首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stable sulfur isotope analyses show that rooted estuarine plants growing in anoxic sediments incorporate substantial amounts of 34S-depleted sulfides, or oxidation products thereof. In roots, this incorporation predominates over sulfate uptake from interstitial porewater. Either the plants incorporate normally toxic sulfides, or they are creating and using a specialized nutrient pool of oxidized sulfides at the root-sediment interface.  相似文献   

2.
Analyses of the specific products of 35SO42? reduction measurements were made in marine sediments in Denmark. We injected tracer quantities of 35SO42? into cores, incubated the cores, and assayed for 35S-labelled acid volatile sulfides. Additionally, we assayed for 35S-labelled elemental sulfur by extraction with CS2, and for 35S-labelled pyrite by reduction with chromium (II). We separately determined that elemental sulfur which formed in situ and that which formed by oxidation during the acid distillation of acid volatile sulfides.In subtidal sediments in Limfjorden, 35S-labelled elemental sulfur and pyrite make up 14–32% of the reduced sulfur formed in short-term (0–48 hours) 35SO42? reduction experiments, at all depths studied (0–15 cm). Labelled elemental sulfur which formed in situ during the incubations at depths below 1 cm made up a fairly constant 5–11% of the total labelled reduced sulfur, from 0–1 cm, it made up 27%. An additional small amount (1–2% from 1–15 cm and 5% from 0–1 cm) of labelled elemental sulfur was formed during the acid-distillation step in our assay for labelled acid-volatile sulndes. Pyrite contained 4–13% of the total labelled reduced sulfur at all depths. Rates of sulfate reduction in Limfjorden were linear over the period 0–48 hours, and 35S-pyrite made up a nearly constant percentage of the 35S-labelled reduced sulfur formed over this time period.Estimates of sulfate reduction rates for Limfjorden which do not include elemental sulfur and pyrite as products are 19% too low. At Kysing Fjord, estimates of sulfate reduction which do not include elemental sulfur and pyrite are 24% to 32% too low. Thus, while previously published data on sulfate reduction in similar environments are probably low, they are not greatly in error.  相似文献   

3.
The source of sulfur in giant Norilsk-type sulfide deposits is discussed. A review of the state of the problem and a critical analysis of existing hypotheses are made. The distribution of δ34S in sulfides of ore occurrences and small and large deposits and in normal sedimentary, metamorphogenic, and hypogene sulfates is considered. A large number of new δ34S data for sulfides and sulfates in various deposits, volcanic and terrigenous rocks, coals, graphites, and metasomatites are presented. The main attention is focused on the objects of the Norilsk and Kureika ore districts. The δ34S value varies from -14 to + 22.5‰ in sulfides of rocks and ores and from 15.3 to 33‰ in anhydrites. In sulfide-sulfate intergrowths and assemblages, δ34S is within 4.2-14.6‰ in sulfides and within 15.3-21.3‰ in anhydrites. The most isotopically heavy sulfur was found in pyrrhotite veins in basalts (δ34S = 21.6‰), in sulfate veins cutting dolomites (δ34S = 33‰), and in subsidence caldera sulfates in basalts (δ34S = 23.2-25.2‰). Sulfide ores of the Tsentral’naya Shilki intrusion have a heavy sulfur isotope composition (δ34S = + 17.7‰ (n = 15)). Thermobarogeochemical studies of anhydrites have revealed inclusions of different types with homogenization temperatures ranging from 685 °C to 80 °C. Metamorphogenic and hypogene anhydrites are associated with a carbonaceous substance, and hypogene anhydrites have inclusions of chloride-containing salt melts. We assume that sulfur in the trap sulfide deposits was introduced with sulfates of sedimentary rocks (δ34S = 22-24‰). No assimilation of sulfates by basaltic melt took place. The sedimentary anhydrites were “steamed” by hydrocarbons, which led to sulfate reduction and δ34S fractionation. As a result, isotopically light sulfur accumulated in sulfides and hydrogen sulfide, isotopically heavy sulfur was removed by aqueous calcium sulfate solution, and “residual” metamorphogenic anhydrite acquired a lighter sulfur isotope composition as compared with the sedimentary one. The wide variations in δ34S in sulfides and sulfates are due to changes in the physicochemical parameters of the ore-forming system (first of all, temperature and Pch4) during the sulfate reduction. The regional hydrocarbon resources were sufficient for large-scale ore formation.  相似文献   

