首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The D′′ region that lies just above the core mantle boundary exhibits complex anisotropy that this is likely due to preferred orientation (texturing) of the constituent minerals. (Mg,Fe)SiO3 post-perovskite is widely thought to be the major mineral phase of the D′′. Texture development has been studied in various post-perovskite phases (MgSiO3, MgGeO3, and CaIrO3), and different results were obtained. To clarify this controversy, we report on transformation and deformation textures in MgGeO3 post-perovskite synthesized and deformed at room temperature in the diamond anvil cell. Transformed from the enstatite phase, MgGeO3 post-perovskite exhibits a transformation texture characterized by (100) planes at high angles to the direction of compression. Upon subsequent deformation, this texture changes and (001) lattice planes become oriented nearly perpendicular to compression, consistent with dominant (001)[100] slip. When MgGeO3 post-perovskite is synthesized from the perovskite phase, a different transformation texture is observed. This texture has (001) planes at high angle to compression and becomes slightly stronger upon compression. We also find that the yield strength of MgGeO3 post-perovskite is dependent on grain size and texture. Finer-grained samples exhibit higher yield strength and are harder to induce plastic deformation. Strong textures also affect the yield strength and can result in higher differential stresses. The inferred dominant (001) slip for pPv is significant for geophysics, because, when applied to geodynamic convection models, it predicts the observed anisotropies of S-waves as well as an anti-correlation between P- and S-waves.  相似文献   

2.
Raman spectroscopy and heat capacity measurements have been used to study the post-perovskite phase of CaIr0.5Pt0.5O3, recovered from synthesis at a pressure of 15 GPa. Laser heating CaIr0.5Pt0.5O3 to 1,900 K at 60 GPa produces a new perovskite phase which is not recoverable and reverts to the post-perovskite polymorph between 20 and 9 GPa on decompression. This implies that Pt-rich CaIr1−xPtxO3 perovskites including the end member CaPtO3 cannot easily be recovered to ambient pressure from high P–T synthesis. We estimate an increase in the thermodynamic Grüneisen parameter across the post-perovskite to perovskite transition of 34%, of similar magnitude to those for (Mg,Fe)SiO3 and MgGeO3, suggesting that CaIr0.5Pt0.5O3 is a promising analogue for experimental studies of the competition in energetics between perovskite and post-perovskite phases of magnesium silicates in Earth’s lowermost mantle. Low-temperature heat capacity measurements show that CaIrO3 has a significant Sommerfeld coefficient of 11.7 mJ/mol K2 and an entropy change of only 1.1% of Rln2 at the 108 K Curie transition, consistent with the near-itinerant electron magnetism. Heat capacity results for post-perovskite CaIr0.5Rh0.5O3 are also reported.  相似文献   

3.
The Raman spectra of bixbyite, Mn2O3, were measured up to 40 GPa at room temperature. Mn2O3 undergoes a phase transition from the C-type rare earth structure to the CaIrO3-type (post-perovskite) structure at 16–25 GPa. The transition pressure measured in Raman spectroscopy is significantly lower than the pressure reported previously by an X-ray diffraction study. This could be due to the greater polarizability in the CaIrO3-type structure, consistent with high-pressure observation on the CaIrO3 type in MgGeO3, although it is still possible that experimental differences may cause the discrepancy. Unlike the change at the perovskite to CaIrO3-type transition, the spectroscopic Grüneisen parameter does not decrease at the C-type to CaIrO3-type transition. The spectroscopic Grüneisen parameter of the low-pressure phase (C type) is significantly lower than thermodynamic Grüneisen parameter, suggesting significant magnetic contributions to the thermodynamic property of this material. Our Raman measurements on CaIrO3-type Mn2O3 contribute to building systematic knowledge about this structure, which has emerged as one of the common structures found in geophysically important materials.  相似文献   

