首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding of seismicity and seismotectonics of Delhi and adjoining areas is essential as these areas lie in the seismic zone IV and are geologically confined to the Delhi Fold Belt (DFB), juxtaposed to the Himalayan Frontal Thrust Fold Belt. Owing to the set-up, seismicity in this area is ascribed to the Himalayan Thrust System and activation of DFB Fault Systems. Considerably improved instrumental seismic monitoring in this area and data analysis had resolved three regions of pronounced seismicity that lie close to Sonepat, Rohtak and western part of the NCT Delhi, attributed to activation of various portions of the fault systems of the DFB. Based on seismic telemetry network data, the seismicity pattern analysis revealed that the Mahendragarh Dehradun Sub-Surface Fault (MDSSF) and Delhi Sargodha Ridge (DSR) are the two major zones of structural importance for the nucleation of seismicity in this region. These revelations were corroborated with the fault plane solution of the earthquakes. The dominant mechanism in nucleation of seismicity in DFB is the thrust with minor strike slip. The seismicity and seismotectonics of Delhi and adjoining areas endemic to activation of DFB is reviewed and presented in this paper.  相似文献   

2.
This paper presents the results of two multivariate analysis techniques—principal component and cluster analysis—as they are applied to the seismicity characterization of Iran. The seismic data used in this study covers a period of 50 years, from the beginning of 1957 to the end of 2006. The values of eight seismic variables were calculated on a grid of equally spaced points at one geographic degree spacing in both latitude and longitude. The data matrix was analyzed using principal component and cluster analysis. Principal component analysis identified two significant components, introduced in this study as the Seismic Frequency Index (SFI) and the Seismic Severity Index (SSI), responsible for the data structure. The SFI and SSI explain 34.34 % and 32.33 % of the total variance of the data set, respectively, and allowed grouping of the selected variables according to their common features. The standardized data matrix was analyzed using Ward’s clustering method. The resulting seismicity pattern recognition maps of the region at three levels of similarity are presented. From these maps, differentiated seismic zones are outlined in detail and compared quantitatively. Comparison between the seismic zoning maps obtained in this analysis and the general tectonic map of the region indicates that the seismic zones are consistent with the tectonic zones of the region. This study presents the necessity and usefulness of multivariate analysis in evaluating and interpreting seismic data catalogues with the goal of obtaining more objective information about the seismicity pattern of regions.  相似文献   

3.
Summary The 3000 Orebody is one of two orebodies in the Deep Copper Mine at Mount Isa, Australia. Owing to concerns about potential shaft pillar instabilities, an integrated seismic system was introduced to monitor seismic activity associated with pillar and country rock deformation. Coupled with numerical modelling of the stress regime, the system may assist in the characterization of rock mass damage resulting from mining, and perhaps the identification of near- and far-field geological structures that affect stope performance. A study was undertaken to quantify the seismicity and to determine potential applications of the seismic technology. The relation between geological structure and seismicity is strong, suggesting good prospects for the use of the system in the ground-control activities noted above. The induction of seismicity, which involves small magnitude events, is associated with reduction of normal stress on planes of weakness, suggesting that stress path may be an important factor in the level of seismicity observed in hard rock mines.  相似文献   

4.
Seismic hazard assessment of slow active fault zones is challenging as usually only a few decades of sparse instrumental seismic monitoring is available to characterize seismic activity. Tectonic features linked to the observed seismicity can be mapped by seismic imaging techniques and/or geomorphological and structural evidences. In this study, we investigate a seismic lineament located in the Swiss Alpine foreland, which was discussed in previous work as being related to crustal structures carrying in size the potential of a magnitude M 6 earthquake. New, low-magnitude (?2.0 ≤ ML ≤ 2.5) earthquake data are used to image the spatial and temporal distribution of seismogenic features in the target area. Quantitative and qualitative analyses are applied to the waveform dataset to better constrain earthquakes distribution and source processes. Potential tectonic features responsible for the observed seismicity are modelled based on new reinterpretations of oil industry seismic profiles and recent field data in the study area. The earthquake and tectonic datasets are then integrated in a 3D model. Spatially, the seismicity correlates over 10–15 km with a N–S oriented sub-vertical fault zone imaged in seismic profiles in the Mesozoic cover units above a major decollement on top of the mechanically more rigid basement and seen in outcrops of Tertiary series east of the city of Fribourg. Observed earthquakes cluster at shallow depth (<4 km) in the sedimentary cover. Given the spatial extend of the observed seismicity, we infer the potential of a moderate size earthquake to be generated on the lineament. However, since the existence of along strike structures in the basement cannot be excluded, a maximum M 6 earthquake cannot be ruled out. Thus, the Fribourg Lineament constitutes a non-negligible source of seismic hazard in the Swiss Alpine foreland.  相似文献   