4.
The sulfide-bearing Yulonggou and Yaqu mafic intrusions are located in the southern margin of the Qilian Block, Qinghai Province, western China. They are small dike-like bodies mainly composed of gabbros and diorites. Disseminated sulfides (pyrrhotite, pentlandite, and chalcopyrite) are present as concordant lenses within the intrusions. Precise CA-ID-TIMS zircon U-Pb dating yields the crystallization ages of 443.39?±?0.42 and 440.74?±?0.33 Ma for the Yulonggou and Yaqu intrusions, respectively. Whole rock samples from both intrusions show light rare earth element (REE) enrichments relative to heavy REE and pronounced negative Nb-Ta anomalies relative to Th and La, which are consistent with the products of arc basaltic magmatism. The Yulonggou intrusion has negative ε Nd values from ?5.7 to ?7.7 and elevated (87Sr/86Sr) i ratios from 0.711 to 0.714. In contrast, the Yaqu intrusion has higher ε Nd values from ?4.1 to +8.4 and lower (87Sr/86Sr) i ratios from 0.705 to 0.710. The δ34S values of sulfide separates from the Yulonggou and Yaqu deposits vary from 0.8 to 2.4?‰ and from 2 to 4.3?‰, respectively. The γ Os values of sulfide separates from the Yulonggou and Yaqu deposits vary between 80 and 123 and between 963 and 1,191, respectively. Higher γ Os values coupled with higher δ34S values for the Yaqu deposit relative to the Yulonggou deposit indicate that external sulfur played a bigger role in sulfide mineralization in the Yaqu intrusion than in the Yulonggou intrusion. Mixing calculations using Sr-Nd isotope data show that contamination with siliceous crustal materials is more pronounced in the Yulonggou intrusion (up to 20 wt%) than in the Yaqu intrusion (<15 wt%). The distribution of sulfides in both intrusions is consistent with multiple emplacements of sulfide-saturated magmas from depth. The Yulonggou and Yaqu sulfide deposits are not economically valuable under current market condition due to small sizes and low Ni grades, which can be explained by late-stage sulfide saturation after extensive olivine fractional crystallization from the magmas. Based on these observations, we suggest a shift of focus for Ni exploration in the region from mafic/gabbroic intrusions to olivine-rich ultramafic intrusions.  相似文献   

5.
This research evaluates the effect of both organic and ammonia loading rates and the presence of plants on the removal of chemical oxygen demand and ammonia nitrogen in horizontal subsurface flow constructed wetlands, 2 years after the start-up. Two sets of experiments were carried out in two mesocosms at different organic and ammonia loading rates (the loads were doubled); one without plants (control bed), the other colonized with Phragmites australis. Regardless of the organic loading rate, the organic mass removal rate was improved in the presence of plants (93.4 % higher for the lower loading rate, and 56 % higher for the higher loading rate). Similar results were observed for the ammonia mass removal rate (117 % higher for the lower loading rate, and 61.3 % higher for the higher loading rate). A significant linear relationship was observed between the organic loading rate and the respective removal rates in both beds for loads between 10 and 13 g m?2 day?1. The presence of plants markedly increase removal of organic matter and ammonia, as a result of the role of roots and rhizomes in providing oxygen for aerobic removal pathways, a higher surface area for the adhesion and development of biofilm and nitrogen uptake by roots.  相似文献   

6.
Organic carbon from sediments collected in Texas seagrass meadows was enriched in 13C by an average of 6.6% relative to organic carbon from offshore sediments. Within the South Texas hay system examined. δ13C values became increasingly more typical of offshore sediments with increasing distance from seagrass meadows. This permits the use of carbon isotope data as a measure of the relative contributions of seagrasses and plankton to sedimentary organic matter.  相似文献   

7.
Phytoremediation has been applied for treating an extensive range of environmental contaminants such as anti-diabetic drug metformin which is increasingly found as environmental contaminant. These contaminants are released to the environment via human and veterinary medicine and pharmaceutical industries. In this study, native plant capabilities for uptake of metformin from wastewater were investigated. Moreover, uptake rate of metformin was studied in two different concentrations of 20 and 50 mg l?1 metformin solution by Amaranthus retroflexus, Ricinus communis, Brassica napus, Celosia cristata, Helianthus annuus and Phragmites australis. The results showed that after exposing to 20 mg l?1 metformin solution 69.53 ± 2.25% of metformin was remediated by H. annuus plants. Also in 50 mg l?1 metformin solution, H. annuus plants showed the most remediation potential (65.7 ± 1%). Metformin uptake is raised by B. napus and C. cristata plants along with increasing metformin concentration. There was no evidence of the presence of metformin in the roots and shoots of R. communis and C. cristata. The results also indicated that plants such as H. annuus can be a potential candidate for uptake of metformin from wastewater.  相似文献   