4.
High-pressure phase transitions of CaRhO3 perovskite were examined at pressures of 6–27 GPa and temperatures of 1,000–1,930°C, using a multi-anvil apparatus. The results indicate that CaRhO3 perovskite successively transforms to two new high-pressure phases with increasing pressure. Rietveld analysis of powder X-ray diffraction data indicated that, in the two new phases, the phase stable at higher pressure possesses the CaIrO3-type post-perovskite structure (space group Cmcm) with lattice parameters: a = 3.1013(1) Å, b = 9.8555(2) Å, c = 7.2643(1) Å, V m  = 33.43(1) cm3/mol. The Rietveld analysis also indicated that CaRhO3 perovskite has the GdFeO3-type structure (space group Pnma) with lattice parameters: a = 5.5631(1) Å, b = 7.6308(1) Å, c = 5.3267(1) Å, V m  = 34.04(1) cm3/mol. The third phase stable in the intermediate P, T conditions between perovskite and post-perovskite has monoclinic symmetry with the cell parameters: a = 12.490(3) Å, b = 3.1233(3) Å, c = 8.8630(7) Å, β = 103.96(1)°, V m  = 33.66(1) cm3/mol (Z = 6). Molar volume changes from perovskite to the intermediate phase and from the intermediate phase to post-perovskite are –1.1 and –0.7%, respectively. The equilibrium phase relations determined indicate that the boundary slopes are large positive values: 29 ± 2 MPa/K for the perovskite—intermediate phase transition and 62 ± 6 MPa/K for the intermediate phase—post-perovskite transition. The structural features of the CaRhO3 intermediate phase suggest that the phase has edge-sharing RhO6 octahedra and may have an intermediate structure between perovskite and post-perovskite.  相似文献   

5.
Compression behaviors of CaIrO3 with perovskite (Pv) and post-perovskite (pPv) structures have been investigated up to 31.0(1.0) and 35.3(1) GPa at room temperature, respectively, in a diamond-anvil cell with hydrostatic pressure media. CaIrO3 Pv and pPv phases were compressed with the axial compressibility of β a > β c > β b and β b > β a > β c, respectively and no phase transition was observed in both phases up to the highest pressure in the present study. The order of axial compressibility for pPv phase is consistent with the crystallographic consideration for layer structured materials and previous experimental results. On the other hand, Pv phase shows anomalous compression behavior in b axis, which exhibit constant or slightly expanded above 13 GPa, although the applied pressure remained hydrostatic. Volume difference between Pv and pPv phases was gradually decreased with increasing pressure and this is consistent with the results of theoretical study based on the ab initio calculation. Present results, combined with theoretical study, suggest that these complicate compression behaviors in CaIrO3 under high pressure might be caused by the partially filled electron of Ir4+. Special attention must be paid in case of using CaIrO3 as analog materials to MgSiO3, although CaIrO3 exhibits interesting physical properties under high pressure.  相似文献   

6.
The equation of state of MgGeO3 perovskite was determined between 25 and 66 GPa using synchrotron X-ray diffraction with the laser-heated diamond anvil cell. The data were fit to a third-order Birch–Murnaghan equation of state and yielded a zero-pressure volume (V 0) of 182.2 ± 0.3 Å3 and bulk modulus (K 0) of 229 ± 3 GPa, with the pressure derivative (K= (?K 0/?P) T ) fixed at 3.7. Differential stresses were evaluated using lattice strain theory and found to be typically less than about 1.5 GPa. Theoretical calculations were also carried out using density functional theory from 0 to 205 GPa. The equation of state parameters from theory (V 0 = 180.2 Å3, K 0 = 221.3 GPa, and K0 = 3.90) are in agreement with experiment, although theoretically calculated volumes are systematically lower than experiment. The properties of the perovskite phase were compared to MgGeO3 post-perovskite phase near the observed phase transition pressure (~65 GPa). Across the transition, the density increased by 2.0(0.7)%. This is in excellent agreement with the theoretically determined density change of 1.9%; however both values are larger than those for the (Mg,Fe)SiO3 phase transition. The bulk sound velocity change across the transition is small and is likely to be negative [?0.5(1.6)% from experiment and ?1.2% from theory]. These results are similar to previous findings for the (Mg,Fe)SiO3 system. A linearized Birch–Murnaghan equation of state fit to each axis yielded zero-pressure compressibilities of 0.0022, 0.0009, and 0.0016 GPa?1 for the a, b, and c axis, respectively. Magnesium germanate appears to be a good analog system for studying the properties of the perovskite and post-perovskite phases in silicates.  相似文献   

