首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
黑河流域遥感物候产品验证与分析   总被引:2,自引:0,他引:2  
植被物候遥感产品对全球变化响应、农业生产管理、生态学的应用等多领域研究具有重要意义。但现有植被物候遥感产品还有较多问题,主要包括一方面使用不同参数的时间序列数据以及不同提取算法导致的产品结果差异较大,另一方面在地面验证中地面观测数据与遥感反演数据的物理含义不一致导致的验证方法的系统性误差。本文以黑河流域为研究区,对比验证基于EVI(Enhanced Vegetation Index)时间序列数据提取的MLCD(MODIS global land cover dynamics product)植被遥感物候产品和基于LAI(Leaf Area Index)时间序列数据提取的UMPM(product by universal multi-life-cycle phenology monitoring method)植被遥感物候产品的有效性及精度等。同时,通过验证分析进一步评估基于EVI和LAI时间序列提取的物候特征的差异及特点,探讨由于地面观测植被物候与遥感提取植被物候的物理意义的不一致问题导致的直接验证结果偏差。结果表明:UMPM产品有效性整体高于MLCD产品,但在以草地和灌木为主的稀疏植被区,由于LAI取值精度的原因,UMPM产品存在较多缺失数据,且时空稳定性较低;基于玉米地面观测数据表明,EVI对植被开始生长的信号比LAI更加敏感,更适合提取生长起点,但植被指数易饱和,峰值起点普遍提前,基于LAI提取的峰值起点更加合理。由于地面观测的物候期在后期更加关注果实生长,遥感观测仅关注叶片的生长,遥感定义的峰值终点和生长终点与玉米的乳熟期和成熟期差异较大。  相似文献   

2.
Phenology is a sensitive and critical feature of vegetation and is a good indicator for climate change studies. The global inventory modelling and mapping studies (GIMMS) normalized difference vegetation index (NDVI) has been the most widely used data source for monitoring of the vegetation dynamics over large geographical areas in the past two decades. With the release of the third version of the NDVI (GIMMS NDVI3g) recently, it is important to compare the NDVI3g data with those of the previous version (NDVIg) to link existing studies with future applications of the NDVI3g in monitoring vegetation phenology. In this study, the three most popular satellite start of vegetation growing season (SOS) extraction methods were used, and the differences between SOSg and SOS3g arising from the methods were explored. The amplitude and the peak values of the NDVI3g are higher than those of the NDVIg curve, which indicated that the SOS derived from the NDVIg (SOSg) was significantly later than that derived from the NDVI3g (SOS3g) based on all the methods, for the whole northern hemisphere. In addition, SOSg and SOS3g both showed an advancing trend during 1982–2006, but that trend was more significant with SOSg than with SOS3g in the results from all three methods. In summary, the difference between SOSg and SOS3g (in the multi-year mean SOS, SOS change slope and the turning point in the time series) varied among the methods and was partly related to latitude. For the multi-year mean SOS, the difference increased with latitude intervals in the low latitudes (0–30°N) and decreased in the mid- and high-latitude intervals. The GIMMS NDVI3g data-sets seemed more sensitive than the GIMMS NDVIg in detecting information about the ground, and the SOS3g data were better correlated both with the in situ observations and the SOS derived from the Moderate Resolution Imaging Spectroradiometer NDVI. For the northern hemisphere, previous satellite measures (SOS derived from GIMMS NDVIg) may have overestimated the advancing trend of the SOS by an average of 0.032 d yr–1.  相似文献   

3.
Using NOAA/AVHRR 10-day composite NDVI data and 10-day meteorological data, including air temperature, precipitation, vapor pressure, wind velocity and sunshine duration, at 19 weather stations in the three-river-source region in the Qinghai–Tibetan Plateau in China from 1982 to 2000, the variations of NDVI and climate factors were analyzed for the purpose of studying the correlation between climate change and vegetation growth as represented by NDVI in this region. Results showed that the NDVI values in this region gradually grew from the west to the east, and the distribution was consistent with that of moisture status. The growing season came earlier due to climate warming, yet because of the reduction of precipitation, maximal NDVI during 1982–2000 did not show a significant change. NDVI related positively to air temperature, vapor pressure and precipitation, but negatively related to sunshine duration and wind velocity. Furthermore, the response of NDVI to climate change showed time lags for different climate factors. Water condition and temperature were found to be the most important factors effecting the variation of NDVI during the growing season in both the semi-arid and the semi-humid areas. In addition, NDVI had a better correlation with vapor pressure than with precipitation. The ratio of precipitation to evapotranspiration, representing water gain and loss, can be regarded as a comprehensive index to analyze NDVI and climate change, especially in areas where the water condition plays a dominant role.  相似文献   

