首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The daily images and magnetograms acquired by MDI are a rich source of information about the contributions of different types of solar regions to variations in the total solar irradiance (TSI). These data have been used to determine the temporal variation of the MDI irradiance, the mean intensity of the solar disk in the continuum at 676.8 nm. The short-term (days to weeks) variations of the MDI irradiance and TSI are in excellent agreement with rms differences of 0.011%. This indicates that MDI irradiance is an excellent proxy for short-term variations of TSI from the competing irradiance contributions of regions causing irradiance increases, such as plages and bright network, and regions causing irradiance decreases, such as sunspots. However, the long-term or solar cycle variation of the MDI proxy and TSI differ over the 11-year period studied. The results indicate that the primary sources of the long-term (several months or more) variations in TSI are regions with magnetic fields between about 80 and 600 G. The results also suggest that the difference in the long-term variations of the MDI proxy and TSI is due to a component of TSI associated with sectors of the solar spectrum where the contrast in intensity between plages and the quiet Sun is enhanced (e.g., the UV) compared to the MDI proxy. This is evidence that the long-term variation of TSI is due primarily to solar cycle variations of the irradiance from these portions of solar spectrum, a finding consistent with modeling calculations indicating that approximately 60% of the change in TSI between solar minimum and maximum is produced by the UV part of the spectrum shortward of 400 nm (Solanki and Krivova, Space Sci. Rev. 125, 53, 2006).  相似文献   

2.
We study variations of the lifetimes of high- solar p modes in the quiet and active Sun with the solar activity cycle. The lifetimes in the degree range =300 – 600 and ν=2.5 – 4.5 mHz were computed from SOHO/MDI data in an area including active regions and quiet Sun using the time – distance technique. We applied our analysis to the data in four different phases of solar activity: 1996 (at minimum), 1998 (rising phase), 2000 (at maximum), and 2003 (declining phase). The results from the area with active regions show that the lifetime decreases as activity increases. The maximal lifetime variations are between solar minimum in 1996 and maximum in 2000; the relative variation averaged over all values and frequencies is a decrease of about 13%. The lifetime reductions relative to 1996 are about 7% in 1998 and about 10% in 2003. The lifetime computed in the quiet region still decreases with solar activity, although the decrease is smaller. On average, relative to 1996, the lifetime decrease is about 4% in 1998, 10% in 2000, and 8% in 2003. Thus, measured lifetime increases when regions of high magnetic activity are avoided. Moreover, the lifetime computed in quiet regions also shows variations with the activity cycle.  相似文献   

3.
Recent observations of brightness variations on the Sun during the solar cycle have motivated us to re-examine the widely held view that cool, dark starspots, covering a significant fraction of the star, are the centers of magnetic activity on BY Dra stars. We propose that the magnetic regions are better described by a bright facular network, and that the dark areas which give rise to photometric rotational modulation are actually regions where the underlying quiet photosphere is seen. This interpretation is consistent with recent observations of late-type stars that show that bright areas covering much of the star have magnetic fields with strengths of several thousand gauss. It resolves several problems with the current model, including the size, location, and stability of the starspots required to match photometric and Doppler-imaging observations. It also has interesting observational implications for the correlation of photometric rotational modulation and long term brightness variations with other surface activity, and for the positions of magnetically active stars in the H-R diagram.Hubble Fellow.  相似文献   

4.
In this work we study quasi-periodic solar oscillations in sunspots, based on the variation of the amplitude of the magnetic field strength and the variation of the sunspot area. We investigate long-period oscillations between three minutes and ten hours. The magnetic field synoptic maps were obtained from the SOHO/MDI. Wavelet (Morlet), global wavelet spectrum (GWS) and fast Fourier transform (FFT) methods are used in the periodicity analysis at the 95?% significance level. Additionally, the quiet Sun area (QSA) signal and an instrumental effect are discussed. We find several oscillation periods in the sunspots above the 95?% significance level: 3??C?5, 10??C?23, 220??C?240, 340 and 470 minutes, and we also find common oscillation periods (10??C?23 minutes) between the sunspot area variation and that of the magnetic field strength. We discuss possible mechanisms for the obtained results, based on the existing models for sunspot oscillations.  相似文献   