8.
In models for the genesis of the Noril’sk Pt-Cu-Ni ore deposits, much importance is attached to the processes of assimilation of host rocks by basaltic melts. This idea is based on unusual relations between the silicate and sulfide constituents of this type of ore deposits and also on the heavy sulfur isotopic composition of the sulfide ores. The reason for this unusual composition is thought to be the assimilation of anhydrite from the host rocks. However, no other factors able to influence this process have ever been analyzed in the literature. We were the first to thoroughly analyze the inner structure of contact aureoles of the intrusions hosted in various rocks: the Maslovsky intrusion in Early Triassic basalts of the Ivakinsky and Nadezhdinsky formations and the Talnakh intrusion in Devonian anhydrite-bearing carbonate-terrigenous rocks. The distributions of trace elements, the 87Sr/86Sr isotopic ratio, and Sm and Nd isotopes indicate that host rocks were either not assimilated at all, or their effect is perceptible only within a very narrow (1 m) zone in the eastern apophyse in the southern portion of the Maslovsky intrusion. The Sr, Nd, and particularly, Pb isotopic composition indicate that the anhydrite could not be the source of isotopically heavy sulfur for sulfides at Noril’sk deposits. The ores of the Maslovsky and Talnakh intrusions have similar sulfur isotopic composition of their sulfides (the maximum δ34S values of these sulfides reach +10.8 and +14.2‰, respectively), in spite of the significant differences in the rocks hosting these intrusions. Our newly obtained data indicate that assimilation was insignificant and could not affect the origin of the ores.  相似文献   

9.
To evaluate the impact of invading seagrass on biogeochemical processes associated with sulfur cycles, we investigated the geochemical properties and sulfate reduction rates (SRRs) in sediments inhabited by invasive warm affinity Halophila nipponica and indigenous cold affinity Zostera marina. A more positive relationship between SRR and below-ground biomass (BGB) was observed at the H. nipponica bed (SRR = 0.6809 × BGB ? 4.3162, r 2 = 0.9878, p = 0.0006) than at the Z. marina bed (SRR = 0.3470 × BGB ? 4.0341, r 2 = 0.7082, p = 0.0357). These results suggested that SR was more stimulated by the dissolved organic carbon (DOC) exuded from the roots of H. nipponica than by the DOC released from the roots of Z. marina. Despite the enhanced SR in spring-summer, the relatively lower proportion (average, 20%) of acid-volatile sulfur (AVS) in total reduced sulfur and the strong correlation between total oxalate-extractable Fe (Fe(oxal)) and chromium-reducible sulfur (CRS = 0.2321 × total Fe(oxal) + 1.8180, r 2 = 0.3344, p = 0.0076) in the sediments suggested the rapid re-oxidation of sulfide and precipitation of sulfide with Fe. The turnover rate of the AVS at the H. nipponica bed (0.13 day?1) was 2.5 times lower than that at the Z. marina bed (0.33 day?1). Together with lower AVS turnover, the stronger correlation of SRR to BGB in the H. nipponica bed suggests that the extension of H. nipponica resulting from the warming of seawater might provoke more sulfide accumulation in coastal sediments.  相似文献   

10.
Auriferous skarns are associated with post- and late-kinematic Hercynian granites that intruded into Cambro-Ordovician to Devonian sediments of the central Pyrenees. We determined the age of the Andorra granite and the associated skarn at 305 ± 3 Ma by U-Pb dating titanite from the endo-skarn. The sulfur isotopic composition from sulfides in the skarn (Cardellach et al. 1992) shows a significant variation with isotopically light sulfur (34S +3) in the barren skarns and heavy sulfur (34S +11) in the gold-bearing skarns. Outwards, it increasingly resembles sulfur from arsenopyrite disseminations in the Cambro-Ordovician sediments. The lead isotopic composition from sulfides of the skarns is very homogeneous (206Pb/204Pb = 18.410, 207Pb/204Pb = 15.699, 208Pb/204Pb = 38.574) in contrast to the one in gold-bearing arsenopyrite veins and in arsenopyrite disseminations in the sediments (e.g. 206Pb/204Pb varies from 18.54 to 30.36). Combined, sulfur and lead isotope data indicate that the lead in the skarn is dominantly derived from the granite, whereas the sulfur is derived at variable portions from both the granite and the sediments.  相似文献   