4.
A growing number of studies have focused on variations in vegetation phenology and their correlations with climatic factors. However, there has been little research on changes in spatial heterogeneity with respect to the end of the growing season (EGS) and on responses to climate change for alpine vegetation on the Qinghai–Tibetan Plateau (QTP). In this study, the satellite-derived normalized difference vegetation index (NDVI) and the meteorological record from 1982 to 2012 were used to characterize the spatial pattern of variations in the EGS and their relationship to temperature and precipitation on the QTP. Over the entire study period, the EGS displayed no statistically significant trend; however, there was a strong spatial heterogeneity throughout the plateau. Those areas showing a delaying trend in the EGS were mainly distributed in the eastern part of the plateau, whereas those showing an advancing trend were mostly scattered throughout the western part. Our results also showed that change in the vegetation EGS was more closely correlated with air temperature than with precipitation. Nonetheless, the temperature sensitivity of the vegetation EGS became lower as aridity increased, suggesting that precipitation is an important regulator of the response of the vegetation EGS to climate warming. These results indicate spatial differences in key environmental influences on the vegetation EGS that must be taken into account in current phenological models, which are largely driven by temperature.  相似文献   

5.
Abstract

Recent investigations demonstrated that inter‐year NOAA‐AVHRR NDVI variations at the middle of the rainy season can provide information on annual crop yields in Sahelian countries. This line of research is presently extended to the consideration of multitemporal NDVI data for several years (1986-1991) pre‐processed by a proven methodology. The investigation was conducted using NDVI and crop yield data from the sahelian sub‐districts of Niger. The results confirm that geographically standardized NDVI data are efficient for crop yield forecasting, but notable differences exist in this prediction capability depending on the beginning of the season. Late beginnings of the growing (rainy) season (after the end of June) allow optimum forecasting only after mid‐August, while early beginnings lead to anticipate the forecasting capability but also to decrease its accuracy. The importance of these findings in the context of an early warning system is finally discussed.  相似文献   

6.
Remote sensing techniques are capable of identifying a particular crop as well as monitoring its growing stages, crop vigor, and biomass. Due to the increasing demand for food staples, potato cultivation in Bangladesh has increased substantially over the last decade. A study was carried out in the Munshiganj area, the main potato-producing district in Bangladesh, to assess the growth of potatoes by modeling its important life metrics. Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) products were extracted from MODIS Surface Reflectance Eight-Day L3 Global 500 m data from November 25, 2005 to March 6, 2006. NDVI and LAI were extracted for 50 selected fields in the study area and used to construct potato phenological curves. Twenty-two life metrics were derived for potato from the phenological curves. The first 12 metrics are the basic life metrics of potato and the others are supplementary. Results showed a significant amplitude and distinct response period of these vegetation indices. Based on the phenological curves, the spatial distribution of potato growth was estimated for the study area for both NDVI and LAI. The effect of temperature on crop phenology was examined during the potato growing season. It was found that significant growth occurred when the temperature was relatively low. This study demonstrates that remote sensing data can be effectively used to study potato growth in Bangladesh.  相似文献   

7.
基于MODIS-NDVI数据分析澜沧江流域生长季植被NDVI时空特征和变化趋势,结合地形数据、气象站点数据和植被类型数据,利用趋势分析和相关性分析法研究植被NDVI变化对气候因子的响应。结果表明:1)2000-2017年澜沧江流域生长季植被NDVI均值为0.592,整体呈现出由西北向东南波动增加趋势,增长速率为0.09%/10年;2) 2000-2017年澜沧江流域气温呈上升趋势,降水呈下降趋势,植被NDVII总体与平均气温的相关性高于累积降水量;3)澜沧江流域生长季植被NDVI驱动因子分析表明,气候驱动中以气温降水联合驱动为主,流域植被NDVI变化整体为非气候驱动。  相似文献   

