首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于神经网络的地质勘测反分析研究   总被引:1,自引:0,他引:1  
程涛  晏克勤  董必昌 《岩土力学》2007,28(4):807-811
针对地质勘查中,土的力学参数的确定及土的分类这两类复杂问题,根据反问题理论的基本原理,提出了一种基于回归分析与RBF神经网络结合的新型智能方法,建立了从土的力学参数估计到模型分类的完整智能化分析系统。考虑到土的物理参数测定方法比较简单,且实测变异性小,而力学参数实测变异性大的特点,利用RBF神经网络的数值逼近的特性,建立了神经网络模型来逼近两者之间的函数关系,可以有效地反演力学参数。同时,利用RBF神经网络所具有的模式识别功能,为地质勘察中土层划分提供依据。通过对黄石地区岩土勘查资料的分析与预测表明,该方法简捷有效。  相似文献   

2.
煤层含气量测井解释方法探讨   总被引:6,自引:1,他引:5  
用多元线性回归建立煤层气含量与煤质参数、测井曲线值之间的回归方程,经F检验回归方程有效,但回归方程估算的煤层含气量与煤样解吸测定的含气量之间仍然存在较大的误差,为此利用BP神经网络进一步探讨它们之间的关系,实例表明预测精度较高。   相似文献   

3.
多元线性回归及BP神经网络是煤层含气量测井解释的常用方法。基于澳大利亚Galilee盆地和沁水盆地煤层测井资料和实测含气量数据,通过相关性分析和显著性检验,筛选了和含气量相关的测井参数,通过多元线性回归建立含气量与测井参数的解释模型;基于BP神经网络的理论,通过网络训练和测试,建立了煤层含气量和测井参数的非线性解释模型。讨论了多元线性回归模型的参数选择方法,并对两种解释方法的误差特点进行了分析,讨论了两种方法的适用性。结果显示:多元线性回归法和BP神经网络法是煤层含气量解释的常用方法,前者的解释误差比后者大;多元线性回归法解释精度与煤层含气量相关,适用于含气量较高的井;BP神经网络法解释精度普遍较高,在含气量高和低的井中均可适用,解释效果受输入层样本的数量和质量影响,样本数量越多,区域代表性越强,解释效果越好。   相似文献   

4.
李守巨  王吉喆  刘迎曦 《岩土力学》2006,27(Z2):311-315
基于数据挖掘技术和智能系统,提出应用概率神经网络预测边坡稳定性的数值方法。根据大量边坡稳定或者失稳案例记录的数据库资料,采用数据挖掘方法能够从中提炼出有价值的分类模式。将岩土边坡的力学参数和几何形状作为神经网络的输入训练和测试神经网络。实际应用显示所建立的概率神经网络预测边坡稳定的实用性。与传统的极限平衡分析方法和极大似然估计方法相对比,所提出的概率神经网络具有更高的预测精度。  相似文献   

5.
This study presents the application of different methods (simple–multiple analysis and artificial neural networks) for the estimation of the compaction parameters (maximum dry unit weight and optimum moisture content) from classification properties of the soils. Compaction parameters can only be defined experimentally by Proctor tests. The data collected from the dams in some areas of Nigde (Turkey) were used for the estimation of soil compaction parameters. Regression analysis and artificial neural network estimation indicated strong correlations (r 2 = 0.70–0.95) between the compaction parameters and soil classification properties. It has been shown that the correlation equations obtained as a result of regression analyses are in satisfactory agreement with the test results. It is recommended that the proposed correlations will be useful for a preliminary design of a project where there is a financial limitation and limited time.  相似文献   

6.
Sammen  Saad Sh.  Mohamed  T. A.  Ghazali  A. H.  Sidek  L. M.  El-Shafie  A. 《Natural Hazards》2017,87(1):545-566

The study of dam-break analysis is considered important to predict the peak discharge during dam failure. This is essential to assess economic, social and environmental impacts downstream and to prepare the emergency response plan. Dam breach parameters such as breach width, breach height and breach formation time are the key variables to estimate the peak discharge during dam break. This study presents the evaluation of existing methods for estimation of dam breach parameters. Since all of these methods adopt regression analysis, uncertainty analysis of these methods becomes necessary to assess their performance. Uncertainty was performed using the data of more than 140 case studies of past recorded failures of dams, collected from different sources in the literature. The accuracy of the existing methods was tested, and the values of mean absolute relative error were found to be ranging from 0.39 to 1.05 for dam breach width estimation and from 0.6 to 0.8 for dam failure time estimation. In this study, artificial neural network (ANN) was recommended as an alternate method for estimation of dam breach parameters. The ANN method is proposed due to its accurate prediction when it was applied to similar other cases in water resources.