5.
Yih-Min Wu  Chien-chih Chen   《Tectonophysics》2007,429(1-2):125-132
We in this study have calculated the standard normal deviate Z-value to investigate the variations in seismicity patterns in the Taiwan region before and after the Chi-Chi earthquake. We have found that the areas with relatively high seismicity in the eastern Taiwan became abnormally quiet before the Chi-Chi earthquake while the area in the central Taiwan with relatively low seismicity showed unusually active. Such a spatially changing pattern in seismicity strikingly demonstrates the phenomenon of “seismic reversal,” and we here thus present a complete, representative cycle of “seismic reversal” embedding in the changes of seismicity patterns before and after the Chi-Chi earthquake.  相似文献   

6.
Characteristics of the seismicity in depth ranges 0–33 and 34–70 km before ten large and great (M w = 7.0−9.0) earthquakes of 2000–2008 in the Sumatra region are studied, as are those in the seismic gap zones where no large earthquakes have occurred since at least 1935. Ring seismicity structures are revealed in both depth ranges. It is shown that the epicenters of the main seismic events lie, as a rule, close to regions of overlap or in close proximity to “shallow” and “deep” rings. Correlation dependences of ring sizes and threshold earthquakes magnitudes on energy of the main seismic event in the ring seismicity regions are obtained. Identification of ring structures in the seismic gap zones (in the regions of Central and South Sumatra) suggests active processes of large earthquake preparation proceed in the region. The probable magnitudes of imminent seismic events are estimated from the data on the seismicity ring sizes.  相似文献   

7.
A seismic source model is developed for the entire Arabian Plate, which has been affected by a number of earthquakes in the past and in recent times. Delineation and characterization of the sources responsible for these seismic activities are crucial inputs for any seismic hazard study. Available earthquake data and installation of local seismic networks in most of the Arabian Plate countries made it feasible to delineate the seismic sources that have a hazardous potential on the region. Boundaries of the seismic zones are essentially identified based upon the seismicity, available data on active faults and their potential to generate effective earthquakes, prevailing focal mechanism, available geophysical maps, and the volcanic activity in the Arabian Shield. Variations in the characteristics given by the above datasets provide the bases for delineating individual seismic zones. The present model consists of 57 seismic zones extending along the Makran Subduction Zone, Zagros Fold-Thrust Belt, Eastern Anatolian Fault, Aqaba-Dead Sea Fault, Red Sea, Gulf of Aden, Owen Fracture Zone, Arabian Intraplate, and a background seismic zone, which models the floating seismicity that is unrelated to any of the distinctly identified seismic zones. The features of the newly developed model make the seismic hazard results likely be more realistic.  相似文献   

8.
A new view of Italian seismicity using 20 years of instrumental recordings   总被引:9,自引:0,他引:9  
In this paper, we show the seismicity of the past 20 years that occurred in Italy and surrounding regions. Hypocentral locations have been obtained by using P- and S-wave arrival times from the INGV national and several regional permanent seismic networks. More than 48,000 events, selected from an original data set of about 99,780, are used to reconstruct the most complete seismic picture of the Italian region so far. The seismicity distribution allows inference on seismotectonics of this complex region of subduction versus continental collision. Our results clearly reveal the geometry of the Adria and the Ionian subduction and a continuous normal fault belt in the upper crust, following the Apennines mountain range. The depth of the seismogenic layer is computed from the cut-off of seismicity at depth and shows large variations along and across the seismic active regions. Earthquakes are generated by the different velocity of slab retreat and the subsequent asthenospheric upwelling.  相似文献   