8.
The goal of this research was to conduct an initial investigation into whether a time-series NDVI reference curve library for crops over a growing season for one year could be used to map crops for a different year. Time-series NDVI libraries of curves for 2001 and 2005 were investigated to ascertain whether or not the 2001 dataset could be used to map crops for 2005. The 2005 16-day composite MODIS 250 m NDVI data were used to extract NDVI values from 1,615 field sites representing alfalfa, corn, sorghum, soybeans, and winter wheat. A k-means cluster analysis of NDVI values from the field sites was performed to identify validation sites with time-series NDVI spectral profiles characteristic of the major crop types grown in Kansas. After completing the field site refinement process, there were 1,254 field sites retained for further analysis, referred to as "final" field sites. The methods employed to evaluate whether the MODIS-based NDVI profiles for major crops in Kansas are stable from year-to-year involved both graphical and statistical analyses. First, the time-series NDVI values for 2005 from the final field sites were aggregated by crop type and the crop NDVI profiles were then visually assessed and compared to the profiles of 2001 to ascertain if each crop's unique phenological pattern was consistent between the two years. Second, separability within each crop class in the time-series NDVI data between 2001 and 2005 was investigated numerically using the Jeffries-Matusita (JM) distance statistic. The results seem to suggest that time-series NDVI response curves for crops over a growing period for one year of valid ground reference data may be useful for mapping crops for a different year when minor temporal shifts in the NDVI values (resulting from inter-annual climate variations or changes in agricultural management practices) are taken into account.  相似文献   

9.
基于时间序列统计特性的森林变化监测   总被引:1,自引:0,他引:1  
森林动态变化分析对揭示生态系统环境变化及植被恢复和布局重建等具有重要意义,时间序列的遥感数据为森林监测提供了基础数据。本文根据森林植被的统计学特性,在暗目标法的基础上,利用归一化植被指数NDVI实现森林样本自动选择;并融合NDVI构建了新的综合森林特征指数(Integrated Forest Z-Score,IFZ);以时间序列的IFZ分析森林动态信息,实现森林变化动态监测。以三峡大坝及周边区域森林为研究区,利用2001年至2012年每年生长季节(5月—10月)的Landsat TM影像检验本文算法。基于2002年、2006年和2010年三期7月—9月的Quick Bird影像的精度分析结果发现:研究区森林变化检测的总体精度可达96.53%,Kappa系数为0.9512。在添加NDVI指数后构建的IFZ提高了总体监测精度。其中,毁林类别的检测精度提高显著,漏检率和误检率分别为2.74%和3.64%;干扰后重建的森林类别的检测精度有一定提高,其漏检率和误检率分别为10.79%和10.51%。研究结果表明,改进暗目标法能提高森林样本的选样效率,添加NDVI的IFZ能提高森林动态变化的识别度。此外,本算法不仅能定性识别森林变化,而且能定量提供森林干扰发生时间和干扰强度。  相似文献   

10.
以三江源区为研究区,主要利用一元线性趋势法和简单相关分析法分析了源区1982~2004年生长季累积NDVI的时间序列变化特征及其与气温、降雨、光照时间、风速、地表温度这些气候因子之间的相关性,从月尺度上研究了三江源区植被NDVI对气候因子响应的滞后性特征。最后表明,生长季累积NDVI对气温的滞后期为1个月,对风速的滞后期为2个月,对地表温度的滞后期为4个月,而对降雨量和日照时数不存在滞后响应或者滞后期小于1个月。  相似文献   

11.
Attempt has been made to develop spectro meteorological yield models using normalized difference vegetation index (NDVI) derived from NOAA AVHRR data over the crop growth period and monthly rainfall data for predicting yield of mustard crop. The AVHRR data spanning seven crop growing seasons, the rain gauze station-level rainfall data and crop yield data determined from crop cutting experiments (CCE) conducted by state Directorate of Economics and Statistics (DES) are the basic input data. A methodology has been developed to normalize the multi-temporal NDVIs for the minimisation of atmospheric effects, which is found to reduce the noise in NDVI due to varying atmospheric conditions from season to season and improve the predictability of statistical multiple linear regression yield models developed for nine geographically large districts of Rajasthan state. The spectro meteorological yield models had been validated by comparing the predicted district level yields with those estimated from the crop cutting experiments.  相似文献   