11.
The present study evaluated the effect of plant species on methane (CH4) emission and microbial populations in three types of soil–plant systems. Results showed large variation of CH4 flux rate ranging from 1.35 to 212.61 mg CH4 m?2 h?1. Emission peak of CH4 occurred in July. No significant difference was found in the non-vegetation system spanning 2 years. Compared with non-vegetation, vegetation systems had much higher flux of CH4, and obvious seasonal variation was observed. The polyculture system planted with Zizania latifolia (Z. latifolia) and Phragmites australis (P. australis) released higher CH4 fluxes than the mono system (P. australis), reflecting that Z. latifolia growth could simulate CH4 emission. The fluorescence in situ hybridization (FISH) results support the characteristics of CH4 fluxes. Much higher methanotrophs amount and lower methanogens amount from the mono system than those from the polyculture system was observed indicating that Z. latifolia growth may limit the oxygen transportation resulting in higher CH4 emission. The polyculture system has the highest potential of CH4 emission.  相似文献   

12.
Integrated studies were performed on bottom sediments collected in the Chukchi Sea in the northern part of the Gerald Canyon 150 km northeast from Wrangel Island. The recent sedimentation rate amounted to 0.9 mm/year by 210Pb at the sampling site. The concentrations of biogenic components (SiO2bio, Сorg, Ntot, and Br) were minimum at the lower part of the core, where an increase of Thalassiosira antarctica antarctica, probably results from low biological productivity during the Maunder Minimum. The increased concentrations of biogenic components, as well as the decreased values of magnetic susceptibility and X-ray density, in the upper part of the core (1–2 cm) correspond to the last decade of recent of global warming.  相似文献   

13.
Sediment and pore water samples have been collected from the coastal tidal flat in the Shuangtaizi estuary, China, in order to investigate the geochemical behavior of iron, cadmium, and lead during diagenesis and to assess the degree of contamination. The calculated enrichment factors and geoaccumulation indices for separate elements show that anthropogenic activities have had no significant influence on the distribution of Fe and Pb in the study area, whereas the distribution of Cd has been closely influenced in this way. The high percentage of exchangeable Cd (average of 56.34%) suggests that Cd represents a potential hazard to benthic organisms in the estuary. The calculated diffusive fluxes of metals show that the most mobilized metal is Fe (9.22 mg m?2 a?1), followed by Cd (0.54 mg m?2 a?1) and Pb (0.42 mg m?2 a?1). Low Fe2+ contents in surface pore water, alongside high chromium-reducible sulfur contents, and low acid-volatile sulfur, and elemental sulfur contents at 0–25 cm depth in sediments show that Fe2+ is formed by the reduction of Fe oxides and is transformed first to a solid phase of iron monosulfides (FeS) and eventually to pyrite (FeS2). The release of adsorbed Pb due to reductive dissolution of Fe/Mn oxides during early diagenesis could be a source of Pb2+ in pore water. From the relatively low total organic carbon contents measured in sediments (0.46–1.28%, with an average of 0.94%) and the vertical variation of Cd2+ in pore water, sulfide or Fe/Mn oxides (instead of organic matter) are presumed to exert a significant influence on carrying or releasing Cd by the sediments.  相似文献   