5.
Coronal holes (CH) emit significantly less at coronal temperatures than quiet-Sun regions (QS), but can hardly be distinguished in most chromospheric and lower transition region lines. A key quantity for the understanding of this phenomenon is the magnetic field. We use data from SOHO/MDI to reconstruct the magnetic field in coronal holes and the quiet Sun with the help of a potential magnetic model. Starting from a regular grid on the solar surface we then trace field lines, which provide the overall geometry of the 3D magnetic field structure. We distinguish between open and closed field lines, with the closed field lines being assumed to represent magnetic loops. We then try to compute some properties of coronal loops. The loops in the coronal holes (CH) are found to be on average flatter than in the QS. High and long closed loops are extremely rare, whereas short and low-lying loops are almost as abundant in coronal holes as in the quiet Sun. When interpreted in the light of loop scaling laws this result suggests an explanation for the relatively strong chromospheric and transition region emission (many low-lying, short loops), but the weak coronal emission (few high and long loops) in coronal holes. In spite of this contrast our calculations also suggest that a significant fraction of the cool emission in CHs comes from the open flux regions. Despite these insights provided by the magnetic field line statistics further work is needed to obtain a definite answer to the question if loop statistics explain the differences between coronal holes and the quiet Sun.  相似文献   

6.
We present a comparative study of photometric and dynamic properties of photospheric bright points (BPs) observed at the disk centre in the active region (AR) NOAA 10912 and in the quiet Sun. We found that the average concentration of BPs is 54% larger in the AR than in the quiet Sun. We also measure a decrease of the BP concentration and an increase of their size moving away from the AR centre. However, these variations can be ascribed to the variation of the spatial resolution and image quality in the field of view of the AR dataset. We also found that BPs in the quiet Sun are associated with larger downflow motions than those measured within the AR. Finally, from our measurements of contrast and velocity along the line of sight, we deduced that BPs are less bright in high magnetic flux density regions than in quiet regions, due to a lower efficiency of convection in the former regions.  相似文献   

7.
High-resolution photographs of the photospheric network taken in the Caii K 3933 Å line and at 4308 Å are analysed in order to study the variation, in latitude and over the sunspot cycle, of its density (the density is defined as the number of network elements - also called facular points - per surface unity). It appears that the density of the photospheric network is not distributed uniformly at the surface of the Sun: on September 1983, during the declining phase of the current activity cycle, it was weakened at both the low (equatorial) and high (polar) active latitudes, while it was tremendously enhanced toward the pole. The density at the equator is varying in antiphase to the sunspot number: it increases by a factor 3 or more from maximum to minimum of activity. As a quantum of magnetic flux is associated to each network element, density variations of the photospheric network express in fact variations of the quiet Sun magnetic flux. It thus results that the quiet Sun magnetic flux is not uniformly distributed in latitude and not constant over the solar cycle: it probably varies in antiphase to the flux in active regions.The variation over the solar cycle and the latitude distribution of photospheric network density are compared to those of X-ray bright points and ephemeral active regions: there are no clear correlations between these three kinds of magnetic features.  相似文献   

8.
Small-scale magnetic fields can be observed on the Sun in high-resolution G-band filtergrams as magnetic bright points (MBPs). We study Hinode/Solar Optical Telescope (SOT) longitude and latitude scans of the quiet solar surface taken in the G-band in order to characterise the centre-to-limb dependence of MBP properties (size and intensity). We find that the MBP’s sizes increase and their intensities decrease from the solar centre towards the limb. The size distribution can be fitted using a log–normal function. The natural logarithm of the mean (μ parameter) of this function follows a second-order polynomial and the generalised standard deviation (σ parameter) follows a fourth-order polynomial or equally well (within statistical errors) a sine function. The brightness decrease of the features is smaller than one would expect from the normal solar centre-to-limb variation; that is to say, the ratio of a MBP’s brightness to the mean intensity of the image increases towards the limb. The centre-to-limb variations of the intensities of the MBPs and the quiet-Sun field can be fitted by a second-order polynomial. The detailed physical process that results in an increase of a MBP’s brightness and size from Sun centre to the limb is not yet understood and has to be studied in more detail in the future.  相似文献   