12.
针对鄂尔多斯高原植被覆盖变化受干旱胁迫的状况,该文结合降水和气温的协同变化,以2000-2012年生长季的MODIS-NDVI数据和同期降水、温度和帕尔默干旱指数为依据,采用线性趋势分析、标准偏差分析和相关性分析等方法,对鄂尔多斯高原植被与气候变化的相关关系和干旱异常变化对植被动态的影响进行了研究.结果表明:鄂尔多斯高原生长季及季节(春季、夏季和秋季)植被归一化植被指数主要受降水的控制和干旱的制约,秋季归一化植被指数更多地受到夏季干旱的影响.与气象因子的空间相关分析表明,春季温度上升有利于研究区北部归一化植被指数像元的增加.在荒漠草原和沙漠地区,夏季干旱与归一化植被指数的相关关系最强.秋季降水对典型草原归一化植被指数的提升显著.  相似文献   

13.
自2000年国家决策实施水量统一调度以来,黑河中下游生态环境得到好转,但缺乏一个客观公正的评价方法加以验证。本文考虑黑河中下游区域面积大、数据资料缺乏等特点,提出了基于卫星遥感影像提取生长季植被指数计算植被覆盖度(VFC),并对VFC的空间分布特征、面积占比、变化趋势等进行了分析。研究表明,2000—2017年18年间,黑河中下游区域均存在低覆盖植被向其他类型覆盖植被转化现象,高植被覆盖区域面积增加,植被覆盖情况整体趋好。该结论与黑河中下游区域生态环境变化现状相符,证明本文方法可以作为区域生态环境评价的重要方法支撑。  相似文献   

14.
Vegetation图像植被指数与实测水稻叶面积指数的关系   总被引:9,自引:1,他引:9  
水稻的叶面积指数 (LAI)是水稻生长的一项重要参数 ,与水稻的生物量与产量直接相关。利用 1999年在江苏省江宁县实测的水稻叶面积指数与同期Vegetation/SPOT的植被指数作了对比分析 ,结果发现同期的LAI与植被指数表现相近的变化特征 ,两者具有良好的相关关系。  相似文献   

15.
基于获取的塔河流域2000~2014年历年4~10月间逐月MODIS植被指数产品,采用时间序列谐波分析法(HANTS)对最大值合成的逐月NDVI时间序列数据进行了重建,用趋势线分析法对塔河流域近15年生长季(4~10月)MODIS NDVI的时间变化进行计算,用一元线性回归趋势法计算得到了塔河流域近15年生长季(4~10月)NDVI变化趋势的空间分布。结合植被类型分布图对计算得到的实验结果进行了研究分析,总结了塔河流域多年植被覆盖的时空分布及其变化规律,成果可为塔河流域综合治理及生态环境评价提供依据。  相似文献   

16.
Crop phenological parameters, such as the start and end time of the crop growth, the total length of the growing season, time of peak vegetation and rate of greening and senescence are important for planning crop management and crop diversification/intensification. Multi-temporal remote sensing data provides opportunity to characterize the crop phenology at regional level. This study was conducted during the kharif season of the year 2001–02 for Punjab. The ten-day Normalised Difference Vegetation Index (NDVI) composite products, with 1 km spatial resolution, available from the Vegetation sensor onboard SPOT4 were used for the study. Twenty-one temporal datasets from May 1, 2001 to November 21, 2001 were used. Logical modelling approach was followed to compute the minimum and maximum NDVI, the amplitude of NDVI, the threshold NDVI during sowing and harvest, the crop duration, integrated NDVI and skewness of profile. The analysis showed that before July beginning, in the whole of Punjab, sowing/planting was over. It was found that the crop emergence in the eastern part of the state started earlier than the western region. The maximum NDVI, which represented peak vegetative stage, was above 0.7 and occurred mostly during August. The duration of crops ranged between 90–140 days, with majority between 110–120 days. Total integrated NDVI in Punjab was generally above 60. Using principal component analysis and divergence analysis seven best metrics were selected for crop discrimination.  相似文献   

17.
土地覆被的季节性变化特征可为全球变化模拟提供重要信息。本文利用包含植被一个完整生长周期的SPOT4-VEGETATION的NDVI影像,对鄱阳湖流域典型季节性绿色覆被(作物)的绿度值、峰值、谷值、年均ND-VI(NDVI-I)和NDVI年内极差(NDVI-MM)等特征值进行了提取。在此基础上,探讨了不同覆被(作物)类型的ND-VI指数年内季节变化以及NDVI时间曲线的波动与农作物生长发育阶段之间的响应规律。结果显示:以作物为主的季节性绿色覆被在作物生活期内绿度指数水平较高,在休闲期会大幅度降低;当作物处于抽穗期时,NDVI值达到作物生长期内的最大值;一年一熟、一年两熟、一年三熟作物的NDVI年内变化曲线分别呈单峰型、双峰型和三峰型波动;NDVI最小值和年均值基本上按"一年两熟或三熟作物大于一年一熟作物"的顺序变化。  相似文献   