14.
Spartina alterniflora and Spartina densiflora are native salt marsh plants from the Atlantic coast; their habitats in Patos Lagoon estuary (southern Brazil) are characterized by a microtidal regime (<0.5 m) and, during El Niño events, high estuarine water levels and prolonged flooding due to elevated freshwater discharge from a 200,000-km2 watershed. During and between El Niño events, the vegetative propagation of these two Spartina species in the largest estuary of southern Brazil (Patos Lagoon) was evaluated by monitoring transplanted plants for 10 years (short-term study) and interpreting aerial photos of natural stands for 56 years (long-term study). During the short-term study, S. alterniflora quickly occupied mud flats (up to 208 cm year?1) by elongation of rhizomes, whereas S. densiflora showed a modest lateral spread (up to 13 cm year?1) and generated dense circular-shaped stands. However, moderate and strong El Niño events can promote excessive flooding and positive anomalies in the estuarine water level that reduce the lateral spread and competitive ability of S. densiflora. During the long-term study, natural stands of S. alterniflora and S. densiflora had steady lateral spread rates of 152 and 5.2 cm year?1, respectively, over mud flats. In the microtidal marshes of the southwest Atlantic, the continuous long-term lateral expansion of both Spartina species embodies periods of intense flooding stress (moderate and strong El Niños), when there is a decrease of vegetative propagation and less stressful low water periods of fast spread over mud flats (non-El Niño periods and weak intensity El Niños).  相似文献   

15.
Rates of sulfate reduction, oxygen uptake and carbon dioxide production in sediments from a short Spartina alterniflora zone of Great Sippewissett Marsh were measured simultaneously during late summer. Surface sediments (0–2 cm) were dominated by aerobic metabolism which accounted for about 45% of the total carbon dioxide production over 0–15 cm. Rates of sulfate reduction agreed well with rates of total carbon dioxide production below 2 cm depth indicating that sulfate reduction was the primary pathway for sub-surface carbon metabolism. Sulfate reduction rates were determined using a radiotracer technique coupled with a chromous chloride digestion and carbon disulfide extraction of the sediment to determine the extent of formation of radiolabelled elemental sulfur and pyrite during shortterm (48 hr) incubations. In the surface 10 cm of the marsh sediments investigated, about 50% of the reduced radiosulfur was recovered as dissolved or acid volatile sulfides, 37% as carbon disulfide extractable sulfur, and only about 13% was recovered in a fraction operationally defined as pyrite. Correlations between the extent of sulfate depletion in the marsh sediments and the concentrations of dissolved and acid volatile sulfides supported the results of the radiotracer work. Our data suggest that sulfides and elemental sulfur may be major short-term end-products of sulfate reduction in salt marshes.  相似文献   

16.
World-class Ni-Cu-PGE deposits: key factors in their genesis   总被引:55,自引:0,他引:55  
Magmatic Ni-Cu sulfide deposits form as the result of segregation and concentration of droplets of liquid sulfide from mafic or ultramafic magma, and the partitioning of chalcophile elements into these from the silicate melt. Sulfide saturation of a magma is not enough in itself to produce an ore deposit. The appropriate physical environment is required so that the sulfide liquid mixes with enough magma to become adequately enriched in chalcophile metals, and then is concentrated in a restricted locality so that the resulting concentration is of ore grade. The deposits of the Noril'sk region have developed within flat, elongate bodies (15 × 2 × 0.2 km) that intrude argillites, evaporites and coal measures, adjacent to a major, trans-crustal fault and immediately below the centre of a 3.5 km-thick volcanic basin. Studies of the overlying basalts have shown that lavas forming a 500 m-thick sequence within these have lost 75% of their Cu and Ni and more than 90% of their PGE. Overlying basalts show a gradual recovery in their chalcophile element concentrations to reach “normal” values 500 m above the top of the highly depleted zone. The ore-bearing Noril'sk-type intrusions correlate with those basalts above the depleted zone that contain “normal” levels of chalcophile elements. The high proportion of sulfide (2–10 wt.%) associated with the Noril'sk-type intrusions, the high PGE content of the ores, the extensive metamorphic aureole (100–400 m around the bodies), and the heavy sulfur isotopic composition of the ores (+8–+12 ∂34S) are explicable if the ore-bearing bodies are exit conduits from high level intrusions, along which magma has flowed en route to extrude at surface. The first magma to enter these intrusions reacted with much evaporitic sulfur, at a low “R” value and thus gave rise to sulfides with low metal tenors. Successive flow of magma through the system progressively enriched the sulfides in the conduits, losing progressively less of their chalcophile metals, and thus accounting for the upward increase in metals in successive lava flows above the highly depleted flows. The Voisey's Bay deposit lies partly within a 30–100 m-thick sheet of troctolite, interpreted as a feeder for the 1.334 Ga Voisey's Bay intrusion, and partly at the base of this intrusion, where the feeder adjoins it. Studies of olivine compositions indicate that an early pulse of magma through the feeder and into the intrusion was Ni depleted but that subsequent pulses were much less depleted. Trace element, Re-Os and S and O isotope data, and mineralogical studies indicate that the magma pulses interacted with country gneiss, probably principally in a deeper level intrusion, extracting SiO2, Na2O, K2O and possibly sulfur form the gneiss, which accounts for the magma becoming sulfide saturated. The Jinchuan deposit of north central China occurs within a 6 km-long dyke-like body of peridotite. The compositions of olivine within the dyke, the igneous rocks themselves, and the ore are all inconsistent with derivation of the body from ultramafic magma, as originally supposed, and indicate that the structure forms the keel of a much larger intrusion of magnesian basalt magma. Flow of magma into the intrusion has resulted in olivine and sulfide being retained where the keel was widening out into the intrusion. The West Australian komatiite-related deposits occur in thermal erosional troughs which have developed due to the channelisation of magma flow and the resulting thermal erosion of underlying sediments and basalt by the hot komatiite magma. The sediments are sulfide-rich, and may have contributed substantially to the sulfide of the ores. The mineralisation in the Duluth complex occurs in troctolitic intrusions along the western margin of the complex as a result of magma interacting with and extracting sulfur from the underlying graphite- and sulfide-bearing sediments. No magma flow channels have been identified so far, and the lack of magma flow subsequent to the development of sulfide immiscibility is regarded as the reason why these deposits are not of economic grade. When most major Ni-Cu sulfide deposits are compared, they prove to have a number of features in common; olivine-rich magma, proximity to a major crustal fault, sulfide-bearing country rocks, chalcophile element depletion in related intrusive or extrusive rocks, field and/or geochemical evidence of interaction between the magma and the country rocks, and the presence of or proximity to a magma conduit. The features are thought to explain the three key requirements (sulfide immiscibilty, adequate mixing between sulfides and magma, and localisation of the sulfides) discussed and have important implications with respect to exploration. Received: 9 January 1998 / Accepted: 21 September 1998  相似文献   