  相似文献   

7.
Determination of soaked california bearing ratio (CBR) and compaction characteristics of soils in the laboratory require considerable time and effort. To make a preliminary assessment of the suitability of soils required for a project, prediction models for these engineering properties on the basis of laboratory tests—which are quick to perform, less time consuming and cheap—such as the tests for index properties of soils, are preferable. Nevertheless researchers hold divergent views regarding the most influential parameters to be taken into account for prediction of soaked CBR and compaction characteristics of fine-grained soils. This could be due to the complex behaviour of soils—which, by their very nature, exhibit extreme variability. However this disagreement is a matter of concern as it affects the dependability of prediction models. This study therefore analyses the ability of artificial neural networks and multiple regression to handle different influential parameters simultaneously so as to make accurate predictions on soaked CBR and compaction characteristics of fine-grained soils. The results of simple regression analyses included in this study indicate that optimum moisture content (OMC) and maximum dry density (MDD) of fine-grained soils bear better correlation with soaked CBR of fine-grained soils than plastic limit and liquid limit. Simple regression analyses also indicate that plastic limit has stronger correlation with compaction characteristics of fine-grained soils than liquid limit. On the basis of these correlations obtained using simple regression analyses, neural network prediction models and multiple regression prediction models—with varying number of input parameters are developed. The results reveal that neural network models have more ability to utilize relatively less influential parameters than multiple regression models. The study establishes that in the case of neural network models, the relatively less powerful parameters—liquid limit and plastic limit can also be used effectively along with MDD and OMC for better prediction of soaked CBR of fine-grained soils. Also with the inclusion of less significant parameter—liquid limit along with plastic limit the predictions on compaction characteristics of fine-grained soils using neural network analysis improves considerably. Thus in the case of neural network analysis, the use of relatively less influential input parameters along with stronger parameters is definitely beneficial, unlike conventional statistical methods—for which, the consequence of this approach is unpredictable—giving sometimes not so favourable results. Very weak input parameters alone need to be avoided for neural network analysis. Consequently, when there is ambiguity regarding the most influential input parameters, neural network analysis is quite useful as all such influential parameters can be taken to consideration simultaneously, which will only improve the performance of neural network models. As soils by their very nature, exhibit extreme complexity, it is necessary to include maximum number of influential parameters—as can be determined easily using simple laboratory tests—in the prediction models for soil properties, so as to improve the reliability of these models—for which, use of neural networks is more desirable.  相似文献   

8.
依据煤层反射波运动学和动力学特征,提取出了波峰波谷振幅A1、平均频率Fa、主频带能量Qf1、低频带宽能量Qf和峰值频率Fmain等5个地地震特征参数。选取8组学习样本,利用4层BP(Back Propagation)人工神经网络模型,采用动量法和自适应调整的改进算法,训练BP网络,用训练好的BP网络预测煤层厚度。经实例验证,地震多参数BP网络预测煤层厚度精度高,是一种有效的煤厚预测方法。  相似文献   

9.
New Prediction Models for Mean Particle Size in Rock Blast Fragmentation   总被引:2,自引:1,他引:1  
The paper refers the reader to a blast data base developed in a previous study. The data base consists of blast design parameters, explosive parameters, modulus of elasticity and in situ block size. A hierarchical cluster analysis was used to separate the blast data into two different groups of similarity based on the intact rock stiffness. The group memberships were confirmed by the discriminant analysis. A part of this blast data was used to train a single-hidden layer back propagation neural network model to predict mean particle size resulting from blast fragmentation for each of the obtained similarity groups. The mean particle size was considered to be a function of seven independent parameters. An extensive analysis was performed to estimate the optimum value for the number of units for the hidden layer for each of the obtained similarity groups. The blast data that were not used for training were used to validate the trained neural network models. For the same two similarity groups, multivariate regression models were also developed to predict mean particle size. Capability of the developed neural network models as well as multivariate regression models was determined by comparing predictions with measured mean particle size values and predictions based on one of the most applied fragmentation prediction models appearing in the blasting literature. Prediction capability of the trained neural network models as well as multivariate regression models was found to be strong and better than the existing most applied fragmentation prediction model. Diversity of the blasts data used is one of the most important aspects of the developed models.  相似文献   