18.
基于MODIS-NDVI的内蒙古植被变化遥感监测   总被引:2,自引:0,他引:2  
本文利用2002-2006年5-8月的MODIS 1B数据,建立NDVI时间序列,并结合气象数据中的月均温、月降水量、滞后1月和滞后2月累计降水量对内蒙古地区植被生长季NDVI的月际、年际变化规律以及NDVI变化同气候因子的相关性进行了分析。结果表明:月际变化上,5-8月NDVI不断增加,NDVI变化率5-6月>6-7月>7-8月;年际变化上,2002-2006年间,草地的波动性最大;在与气候因子的相关性上:滞后2月降水>滞后1月降水>月均温>月降水量;对于林地和草地来说,各种相关系数高纬高于低纬,对于农耕地来说各种相关系数基本相当;对于沙地来说,各种相关系数均不高,这与其植被稀少且几乎无变化有关。  相似文献   

19.
Satellite data holds considerable potential as a source of information on rice crop growth which can be used to inform agronomy. However, given the typical field sizes in many rice-growing countries such as China, data from coarse spatial resolution satellite systems such as the Moderate Resolution Imaging Spectroradiometer (MODIS) are inadequate for resolving crop growth variability at the field scale. Nevertheless, systems such as MODIS do provide images with sufficient frequency to be able to capture the detail of rice crop growth trajectories throughout a growing season. In order to generate high spatial and temporal resolution data suitable for mapping rice crop phenology, this study fused MODIS data with lower frequency, higher spatial resolution Landsat data. An overall workflow was developed which began with image preprocessing, calculation of multi-temporal normalized difference vegetation index (NDVI) images, and spatiotemporal fusion of data from the two sensors. The Spatial and Temporal Adaptive Reflectance Fusion Model was used to effectively downscale the MODIS data to deliver a time-series of 30 m spatial resolution NDVI data at 8-day intervals throughout the rice-growing season. Zonal statistical analysis was used to extract NDVI time-series for individual fields and signal filtering was applied to the time-series to generate rice phenology curves. The downscaled MODIS NDVI products were able to characterize the development of paddy rice at fine spatial and temporal resolutions, across wide spatial extents over multiple growing seasons. These data permitted the extraction of key crop seasonality parameters that quantified inter-annual growth variability for a whole agricultural region and enabled mapping of the variability in crop performance between and within fields. Hence, this approach can provide rice crop growth data that is suitable for informing agronomic policy and practice across a wide range of scales.  相似文献   

20.
Spatial differences in drought proneness and intensity of drought caused by differences in cropping patterns and crop growing environments within a district indicate the need for agricultural drought assessment at disaggregated level. The objective of this study is to use moderate resolution satellite images for detailed assessment of the agricultural drought situation at different administrative units (blocks) within a district. Monthly time composite NDVI images derived from moderate resolution AWiFS (60 m) and WiFS (180 m) images from Indian Remote Sensing satellites were analysed along with ground data on rainfall and crop sown areas for the kharif seasons (June – November) of 2002 (drought year), 2004 (early season drought) and 2005 (good monsoon year). The impact of the 2002 meteorological drought on crop area in different blocks of the district was assessed. The amplitude of crop condition variability in a severe drought year (2002) and a good year (2005) was used to map the degree of vulnerability of different blocks in the district to agricultural drought. The impact of early season deficit rainfall in 2004 on the agricultural situation and subsequent recovery of the agricultural situation was clearly shown. Agricultural drought assessment at disaggregated level using moderate resolution images is useful for prioritizing the problem areas within a district to undertake, in season drought management plans, such as alternate cropping strategies, as well as for end of the season drought relief management actions. The availability of ground data on rainfall, cropping pattern, crop calendar, irrigation, soil type etc., is very crucial in order to interpret the seasonal NDVI patterns at disaggregated level for drought assessment. The SWIR band of AWiFS sensor is a potential data source for assessing surface drought at the beginning of the season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号