7.
The stability and high-pressure behavior of perovskite structure in MnGeO3 and CdGeO3 were examined on the basis of in situ synchrotron X-ray diffraction measurements at high pressure and temperature in a laser-heated diamond-anvil cell. Results demonstrate that the structural distortion of orthorhombic MnGeO3 perovskite is enhanced with increasing pressure and it undergoes phase transition to a CaIrO3-type post-perovskite structure above 60 GPa at 1,800 K. A molar volume of the post-perovskite phase is smaller by 1.6% than that of perovskite at equivalent pressure. In contrast, the structure of CdGeO3 perovskite becomes less distorted from the ideal cubic perovskite structure with increasing pressure, and it is stable even at 110 GPa and 2,000 K. These results suggest that the phase transition to post-perovskite is induced by a large distortion of perovskite structure with increasing pressure.  相似文献   

8.
The phase relations and compression behavior of MnTiO3 perovskite were examined using a laser-heated diamond-anvil cell, X-ray diffraction, and analytical transmission electron microscopy. The results show that MnTiO3 perovskite becomes unstable and decomposes into MnO and orthorhombic MnTi2O5 phases at above 38 GPa and high temperature. This is the first example of ABO3 perovskite decomposing into AO + AB2O5 phases at high pressure. The compression behavior of volume, axes, and the tilting angle of TiO6 octahedron of MnTiO3 perovskite are consistent with those of other A2+B4+O3 perovskites, although no such decomposition was observed in other perovskites. FeTiO3 is also known to decompose into two phases, instead of transforming into the CaIrO3-type post-perovskite phase and we argue that one of the reasons for the peculiar behavior of titanate is the weak covalency of the Ti–O chemical bonds.  相似文献   

9.
Fifteen samples of (Mg,Fe)SiO3 majorite with varying Fe/Mg composition and one sample of (Mg,Fe)(Si,Al)O3 majorite were synthesized at high pressure and temperature under different conditions of oxygen fugacity using a multianvil press, and examined ex situ using X-ray diffraction and Mössbauer and optical absorption spectroscopy. The relative concentration of Fe3+ increases both with total iron content and increasing oxygen fugacity, but not with Al concentration. Optical absorption spectra indicate the presence of Fe2+–Fe3+ charge transfer, where band intensity increases with increasing Fe3+ concentration. Mössbauer data were used in conjunction with electron microprobe analyses to determine the site distribution of all cations. Both Al and Fe3+ substitute on the octahedral site, and charge balance occurs through the removal of Si. The degree of Mg/Si ordering on the octahedral sites in (Mg,Fe)SiO3 majorite, which affects both the c/a ratio and the unit cell volume, is influenced by the thermal history of the sample. The Fe3+ concentration of (Mg,Fe)(Si,Al)O3 majorite in the mantle will reflect prevailing redox conditions, which are believed to be relatively reducing in the transition zone. Exchange of material across the transition boundary to (Mg,Fe) (Si,Al)O3 perovskite would then require a mechanism to oxidize sufficient iron to satisfy crystal-chemical requirements of the lower-mantle perovskite phase.  相似文献   

10.
We present here a numerical modelling study of dislocations in perovskite CaTiO3. The dislocation core structures and properties are calculated through the Peierls–Nabarro model using the generalized stacking fault (GSF) results as a starting model. The GSF are determined from first-principles calculations using the VASP code. The dislocation properties such as collinear, planar core spreading and Peierls stresses are determined for the following slip systems: [100](010), [100](001), [010](100), [010](001), [001](100), [001](010), and All dislocations exhibit lattice friction, but glide appears to be easier for [100](010) and [010](100). [001](010) and [001](100) exhibit collinear dissociation. Comparing Peierls stresses among tausonite (SrTiO3), perovskite (CaTiO3) and MgSiO3 perovskite demonstrates the strong influence of orthorhombic distortions on lattice friction. However, and despite some quantitative differences, CaTiO3 appears to be a satisfactory analogue material for MgSiO3 perovskite as far as dislocation glide is concerned.  相似文献   

