative activity,including superoxide,peroxidase,and catalase activities,declined in leaves.However,the presence of SA provided an effective method of mitigating PEG-caused physiological stresses on G.jasminoides seedlings,which depended on SA levels.PEG-treated plants exposed to SA at 0.5–1.0 mmol/L significantly eased PEG-induced growth inhibition.Application of SA,especially at concentrations of 0.5–1.0 mmol/L,considerably improved photosynthetic pigments,photosynthesis,antioxidative activity,relative water content,and proline accumulation,and decreased MDA content,H_2O_2 content,and electrolyte leakage.By contrast,the positive effects were not evident,or even more severe,in PEG+SA4 treatment.Based on these physiological and biochemical data,a suitable concentration of SA,potential growth regulators,could be applied to enhance the drought tolerance of G.jasminoides.  相似文献   

9.
盐角草(Salicornia europaea)对NaCl处理的生理响应   总被引:1,自引:0,他引:1  
用含有NaCl的Hoagland培养液处理盐角草(Salicornia europaea)11d。检测其鲜重,干重,离子含量,电导率,溶解性总固体(TDS)含量,超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性及丙二醛(MDA)浓度。结果表明:随着NaCl浓度的增加,盐角草干重和鲜重呈现先上升后下降的趋势,相对电导率、TDS、SOD、POD、CAT及MDA均呈现先下降后上升的趋势,在NaCl溶液浓度为200mmol·L-1左右时,干重和鲜重的值达到最大,电导率、TDS、SOD、POD、CAT、MDA含量达到最小值;500mmol·L-1和800mmol·L-1时,SOD和CAT活性下降,电导率、TDS、POD、MDA含量则急剧上升。由此说明,一定浓度的NaCl溶液促进了盐角草的生长,200mmol·L-1左右是其生长的最适浓度,500mmol·L-1和800mmol·L-1高盐浓度会对盐角草的膜结构、酶系统等造成不同程度的损伤。盐角草主要将Na+、K+积累在地上部,且随着NaCl处理浓度的增大,Na+含量逐渐增加、K+含量逐渐降低,这可能是盐角草调节细胞内离子平衡对抗盐胁迫的一种适应策略。  相似文献   

10.
We have measured the distribution coefficient (Kd) of210Po and210Pb in laboratory systems and in natural freshwater systems. In the laboratory systems, an inverse relationship was observed between the particle concentration of sand or lake sediment, and the distribution coefficients of210Po and210Pb. The slope of the log-linearK d vs particle concentration relation is consistent with existingK d-particle concentration theories. These laboratory observations are consistent with similar measurements in two lakes. TheK d values of Po and Pb for the bottom sediment-pore water system with a high particle concentration were 10 to 100 times lower than those for dilute concentrations of particles suspended in the lake water. TheK d of210Pb in the sediments was >104 so that the diffusive transport of210Pb has only a small influence on the interpretation of210Pb concentration-depth profiles and the210Pb dating of these sediments.This is the second of a series of papers to be published by this journal following the 20th anniversary of the first application of210Pb dating of lake sediments. Dr P. G. Appleby is guest editing.  相似文献   

11.
霸王(Zygophyllum xanthoxylum)是荒漠区广为分布的一种多浆旱生植物。采用盆栽育苗的方法,初步评价了干旱胁迫下Na+对霸王根系生长的贡献,探讨了一种新型钠复合肥对霸王根系形态、生理学指标的影响。结果显示,钠复合肥能显著促进霸王根系的生长并提高其抗旱性:(1)正常浇水时,钠复合肥对霸王的促进作用主要体现在株高的增加和侧根的增长上,根系活力显著增强;(2)自然干旱15d后,钠复合肥使得霸王根系活跃吸收面积显著提高24%,促进主根的加粗和伸长以吸收更多的水分和矿质养分;(3)干旱胁迫下,钠复合肥处理使霸王根部Na+浓度保持较高水平,K+浓度下降42%。因此认为,干旱前钠复合肥显著促进了霸王侧根的生长和根系活力的提高,干旱后钠复合肥通过促进根系活跃吸收面积的扩大和主根的生长以提高霸王的抗旱性,其主要原因是根和叶中积累了较多的Na+、而非K+。  相似文献   