9.
Solar photospheric magnetic field plays a dominant role in the variability of total solar irradiance (TSI). The modulation of magnetic flux at six specific ranges on TSI is characterized for the first time. The daily flux values of magnetic field at four ranges are extracted from MDI/SOHO, together with daily flux of active regions (MF\(_{\text{ar}}\)) and quiet regions (MF\(_{\text{qr}}\)); the first four ranges (MF\(_{1\mbox{--}4}\)) are: 1.5–2.9, 2.9–32.0, 32.0–42.7, and 42.7–380.1 (\(\times 10^{18}\) Mx per element), respectively. Cross-correlograms show that MF4, MF\(_{\text{qr}}\), and MF\(_{ \text{ar}}\) are positively correlated with TSI, while MF2 is negatively correlated with TSI; the correlations between MF1, MF3 and TSI are insignificant. The bootstrapping tests confirm that the impact of MF4 on TSI is more significant than that of MF\(_{\text{ar}}\) and MF\(_{\text{qr}}\), and MF\(_{\text{ar}}\) leads TSI by one rotational period. By extracting the rotational variations in the MFs and TSI, the modulations of the former on the latter at the solar rotational timescale are clearly illustrated and compared during solar maximum and minimum times, respectively. Comparison of the relative amplitudes of the long-term variation show that TSI is in good agreement with the variation of MF4 and MF\(_{\text{ar}}\); besides, MF2 is in antiphase with TSI, and it lags the latter by about 1.5 years.  相似文献   

10.
Donea  A.-C.  Lindsey  C.  Braun  D.C. 《Solar physics》2000,192(1-2):321-333
Helioseismic images of multipolar active regions show enhanced seismic emission in 5-mHz oscillations in a halo surrounding the active region called the `acoustic glory'. The acoustic glories contain elements that sustain an average seismic emission 50% greater than similar elements in the quiet Sun. The most intense seismic emitters tend to form strings in non-magnetic regions, sometimes marking the borders of weak magnetic regions and the separation between weak magnetic regions of opposite polarity. This study compares the temporal character of seismic emission from acoustic glories with that from the quiet Sun. The power distribution of quiet-Sun seismic emission far from solar activity is exponential, as for random Gaussian noise, and therefore not perceivably episodic. The distribution of seismic power emanating from the most intense elements that comprise the acoustic glories is exponential out to approximately 4 times the average power emitted by the quiet Sun. Above this threshold the latter distribution shows significant saturation, suggesting the operation of a hydromechanical non-linearity that sets limits on the acoustic power generated by the convection zone. This could give us considerable insight into the physical mechanism of seismic emission from the near subphotosphere.  相似文献   

11.
The effect of large-scale magnetic fields on total solar irradiance (TSI) was studied both in time–frequency and in time–longitude aspects. A continuous wavelet analysis revealed that the energy of thermomagnetic disturbances due to sunspots and faculae cascades into the magnetic network and facular macrostructure. A numerical technique of time–longitude analysis was developed to study the fine structure of temporal changes in the TSI caused by longitudinal brightness inhomogeneities and rotation of the Sun. The analysis facilitates mapping large-scale thermal inhomogeneities of the Sun and reveals patterns of radiative excesses and deficits relative to the undisturbed solar photosphere. These patterns are organized into 2- and 4-sector structures that exhibit the effects of both activity complexes and magnetically active longitudes. Large-scale patterns with radiative excess display a facular macrostructure and bright patterns in the magnetic network caused by the dissipation of large-scale thermomagnetic disturbances. Similar global-scale temperature patterns were found in the upper solar atmosphere. These temperature patterns are also causally related to long-lived magnetic fields of the Sun. During activity cycles 21–23 the patterns with radiative excess tend to be concentrated around the active longitudes which are centered at about 60° and 230° in the Carrington system.  相似文献   

12.
On the basis of multifrequency solar radio observations made on RATAN–600 radiotelescope with high spatial resolution at nine wavelengths in the 2–32–wavelength range is shown that filaments and cavities are well detected on the solar scans at short centimeter wavelengths as the regions of low radio brightness with angular dimensions of 25′–80′ in E—W direction. The tendency of decreasing radio sizes for cavities and filaments from 2.0 to 8.0 cm is observed. The coronal hole (CH) is more contrast in the range of 8–32 cm. The radio size of CH in E—N direction increases from 2′ (at 8.2) to 5′.0 (at 31.6 cm). The spectra of the brightness temperature of CH and the quiet Sun are obtained. The brightness temperature of CH is twice lower than that of the quiet Sun at wavelength of 31.6 cm.  相似文献   