11.
《Comptes Rendus Geoscience》2019,351(2-3):253-259
We extended the attainable pressure of the Kawai-type multianvil apparatus to 71.3 GPa and 120.3 GPa at room temperature by equipping it with tungsten carbide (WC) and sintered diamond (SD) cubic anvils, respectively. In the experiments with WC anvils, pressure decreased largely, ΔP ∼−20 GPa, on heating from room temperature to 1500 K. In the experiments with SD anvils, pressure also dropped to 105 GPa from 120 GPa at 1673 K. In order to generate higher pressure and temperatures, therefore, innovation of SD material in both quality and size are essential, together with improvements of cell assembly. Besides pressure generation, we conducted in situ energy-dispersive X-ray diffraction observations on CaSnO3 and (Mg,Fe)SiO3 in the experiments with WC and SD anvils, respectively. We observed the growth of new peaks, which can be assigned to the post-perovskite phase, transformed from a starting material of CaSnO3 perovskite at 48.4 GPa and 1500 K, although they are not clearly identified. In contrast, we could not observe the post-perovskite phase of (Mg,Fe)SiO3 in the present P–T conditions generated by experiments with SD anvils.  相似文献   

12.
Silicate perovskites((Mg, Fe)SiO 3 and CaS iO 3) are believed to be the major constituent minerals in the lower mantle. The phase relation, solid solution, spin state of iron and water solubility related to the lower mantle perovskite are of great effect on the geodynamics of the Earth's interior and on ore mineralization. Previous studies indicate that a large amount of iron coupled with aluminum can incorporate into magnesium perovskite, but this is discordant with the disproportionation of(Mg,Fe)SiO 3 perovskite into iron-free MgS i O3 perovskite and hexagonal phase(Mg0.6Fe0.4)SiO 3 in the Earth's lower mantle. MnS iO 3 is the first chemical component confirmed to form wide range solid solution with Ca SiO 3 perovskite and complete solid solution with MgS i O3 perovskite at the P-T conditions in the lower mantle, and addition of Mn Si O3 will strongly affects the mutual solubility between Mg Si O3 and CaS iO 3. The spin state of iron is deeply depends on the site occupation of the Fe3+or Fe2+, the synthesis and the annealing conditions of the sample. It seems that the spin state of Fe2+ in the lower mantle perovskite can be settled as high spin, however, the existence of intermediate spin or low spin state of Fe2+ in perovskite has not been clarified. Moreover, different results have also been reported for the spin state of Fe3+ in perovskite. The water solubility of the lower mantle perovskite is related with its composition. In pure Mg SiO 3 perovskite, only less than 500 ppm water was reported. Al–Mg Si O3 perovskite or Al–Fe–MgS iO 3 perovskite in the lower mantle accommodates water of 1100 to 1800 ppm. Further experiments are necessary to clarify the detailed conditions for perovskite solid solution, to reliably analyze the valence and spin states of iron in the coexisting iron-bearing phases, and to compare the water solubility of different phases at different layers for deeply understanding the geodynamics of the Earth's interior and ore mineralization.  相似文献   

13.
Low-temperature isobaric heat capacities (C p ) of MgSiO3 ilmenite and perovskite were measured in the temperature range of 1.9–302.4 K with a thermal relaxation method using the Physical Properties Measurement System. The measured C p of perovskite was higher than that of ilmenite in the whole temperature range studied. From the measured C p , standard entropies at 298.15 K of MgSiO3 ilmenite and perovskite were determined to be 53.7 ± 0.4 and 57.9 ± 0.3 J/mol K, respectively. The positive entropy change (4.2 ± 0.5 J/mol K) of the ilmenite–perovskite transition in MgSiO3 is compatible with structural change across the transition in which coordination of Mg atoms is changed from sixfold to eightfold. Calculation of the ilmenite–perovskite transition boundary using the measured entropies and published enthalpy data gives an equilibrium transition boundary at about 20–23 GPa at 1,000–2,000 K with a Clapeyron slope of −2.4 ± 0.4 MPa/K at 1,600 K. The calculated boundary is almost consistent within the errors with those determined by high-pressure high-temperature in situ X-ray diffraction experiments.  相似文献   