12.
General responses to salt stress have been investigated in the halophyte Plantago crassifolia. Seed germination was strongly inhibited by NaCl, although seed viability and germination capacity were not affected by salt pre-treatments. A concentration-dependent inhibition of plant growth was observed in the presence of NaCl, which was accompanied by the accumulation of Na+ ions in the leaves, as determined by cation exchange HPLC. A 20-fold increase of proline content in leaves was observed when plants were treated with 500 m NaCl, suggesting a protective role against high salinity stress for this amino acid, whose possible mechanism of action is discussed.  相似文献   

13.
为研究内陆盐沼植物群落的分布对土壤盐分的响应特征,选取鄂尔多斯盐湖盐沼区作为研究区,筛选了肉质耐盐植物群落,苔草植物群落和禾草植物群落3类典型植物群落,开展了土壤含水量、pH、电导率以及Na+,K+,Mg2+,Ca2 +,Cl-、SO42-、CO32-和HCO3-的测定,分析了区内典型植物群落对土壤水盐因子的响应规律。探讨了3类植物群落之间土壤因子含量的差异性;采用相关性分析和CCA分析,评价了3类植物群落多样性及物种分布随土壤因子的变化规律。结果表明,区内3类植物群落中,土壤盐分含量表现为肉质耐盐植物群落最高,苔草植物群落最低,禾草植物群落居中;植物多样性与土壤中含量最高的Na+和SO42-的相关性最显著;植物分布同时受到土壤盐分、水分和pH的显著影响。研究结果可为鄂尔多斯盐湖区土壤盐渍化改良和植被恢复提供理论支撑。  相似文献   

14.
Post-depositional mobility of137Cs,239+240Pu and210Pb was assessed in six small lake basins by comparing sedimentary nuclide profiles with their known fallout history. Laminae couplets, when present, were determined to be varves because the137Cs and239+240Pu 1963 fallout peaks are present in laminae couplets corresponding to years 1962–1964. There is no evidence of mobility of210Pb, because 1) mass accumulation rates based on210Pb agree with those based on137Cs and239+240Pu peak depths and with those based on varve counts, and 2)210Pb ages agree with varve ages. Significant mobility of137Cs is evident from the penetration of137Cs to depths 15–20 cm deeper than239+240Pu. Deep penetration of137Cs in spite of a sharp gradient below the peak is interpreted by a numerical model to suggest that137Cs is present in two distinct forms in these sediments, 67–82% as an immobile form and 18–33% reversibly adsorbed with a K d of approximately 5000. The profiles can be interpreted equally well assuming a small portionof the total137Cs was present as an extremely mobile phase (K d 5000) in the months to years following peak fallout, slowly becoming more strongly adsorbed. High NH 4 + concentrations in porewaters may enhance diffusion of the mobile form of137Cs, but not of the immobile form of137Cs that defines the sharp gradient. Mobility of137Cs is likely also enhanced by the low clay content and the high porosity of these sediments. Thus the first detection of137Cs in the sediments cannot automatically be assumed to correspond to a date of 1952 (initial testing of thermonuclear weapons), although the depth of the peak can be assumed to correspond to 1963 (the year of maximum fallout from testing of thermonuclear weapons).239+240Pu is a more reliable sediment chronometer than137Cs because it is significantly less mobile.This is the sixth of a series of papers to be published by this journal following the 20 th anniversary of the first application of210Pb dating of lake sediments. Dr P.G. Appleby is guest editing this series.  相似文献   

15.
Salinization and alkalinization are increasing problems in the world. Some land has been degraded to bare saline-alkaline soil where vegetation restoration is difficult because high toxic ionic content and pH are harmful to the survival of introduced plants. We grew Leymus chinensis with and without arbuscular mycorrhizal fungi (Glomus mosseae and G. geosporum) in either pots filled with soil from bare saline-alkaline land, or transplanted seedlings into field plots, to determine the influence of AM fungi on the reestablishment of this dominant grass species in bare degraded land. Association with AM fungi increased the absorption of N, P, K+, Ca2+, but decreased Mg2+, Na+ and Cl uptake under saline-alkaline stress. Therefore, higher K/Na, Ca/Na, P/Na, and P/Cl ratios were found in the inoculated plants. Plants inoculated with AM fungi accumulated significantly higher biomass, root/shoot ratio and tiller number than non-inoculated plants. AM fungi also significantly increased the survival of seedlings when they were transplanted into a bare saline-alkaline land in the field. The improvement of survival, growth and asexual reproduction of inoculated plants indicated that the plant-AM fungi mutualism could improve the reestablishment of vegetation in bare saline-alkaline soil, drive the vegetation restoration to a community dominated by original species.  相似文献   