10.
Blasting is one of the primary mining operations for extracting minerals and ores however, if not designed properly, may have a varying degree of environmental and socio-economic impact in and around mining areas. In Indian mining industry, blast designs are fundamentally based on the experience and capability of the blasting crew and its assessment is more qualitative in nature, based on conventional trial and error basis. With the change in site geology and geotechnical parameters, the blast design parameters also require alterations, which can be standardized with the development of an intelligent system such as neural network. In this paper, the concept of artificial neural network and random forest algorithm has been used for better blast designs. Over 120 blast results from an opencast coal mine have been used for prediction of burden and energy factor with blast hole diameter, bench height to stemming ratio, nature of strata and average fragment size as input parameters. Out of 120 data sets 85 data sets recorded at a surface coal mine was used to train the model and 20 for the validation. Co-efficient of determination and root mean square error was chosen as the indicators to identify the optimum neural network and random forest model. The root mean square values obtained for energy factor is 0.153 while it is 0.1947 for burden. Similarly, the RMSE values obtained using random forest tree algorithm is 0.48 for burden while 50.76 for energy factor. The results revealed that random forest tree network system has potential to design better blast that is not generic and can be a potential tool for blasting engineers to design optimum blast for the mines.  相似文献   

11.
邓浩  张延军  单坤  倪金  岳高凡 《世界地质》2020,39(1):121-126
以大连某实际工程作为研究场地,室内试验与原位测试所得碎石土地基物理力学参数与实测所得强夯处理沉降量作为样本,通过BP神经网络对样本的训练、学习,建立地基土力学参数与强夯处理的沉降量之间的映射关系,利用所得映射关系对场地实测的沉降量进行物理力学参数的反演分析。结果表明:经过训练的神经网络模型可快速得出所需参数,利用flac3d以反演所得参数进行计算,模拟沉降量与实测沉降量的误差为4.87%,在可接受的范围之内;基于神经网络的位移反分析方法可以省去繁琐的测试工作,但该方法的实现需要有充足的样本数据作为支撑。  相似文献   

12.
刘开云  乔春生  刘保国 《岩土力学》2009,30(6):1805-1809
广义回归神经元网络在逼近能力、学习速度和网络稳定性方面均优于BP神经元网络,且具有网络人为调节参数少的优点。本文将广义回归神经元网络引入坞石隧道工程的三维弹塑性位移反分析。为了在网络训练过程中快速搜索到最优的网络阈值,采用十进制遗传算法对网络阈值进行优化。在确定最优的网络结构后,采用遗传算法在每个待反演参数的搜索范围内搜索出与实测位移最接近的围岩力学与初始应力场参数组合。用反分析得来的参数进行下步开挖位移预测,预测值与实测值吻合较好,表明所提出的这种反分析方法在工程上是可行的,可以推广使用。  相似文献   

13.
依托山西晋煤集团赵庄矿三维地震勘探项目进行三维地震属性分析解释技术的应用研究,对其关键技术进行了重点描述,并应用多种属性联合解释方式与三维可视化技术、三维地质建模技术相结合,对小的断层和陷落柱等进行了解释。同时,选取多种属性作为BP神经网络预测模型的基本参数,预测了煤层的厚度。通过对比目前煤田三维地震勘探中通行的常规资料处理解释和属性分析解释两种方法的效果,认为属性分析解释更加精细,成果更加可靠。  相似文献   

14.
Magnetic surveys have been used for mineral exploration where different data processing techniques were used to derive the parameters of causative targets. In this respect, the neural network (NN) technique was used to estimate the magnetic causative target parameters. Examples of NN inversion have been tested on synthetic examples where the NN was trained well using forward models of the vertical magnetic effect of a vertical sheet and a horizontal circular cylinder. Specifically, modular neural network (MNN) inversion has been used for the parameter estimation of the causative targets, where the sigmoid function was used as the activation function. The effect of random noise and the error estimation of the horizontal location have been analyzed. When NN is applied to real data, it estimates successfully the parameters of the causative targets such as burial depths, magnetic constants, and angle of polarization. Hilbert transform has been used to locate the source origin, which is important for the NN inversion. This approach has more advantages than the conventional data inversions in terms of its efficiency and flexibility. It also gives fast solutions. The MNN approach has been applied to the Kursk and Manjampalli anomalies, where the results were shown to be in good agreement with the other techniques published in the literature.  相似文献   