14.
High-pressure phase transformations were investigated for two silicates, MgSiO3 and ZnSiO3; six germanates, MGeO3 and six titanates, MTiO3 (M=Ni, Mg, Co, Zn, Fe, and Mn) at about 1,000°C and pressures up to ca. 30 GPa. CoGeO3 was found to assume the ilmenite form. The ilmenite phases were confirmed to transform in the following schemes: to perovskite in MgSiO3 and MnGeO3, to corundum in MgGeO3 and ZnGeO3, to rocksalt plus rutile in ZnSiO3 and CoGeO3 and to rocksalt plus TiO2 (possibly of some denser structure) in NiTiO3, MgTiO3, CoTiO3, ZnTiO3 and FeTiO3. In the case of FeTiO3, the corundum form appeared as an intermediate phase. The possibility that the corundum type MnTiO3 might transform to some denser modification could not be excluded. The compound NiGeO3 was nonexistent throughout the pressure range studied. High-pressure phases of ABO3 (A=Ni, Mg, Co, Zn, Fe, and Mn; B=Si, Ge and Ti) are summarized, and those stabilized at pressures higher than 20 GPa are discussed.  相似文献   

15.
The low-temperature isobaric heat capacities (C p) of β- and γ-Mg2SiO4 were measured at the range of 1.8–304.7 K with a thermal relaxation method using the Physical Property Measurement System. The obtained standard entropies (S°298) of β- and γ-Mg2SiO4 are 86.4 ± 0.4 and 82.7 ± 0.5 J/mol K, respectively. Enthalpies of transitions among α-, β- and γ-Mg2SiO4 were measured by high-temperature drop-solution calorimetry with gas-bubbling technique. The enthalpies of the α−β and β−γ transitions at 298 K (ΔH°298) in Mg2SiO4 are 27.2 ± 3.6 and 12.9 ± 3.3 kJ/mol, respectively. Calculated α−β and β−γ transition boundaries were generally consistent with those determined by high-pressure experiments within the errors. Combining the measured ΔH°298 and ΔS°298 with selected data of in situ X-ray diffraction experiments at high pressure, the ΔH°298 and ΔS°298 of the α−β and β−γ transitions were optimized. Calculation using the optimized data tightly constrained the α−β and β−γ transition boundaries in the P, T space. The slope of α−β transition boundary is 3.1 MPa/K at 13.4 GPa and 1,400 K, and that of β−γ boundary 5.2 MPa/K at 18.7 GPa and 1,600 K. The post-spinel transition boundary of γ-Mg2SiO4 to MgSiO3 perovskite plus MgO was also calculated, using the optimized data on γ-Mg2SiO4 and available enthalpy and entropy data on MgSiO3 perovskite and MgO. The calculated post-spinel boundary with a Clapeyron slope of −2.6 ± 0.2 MPa/K is located at pressure consistent with the 660 km discontinuity, considering the error of the thermodynamic data.  相似文献   

16.
Using density functional simulations within the generalized gradient approximation and projector-augmented wave method together with thermodynamic modelling, the reciprocal solubilities of MgSiO3 and CaSiO3 perovskites were calculated for pressures and temperatures of the Earth’s lower mantle from 25 to 100 GPa and 0 to 6,000 K, respectively. The solubility of Ca in MgSiO3 at conditions along a mantle adiabat is found to be less than 0.02 atoms per formula unit. The solubility of Mg in CaSiO3 is even lower, and most important, the extent of solid solution decreases with pressure. To dissolve CaSiO3 perovskite completely in MgSiO3 perovskite, a solubility of 7.8 or 2.3 mol% would be necessary for a fertile pyrolytic or depleted harzburgitic mantle, respectively. Thus, for any reasonable geotherm, two separate perovskites will be present in fertile mantle, suggesting that Ca-perovskite will be residual to low degree melting throughout the entire mantle. At the solidus, CaSiO3 perovskite might completely dissolve in MgSiO3 perovskite only in a depleted mantle with <1.25 wt% CaO. These implications may be modified if Ca solubility in MgSiO3 is increased by other major mantle constituents such as Fe and Al.  相似文献   