16.
Three-week old soybean (Glycine max) plants were subjected to a factorial combination of four regimes of soil matric water potential (ψm=−0·03, −0·5, −1·0 and −1·5 MPa), two levels of supplementary Zn (O and 20 mgl−1) and two levels of foliar IAA application (O and 10 mgl−1). Under control conditions (no Zn, no IAA), increasing soil drying progressively retarded shoot and root growth (length and dry mass production), reduced leaf relative water content (RWC) and decreased the contents of chlorophyll (Chl) and shoot soluble sugars (SS), but increased soluble sugar content of roots and lowered osmotic water potential of shoots and roots (osmotic adjustment). Total free amino acid (TAA) content increased in shoots but decreased in roots whereas contents of soluble proteins (SP) decreased in shoots and roots. The effect of water stress was statistically significant (p<0·05) and had a major effect (as indicated by η2values) on leaf RWC, shoot and root dry masses and osmotic potential. Supplementary Zn improved root growth at all levels of stress and shoot growth under severe stress. Improvement of growth was positively correlated with the internal tissue Zn concentrations (r=0·91 and 0·86 for shoot and 0·94 and 0·82 for root length and dry mass respectively). Exogenous IAA raised (p<0·05) RWC, Chl, DM (slightly), root SS, and SP, whereas shoot TAA was lowered. Effects on root TAA and shoot SS were more complex: they were lowered at zero stress and raised under severe stress. IAA and Zn in combination had additive effects on Chl, growth and osmotic potential, but their combined effects on SP and TAA were more complex. It is concluded that the treatment of soybean plants grown under conditions of low soil water potentials and Zn deficiency with Zn and IAA solutions counteracted the deleterious effects of stress, especially at high stress levels, and helped stressed plants to grow successfully under these adverse unfavourable conditions.  相似文献   

17.
Soil salinity is a major abiotic stress influencing plant productivity worldwide. Schinopsis quebracho colorado is one of the most important woody species in the Gran Chaco, an arid and salt-prone subtropical biome of South America. To gain a better understanding of the physiological mechanisms that allow plant establishment under salt conditions, germination and seedling growth of S. quebracho colorado were examined under treatment with a range of NaCl solutions (germination: 0–300 mmol l−1 NaCl; seedling growth: 0–200 mmol l−1 NaCl). The aim was to test the hypothesis that S. quebracho colorado is a glycophite that shows different salt tolerance responses with development stage. Proline content, total soluble carbohydrates and Na+, K+ and Cl concentrations in leaves and roots of seedlings, and the chlorophyll concentration and relative water content of leaves were measured. Germination was not affected by 100 mmol l−1 NaCl, but decreased at a concentration of 200 mmol l−1. At 300 mmol l−1 NaCl, germination did not occur. Seedling growth decreased drastically with increasing salinity. An increase in NaCl from 0 to 100 mmol l−1 also significantly reduced the leaf relative water content by 22% and increased the proline concentration by 60% in roots. In contrast, total soluble carbohydrates were not significantly affected by salinity. Seedlings showed a sodium exclusion capacity, and there was an inverse correlation between Cl concentration and the total chlorophyll concentration. S. quebracho colorado was more tolerant to salinity during germination than in the seedling phase. The results suggest that this increased tolerance during germination might, in part, be the result of lower sensitivity to high tissue Na+ concentrations. The significant increment of proline in the roots suggests the positive role of this amino acid as a compatible solute in balancing the accumulation of Na+ and Cl as a result of salinity. These results help clarify the physiological mechanisms that allow establishment of S. quebracho colorado on salt-affected soils in arid and semi-arid Gran Chaco.  相似文献   