17.
The Habo alkaline intrusion, which is located in the south of the Sanjiang area, Yunnan Province, China, is a typical Cenozoic alkaline intrusion. There are a series of small to medium-sized Au and Pb–(Zn) deposits around this intrusion. Those deposits are spatially associated with the Habo alkaline intrusion. (1) The δ34S values of sulfides from Au deposits range from ?1.91 ‰ to 2.69 ‰, which are similar to those of Pb–(Zn) deposits (?3.82 ‰ to ?0.05 ‰) and both indicate a much greater contribution from magma. (2) The Habo alkaline intrusion has relatively homogeneous Pb isotopic compositions with 206Pb/204Pb ranging from 18.608 to 18.761, 207Pb/204Pb from 15.572 to 15.722 and 208Pb/204Pb from 38.599 to 39.110. These Pb isotope ratios are similar to those of Au deposits, whose 206Pb/204Pb range from 18.564 to 18.734, 207Pb/204Pb from 15.582 to 15.738 and 208Pb/204Pb from 38.592 to 39.319. Pb ratios in both the intrusion and Au deposits suggest that Pb mainly derived from the depth, probably represents a mixture of mantle and crust. Pb–(Zn) deposits, however, show a decentralized trait, and most of them are similar to that of the alkaline intrusion with 206Pb/204Pb ranging from 18.523 to 18.648, 207Pb/204Pb from 15.599 to 15.802, and 208Pb/204Pb from 38.659 to 39.206. (3) In the plumbotectonic diagram 207Pb/204Pb versus 206Pb/204Pb, almost all of Au and Pb–(Zn) deposits have the same projection area with the Habo alkaline intrusion, which indicates that those deposits almost share the same source with the alkaline intrusion. (4) Isotopic age of the Habo alkaline intrusion is 36–33 Ma, which is similar to that of Beiya, whose ore-related alkaline porphyries age is 38–31 Ma and molybdenite Re–Os age is 36.9 Ma. Therefore, along with S–Pb isotope traits, we suggest that the Habo Au and Pb–(Zn) deposits should be typically Ailaoshan-Red RiverCenozoicalkaline-related deposits and ore-forming ages of these deposits should be later than that of the Habo alkaline intrusion.  相似文献   