17.
Phase equilibria in the join CaMgSi2O6-CaFeAlSiO6-CaTiAl2O6 have been determined in air at 1 atm by the ordinary quenching method. Clinopyroxeness, forsterite, perovskite, magnetitess, spinelss, hibonite and an unknown phase X are present at liquidus temperatures (ss: solid solution). At subsolidus temperatures the following phase assemblages were encountered; clinopyroxeness+perovskite, clinopyroxeness +perovskite+spinelss, clinopyroxeness +perovskite+melilite (+anorthite), clinopyroxeness +perovskite+melilite+spinelss+anorthite, clinopyroxeness +perovskite+anorthite+spinelss, and clinopyroxeness +perovskite+anorthite+hibonite. At subsolidus temperatures the single phase field of clinopyroxeness extends up to 19 wt.% CaTiAl2O6. Even in the field of clinopyroxeness+perovskite, the TiO2 content in clinopyroxeness continues to increase and attains 9.2 wt.% TiO2 with 24.8 wt.% Al2O3. An interesting fact is that unusual clinopyroxenes which contain more AlIV than SiIV are present in the CaFe-AlSiO6-rich region. The liquid coexisting with pyroxene is richer in Ti, Al, and Fe3+ than the coexisting pyroxene. The clinopyroxenesss coexisting with liquid contain less TiO2, Al2O3 and Fe2O3 than those crystallized at subsolidus temperatures. The petrological significance of the join and the crystallization of Ti- and Al-rich clinopyroxenes are discussed on the basis of the experimental results of the join.  相似文献   

18.
The olivine-beta phase transformation in Co2SiO4 has been studied in a large-volume high-pressure apparatus (USSA-2000). The experimental conditions straddle the univariant phase boundaries due to the presence of a substantial temperature gradient (150–200° C over the 3-mm length of the sample). At conditions close to equilibrium, the transformation mechanism is one of limited nucleation with rapid growth of large crystals of the beta phase. Transmission electron microscopy (TEM) analysis shows that the cation stacking faults in Co2SiO4-spinel are identical to those seen in numerous spinels. The 010 faults in beta-Co2SiO4 are found to be identical to those seen in beta-(Mg,Fe)2SiO4 found in shocked veins in meteorites.  相似文献   

19.
The electrical conductivity of (Mg0.93Fe0.07)SiO3 ilmenite was measured at temperatures of 500–1,200 K and pressures of 25–35 GPa in a Kawai-type multi-anvil apparatus equipped with sintered diamond anvils. In order to verify the reliability of this study, the electrical conductivity of (Mg0.93Fe0.07)SiO3 perovskite was also measured at temperatures of 500–1,400 K and pressures of 30–35 GPa. The pressure calibration was carried out using in situ X-ray diffraction of MgO as pressure marker. The oxidation conditions of the samples were controlled by the Fe disk. The activation energy at zero pressure and activation volume for ilmenite are 0.82(6) eV and −1.5(2) cm3/mol, respectively. Those for perovskite were 0.5(1) eV and −0.4(4) cm3/mol, respectively, which are in agreement with the experimental results reported previously. It is concluded that ilmenite conductivity has a large pressure dependence in the investigated P–T range.  相似文献   

20.
The products of the transformation of natural (Mg0.83Fe0.17)2SiO4 olivine have been prepared at various high pressures (between 25 GPa and 90 GPa), and high temperature in a laser-heated diamond-anvil cell (DAC). Studies of the high-pressure phases have been made by transmission electron microscopy (TEM), and X-ray microanalysis. The olivine/spinel boundaries exhibit all the characteristics of a diffusionless shear transition, having a finely sheared structure and a constant orientation relationship between the close-packed planes of the two structures ((100)ol∥(111)sp). The TEM observations of zones where olivine (or spinel) transforms into post-spinel phases show that the transformation possesses the features of an eutectoïdal decomposition, leading to a lamellar intergrowth of magnesiowüstite (Mg,Fe)O and perovskite (Mg,Fe)SiO3. With increasing temperature and/or decreasing pressure, the grain size of the high-pressure phases increases and obeys an Arrhenius law with an activation volume equal to zero. (Mg,Fe)O grains exhibit a very high density of dislocations (higher than 1011cm?2), whereas (Mg,Fe)SiO3 grains exhibit no dislocations but systematic twinning. The composition plane of the twins is (112) of the GdFeO3-type perovskite, corresponding to the {110} plane of the cubic lattice of ideal perovskite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号