15.
A two‐level procedure designed for the estimation of constitutive model parameters is presented in this paper. The neural network (NN) approach at the first level is applied to achieve the first approximation of parameters. This technique is used to avoid potential pitfalls related to the conventional gradient‐based optimization techniques, considered here as a corrector that improves predicted parameters. The feed‐forward NN (FFNN) and the modified Gauss–Newton algorithms are briefly presented. The proposed framework is verified for the elasto‐plastic modified Cam Clay model that can be calibrated based on standard triaxial laboratory tests, i.e. the isotropic consolidation test and the drained compression test. Two different formulations of the input data to the NN, enhanced by a dimensional reduction of experimental data using principal component analysis, are presented. The determination of model characteristics is demonstrated, first on numerical pseudo‐experiments and then on the experimental data. The efficiency of the proposed approach by means of accuracy and computational effort is also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
提出了模拟退火的Gauss-Newton算法的神经网络,克服了经典BP网络存在的一些缺陷。并以正弦函数的迭代收敛为例,证明了该方法的正确性,有效性和优越性。同时将该方法用于同乐坪大坝的渗流反分析,利用反演出的渗透系数进行渗流场计算。得到的水头预报值与观测值相吻合,可知反演结果是正确的,说明该方法用于实践工程的渗流参数识别是可行的。  相似文献   

17.
神经网络综合模型预测龙江河流域汛期旱涝   总被引:1,自引:0,他引:1  
韩礼应  何振伟  陈丽娜 《水文》2006,26(1):51-54
应用龙江河流域金城江站水文资料、500hPa月平均环流指数、海温、太阳黑子和单站气象要素等资料,应用差值资料通过方差周期、多元线性回归和逐步回归分析得到的预测值,再经过神经网络综合模型进行分析,最后进行预测试验。结果表明,神经网络综合模型在龙江河流域旱涝天气预测中效果显著,可应用于业务预测。  相似文献   

18.
An application of artificial intelligence for rainfall-runoff modeling   总被引:5,自引:0,他引:5  
This study proposes an application of two techniques of artificial intelligence (AI) for rainfall-runoff modeling: the artificial neural networks (ANN) and the evolutionary computation (EC). Two different ANN techniques, the feed forward back propagation (FFBP) and generalized regression neural network (GRNN) methods are compared with one EC method, Gene Expression Programming (GEP) which is a new evolutionary algorithm that evolves computer programs. The daily hydrometeorological data of three rainfall stations and one streamflow station for Juniata River Basin in Pennsylvania state of USA are taken into consideration in the model development. Statistical parameters such as average, standard deviation, coefficient of variation, skewness, minimum and maximum values, as well as criteria such as mean square error (MSE) and determination coefficient (R 2) are used to measure the performance of the models. The results indicate that the proposed genetic programming (GP) formulation performs quite well compared to results obtained by ANNs and is quite practical for use. It is concluded from the results that GEP can be proposed as an alternative to ANN models.  相似文献   

19.
在综合分析影响煤与瓦斯突出的各种评价指标的基础上,基于人工神经网络极强的非线性逼真能力,建立了煤与瓦斯突出强度预测的遗传神经网络模型。模型采用灰色关联理论完成了评价指标的优化,并利用遗传算法对BP网络初始权值和阈值的确定进行了优化。以重庆南桐矿区砚石台矿为例,对煤与瓦斯突出强度进行了预测,结果表明,采用本模型的预测结果与矿井实际突出状况一致,模型可靠,具有一定的理论与实际意义。  相似文献   

20.
土质边坡稳定性影响因素的研究   总被引:2,自引:0,他引:2  
边坡稳定性涉及到诸多因素,引入人工神经网络预测边坡稳定性的方法--误差逆传播学习算法效果显著.边坡稳定性预测系统的输入信息包括岩土体参数、几何参数等,而输出信息则是网络预测的稳定系数和稳定状态.土质边坡主要以圆弧滑移破坏为主,通过人工神经网络预测的结果与实际监测结果的对比分析,证实了BP神经网络在评价土质边坡稳定性方面的效果显著;并在此基础上分析了土质边坡影响因素对边坡稳定性的影响程度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号