13.
M. R. Kundu 《Solar physics》1971,21(1):130-136
Some properties of solar active regions at 1.2 mm wavelength are discussed. Equatorial and polar brightness distributions of the quiet Sun at 1.2 mm wavelength are also presented.  相似文献   

14.
The coronal magnetic field above a particular photospheric region will vanish at a certain number of points, called null points. These points can be found directly in a potential field extrapolation or their density can be estimated from the Fourier spectrum of the magnetogram. The spectral estimate, in which the extrapolated field is assumed to be random and homogeneous with Gaussian statistics, is found here to be relatively accurate for quiet Sun magnetograms from SOHO’s MDI. The majority of null points occur at low altitudes, and their distribution is dictated by high wavenumbers in the Fourier spectrum. This portion of the spectrum is affected by Poisson noise, and as many as five-sixths of null points identified from a direct extrapolation can be attributed to noise. The null distribution above 1500 km is found to depend on wavelengths that are reliably measured by MDI in either its low-resolution or high-resolution mode. After correcting the spectrum to remove white noise and compensate for the modulation transfer function we find that a potential field extrapolation contains, on average, one magnetic null point, with altitude greater than 1.5 Mm, above every 322 Mm2 patch of quiet Sun. Analysis of 562 quiet Sun magnetograms spanning the two latest solar minima shows that the null point density is relatively constant with roughly 10% day-to-day variation. At heights above 1.5 Mm, the null point density decreases approximately as the inverse cube of height. The photospheric field in the quiet Sun is well approximated as that from discrete elements with mean flux 〈|φ|〉=1.0×1019 Mx distributed randomly with density n=0.007 Mm−2.  相似文献   

15.
The solar UV continuum has been derived from intensity-calibrated observations with the High-Resolution Telescope and Spectrograph - HRTS - on its second rocket flight in 1978. A database has been constructed using the spatially-resolved solar spectrum 1180–1700 Å along a slit extending from near disk center to the solar limb and crossing a sunspot and two active regions. The angular resolution is approximately 1.8″. The data consist of 1772 spectral scans in the full center-to-limb range, including both quiet and active solar regions. The distribution of solar UV intensities has been derived and the center-to-limb variations of the continuum intensities in the quiet Sun are studied. Both quantities show spectral variations, particularly across the Sii continuum edge at 1521 Å. The spectra have been fitted to curves of constant color temperature above and below the Sii edge. The derived center-to-limb variations have been compared to the values of Samain (1979) which are frequently referred to in the literature. A relatively large discrepancy may be explained by the higher spectral and angular resolution of the HRTS as compared to the rocket instrument used by Samain. Comparisons with the VAL III model calculations by Vernazza, Avrett, and Loeser (1981) show discrepancies between the observations and the model predictions, particularly with regard to the sign and amount of the intensity change across the Sii continuum edge. It is noted that some of the results presented, i.e., absolute intensities and brightness temperatures may change, pending confirmation of the SUSIM Spacelab 2 irradiance results (VanHoosieret al., 1988).  相似文献   

16.
We present the results using the AutoClass analysis application available at NASA/Ames Intelligent Systems Div. (2002) which is a Bayesian, finite mixture model classification system developed by Cheeseman and Stutz (1996). We apply this system to Mount Wilson Solar Observatory (MWO) intensity and magnetogram images and classify individual pixels on the solar surface to calculate daily indices that are then correlated with total solar irradiance (TSI) to yield a set of regression coefficients. This approach allows us to model the TSI with a correlation of better than 0.96 for the period 1996 to 2007. These regression coefficients applied to classified pixels on the observed solar surface allow the construction of images of the Sun as it would be seen by TSI measuring instruments like the Solar Bolometric Imager recently flown by Foukal et al. (Astrophys. J. 611, L57, 2004). As a consequence of the very high correlation we achieve in reproducing the TSI record, our approach holds out the possibility of creating an on-going, accurate, independent estimate of TSI variations from ground-based observations which could be used to compare, and identify the sources of disagreement among, TSI observations from the various satellite instruments and to fill in gaps in the satellite record. Further, our spatially-resolved images should assist in characterizing the particular solar surface regions associated with TSI variations. Also, since the particular set of MWO data on which this analysis is based is available on a daily basis back to at least 1985, and on an intermittent basis before then, it will be possible to estimate the TSI emission due to identified solar surface features at several solar minima to constrain the role surface magnetic effects have on long-term trends in solar energy output.  相似文献   