18.
Seagrasses are typically light limited in many turbid estuarine systems. Light attenuation is due to water and three optically active constituents (OACs): nonalgal particulates, phytoplankton, and colored dissolved organic matter (CDOM). Using radiative transfer modeling, the inherent optical properties (IOPs) of these three OACs were linked to the light attenuation coefficient, K PAR, which was measured in North River, North Carolina, by profiles of photosynthetically active radiation (PAR). Seagrasses in the southern portion of Albemarle-Pamlico Estuarine System (APES), the second largest estuary in the USA, were found to be light limited at depths ranging from 0.87 to 2 m. This corresponds to a range of K PAR from 0.54 to 2.76 m?1 measured during a 24-month monitoring program. Turbidity ranged from 2.20 to 35.55 NTU, chlorophyll a from 1.56 to 15.35 mg m?3, and CDOM absorption at 440 nm from 0.319 to 3.554 m?1. The IOP and water quality data were used to calibrate an existing bio-optical model, which predicted a maximum depth for seagrasses of 1.7 m using annual mean water quality values and a minimum light requirement of 22% surface PAR. The utility of this modeling approach for the management of seagrasses in the APES lies in the identification of which water quality component is most important in driving light attenuation and limiting seagrass depth distribution. The calibrated bio-optical model now enables researchers and managers alike to set water quality targets to achieve desired water column light requirement goals that can be used to set criteria for seagrass habitat protection in North Carolina.  相似文献   

19.
The Kaluganga River Estuary is one of the main sources of construction sand in Sri Lanka. Salt water intrusion along this estuary due to extensive sand mining has increased over the years. Thus, the focus of the current research is to understand the relationship between river sand mining, salt water intrusion, and the resultant effects on construction sand. Two surveys were conducted along the Kaluganga Estuary along an 11 km stretch from the river mouth at predetermined intervals to measure depth water quality profiles, and to collect sediment samples. These surveys were carried out during maximum spring tide; first in a dry period and then in a wet period, to understand hydrographic effects on the quality of river sands. Sand samples were analysed for absolute chloride content and grain size distribution. Results showed significant salt water intrusion during the dry period, averaging 2,307 μS cm?1 in surface waters throughout the surveyed 11 km stretch along with 3,818 μS cm?1 (average) in bottom waters up to 5.6 km upstream from the river mouth causing above normal chloride content in the bottom sandy sediments. The high chloride content in bottom sands was recorded up to 5.5 km from the river mouth making them unsuitable for construction purposes. However, during wet period, salt water intrusion levels in the bottom waters were insignificant (average 61 μS cm?1) and the chloride content in bottom sediments was very low. This study highlighted the requirement for regulations on river estuary sandmining for construction purposes.  相似文献   

20.
Three sediment stations in Himmerfjärden estuary (Baltic Sea, Sweden) were sampled in May 2009 and June 2010 to test how low salinity (5–7 ‰), high primary productivity partially induced by nutrient input from an upstream waste water treatment plant, and high overall sedimentation rates impact the sedimentary cycling of methane and sulfur. Rates of sediment accumulation determined using 210Pbexcess and 137Cs were very high (0.65–0.95 cm?year?1), as were the corresponding rates of organic matter accumulation (8.9–9.5 mol C?m?2?year?1) at all three sites. Dissolved sulfate penetrated <20 cm below the sediment surface. Although measured rates of bicarbonate methanogenesis integrated over 1 m depth were low (0.96–1.09 mol?m?2?year?1), methane concentrations increased to >2 mmol?L?1 below the sulfate–methane transition. A steep gradient of methane through the entire sulfate zone led to upward (diffusive and bio-irrigative) fluxes of 0.32 to 0.78 mol?m?2?year?1 methane to the sediment–water interface. Areal rates of sulfate reduction (1.46–1.92 mol?m?2?year?1) integrated over the upper 0–14 cm of sediment appeared to be limited by the restricted diffusive supply of sulfate, low bio-irrigation (α?=?2.8–3.1 year?1), and limited residence time of the sedimentary organic carbon in the sulfate zone. A large fraction of reduced sulfur as pyrite and organic-bound sulfur was buried and thus escaped reoxidation in the surface sediment. The presence of ferrous iron in the pore water (with concentrations up to 110 μM) suggests that iron reduction plays an important role in surface sediments, as well as in sediment layers deep below the sulfate–methane transition. We conclude that high rates of sediment accumulation and shallow sulfate penetration are the master variables for biogeochemistry of methane and sulfur cycling; in particular, they may significantly allow for release of methane into the water column in the Himmerfjärden estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号