18.
Carbon and oxygen isotope ratios of bone apatite were measured in 14 endothermic and ectothermic vertebrates native to the Chihuahuan Desert and collected in June and July of 1999 and 2000. The δ8O values of most reptiles were very high, up to 44‰ (standard mean ocean water (SMOW), some of the highestδ18 O values ever measured for an animal. The δ18O values of rodents and birds were lower (32±5‰ vSMOW), and the earless lizard Holbrookia maculata were the lowest of all species analysed (25‰). Omnivorous grasshopper mice (Onychomys torridus) had lower δ18O values than granivorous rodents. Results from oxygen analysis likely reflect variation in diet and body water flux differences between endotherms and ectotherms. Carbon isotope analysis revealed a dramatic shift in diet from C3 plants in 1999 to C4 plants in 2000 in most rodents and birds. Kangaroo rats and reptiles did not change, having a constantδ13 C value indicative of a C3-based diet in both years. This suggests reliance on winter annual plant seed caches for kangaroo rats, but not other rodents. The carbon isotope data can be explained in terms of seasonal differences within and between years in the timing and intensity of the seasonal rainfall events, and the productivity of summer and winter annual plants. This study illustrates that stable isotope analysis is a powerful method for tracking dietary change and feeding behavior in desert vertebrates.  相似文献   

19.
Sediments of the marl lake Malham Tarn located in NW Englandpreserve an environmental record since 12 Ka. Eight Holocene pollen zones wereidentified, and the 13C of total organic carbon (TOC) showsthree stratigraphic divisions. The basal clay unit and overlayingsand/clay/marl unit have 13C of –24which decreases at the base of the principal marl unit to a mean value around–30, whilst the topmost black marl unit 13Cincreases to –28 at the surface. Representative samples of theseunits were selected for analysis of n-alkanes andn-fatty acids and their 13C.Samples of modern Chara and peat were analysed forcomparison. The clay unit has a minor contribution of redeposited matureorganic matter and autochthonous algae, the marl unit a high contribution ofChara, and the dark marl unit has a high contribution fromhigher plants. Compound-specific 13C revealssystematic differences between alkanes and fatty acids of different chainlength. The major shift in 13C in the short and medium chainfatty acids are probably due to the decreasing influence of carbonate rockflour as source of DIC. The major shift in 13C in the longchain n-fatty acids andn-alkanes could reflect the lower atmosphericCO2 concentration at Last Glacial. The negative shift of short chainfatty acids in organic rich dark marls reflects introduction of detrital peatinto the lake. The 13C results show a dramatic change fromdominance of autochthonous plus eroded sources up to Pollen Zone IV, then slowcolonisation of the hinterland by higher plants, followed by constantChara contributions throughout the deposition of the marl,and a further increase of higher plant material after the rise in water levelin 1791.  相似文献   

20.
This study demonstrates use of compound-specific radiocarbon analysis (CSRA) for dating Holocene lacustrine sediments from carbonate-hosted Ordy Pond, O‘ahu, Hawai‘i. Long-chain odd-numbered normal alkanes (n-alkanes), biomarkers characteristic of terrestrial higher plants, were ubiquitous in Ordy Pond sediments. The δ13C of individual n-alkanes ranged from −29.9 to −25.5‰, within the expected range for n-alkanes synthesized by land plants using the C3 or C4 carbon fixation pathway. The 14C ages of n-alkanes determined by CSRA showed remarkably good agreement with 14C dates of rare plant macrofossils obtained from nearby sedimentary horizons. In general, CSRA of n-alkanes successfully refined the age-control of the sediments. The sum of n-alkanes in each sample produced 70–170 μg of carbon (C), however, greater age errors were confirmed for samples containing less than 80 μg of C. The 14C age of n-alkanes from one particular sedimentary horizon was 4,155 years older than the value expected from the refined age-control, resulting in an apparent and arguable age discrepancy. Several lines of evidence suggest that this particular sample was contaminated by introduction of 14C-free C during preparative capillary gas chromatography. This study simultaneously highlighted the promising potential of CSRA for paleo-applications and the risks of contamination associated with micro-scale 14C measurement of individual organic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号