17.
The changes in the Sun occurring at human time-scales can be pinned down to the presence of magnetic fields. These fields determine the structure of the outer solar atmosphere and, therefore, they are responsible for all the energetic part of the solar spectrum, including the UV. Our understanding of the magnetic fields existing at the base of the atmosphere has changed during the last years. The new spectro-polarimeters reveal an ubiquitous magnetic field, present even in the quiet regions. They are widespread and of complex topology, containing far more (unsigned) magnetic flux and magnetic energy that all traditional manifestations of solar activity. These so-called quiet Sun magnetic fields are the subject of the contribution. I summarize their main observational properties, as well as the models put forward to explain them. According to the common wisdom, they may be generated by a turbulent dynamo driven by convective motions. Their true physical role is not understood yet, but it may be consequential both for the Sun (e.g., in determining the structure of the quiet corona), and for other astronomical objects (e.g., if a turbulent dynamo operates in the Sun, the same mechanism provides a very efficient mean of creating surface magnetic fields in all stars with convective envelopes). I discuss the impact of the quiet Sun fields on the transition region and corona, trying to point out the UV signatures of those fields.  相似文献   

18.
We analysed multifrequency 2-dimensional maps of the solar corona obtained with the Nançay radioheliograph during two solar rotations in 1986. We discuss the emission of the quiet Sun, coronal holes and local sources and its association with chromospheric and coronal features as well as with large-scale magnetic fields. The brightness temperature of the quiet Sun was 5 to 5.5 × 105 K at 164 MHz and 4.5 to 5 × 105 K at 408 MHz. A coronal hole, also detected in the 10830 Å He i line, had a brightness temperature of 4.5 × 105 at 164 and 2.5 × 105 at 408 MHz. We give statistics of source brightness temperatures (on the average 8% above the background at 164 MHz and 14% at 408 MHz), as well as distributions in longitude and latitude. Although we found no significant center-to-limb effect in the brightness temperature, the sources were not visible far from the central meridian (apparently a refraction effect). The brightest sources at 164 MHz were near, but not directly above active regions and had characteristics of faint type I continua. At 408 MHz some sources were observed directly above active regions and one was unambiguously a type I continuum. The majority of the fainter sources showed no association with chromospheric features seen on H synoptic charts, including filaments. Most of them were detected at one frequency only. Sources identified at three frequencies (164, 327, and 408 MHz) were located in regions of enhanced large-scale magnetic field, some of them at the same location as decayed active regions visible one rotation before on synoptic H charts. Multifrequency sources are associated with maxima of the green line corona. The comparison with K-corona synoptic charts shows a striking association of the radio sources with dense coronal regions, associated with the coronal neutral sheet. Furthermore, we detected an enhanced brightness region which surrounds the local sources and is stable over at least one solar rotation. We call this feature a coronal plateau and we identify it with the radio counterpart of the coronal neutral sheet.  相似文献   

19.
Using the Michelson Doppler Imager (MDI) data from Solar and Heliospheric Observatory (SOHO), the rotation rate of the unipolar magnetic regions in North high-latitude regions of the Sun is estimated by tracking individual magnetic elements. The analysis reveals a strong spin down near the pole, which is greater than the Doppler and magnetic rotation rates estimated by Snodgrass & Ulrich (1990), and rotation rate inferred from helioseismology (Birch & Kosovichev 1998), and is probably related to variation of velocity gradient in the subsurface shear layer. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Jun Nishikawa 《Solar physics》1994,152(1):125-130
Spatially-resolved precise photometric observations of the whole Sun at wavelengths of 545nm (FWHM 40nm) were carried out by using the CCD solar surface photometer. Bright parts of photospheric network have contrast of several tenths of percent, and their contribution to the total irradiance is approximately half that of active region faculae. The solar irradiance variations estimated from sunspots, faculae and active network (contrast>0.3%) agreed with the ACRIM data. The quiet Sun irradiance used in the present results was different from the total irradiance at the solar minimum observed by the ACRIM, which indicates unmeasured components (contrast>0.1%) cause the 11-year cycle irradiance variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号