9.
We studied the temporal behavior of the background shallow seismicity rate in 700 circular areas across inland Japan. To search for and test the significance of the possible rate changes in background seismicity, we developed an efficient computational method that applies the space–time ETAS model proposed by Ogata in 1998 to the areas. Also, we conducted Monte Carlo tests using a simulated catalog to validate the model we applied. Our first finding was that the activation anomalies were found so frequently that the constant background seismicity hypothesis may not be appropriate and/or the triggered event model with constraints on the parameters may not adequately describe the observed seismicity. However, quiescence occasionally occurs merely by chance. Another outcome of our study was that we could automatically find several anomalous background seismicity rate changes associated with the occurrence of large earthquakes. Very significant seismic activation was found before the M6.1 Mt. Iwate earthquake of 1998. Also, possible seismic quiescence was found in an area 150 km southwest of the focal region of the M7.3 Western Tottori earthquake of 2000. The seismicity rate in the area recovered after the mainshock.  相似文献   

10.
New results from seismic monitoring in the Euro-Arctic region, including the seismicity of Gakkel Ridge and the Barents–Kara Sea shelf, are presented. The data used were obtained from the Arkhan-gelsk seismic network. The role of island-based seismic stations, in particular, those in Franz Josef Land, in the monitoring network is discussed. The possibility of specifying the nature of seismicity by waveform spectral-temporal analysis, even in the case of a single station, is considered.  相似文献   

11.
A critical need exists for site-specific hydrogeologic data in order to determine potential hazards of induced seismicity and to manage risk. By 2015, the United States Geological Survey (USGS) had identified 17 locations in the USA that are experiencing an increase in seismicity, which may be potentially induced through industrial subsurface injection. These locations span across seven states, which vary in geological setting, industrial exposure and seismic history. Comparing the research across the 17 locations revealed patterns for addressing induced seismicity concerns, despite the differences between geographical locations. Most induced seismicity studies evaluate geologic structure and seismic data from areas experiencing changes in seismic activity levels, but the inherent triggering mechanism is the transmission of hydraulic pressure pulses. This research conducted a systematic review of whether data are available in these locations to generate accurate hydrogeologic predictions, which could aid in managing seismicity. After analyzing peer-reviewed research within the 17 locations, this research confirms a lack of site-specific hydrogeologic data availability for at-risk areas. Commonly, formation geology data are available for these sites, but hydraulic parameters for the seismically active injection and basement zones are not available to researchers conducting peer-reviewed research. Obtaining hydrogeologic data would lead to better risk management for injection areas and provide additional scientific evidential support for determining a potentially induced seismic area.  相似文献   

12.
填石路堤已经成为山区高等级公路较普遍的路堤形式,但对填石路堤的地震稳定性研究较少.坟川地震以后,我国已处土地震活跃期,因此对西部高烈度山区修建的浸水高填石路堤进行地震作用下的稳定性研究具有十分重要的意义.本文以雅沪高速公路K112+908.16~K113+675段的浸水高填石路堤为研究对象,对在折线地基上填筑的高填石路...  相似文献   

13.
Probabilistic methods are used to quantify the seismic hazard in Jordan and neighbouring regions. The hazard model incorporates the uncertainties associated with the seismicity parameters and the attenuation equation. Seven seismic sources are identified in the region and the seismicity parameters of these sources are estimated by making use of all the available information. Seismic hazard computations and the selection of peak ground acceleration and modified Mercalli intensity values at the nodes of a 25 × 25 km mesh covering the region under study are carried out by two different computer programs.The results of the study are presented through a set of seismic hazard maps displaying iso-acceleration and iso-intensity contours corresponding to specified return periods. The first set of maps is derived based on the seismicity data assessed in this study and display our best estimate of the seismic hazard for Jordan and the neighbouring areas. The second set of maps which shows the alternative estimate of seismic hazard is based solely on the seismicity parameters reported by other researchers. The third set of maps, called the Bayesian estimate of seismic hazard, reflects the influence of expert opinion involving more conservative assumptions regarding the Red Sea and Araba faults.  相似文献   

14.
The objective of this study is to evaluate the seismic hazard at the Esfarayen-Bojnurd railway using the probabilistic seismic hazard assessment (PSHA) method. This method was carried out based on a recent data set to take into account the historic seismicity and updated instrumental seismicity. A homogenous earthquake catalogue was compiled and a proposed seismic sources model was presented. Attenuation equations that recently recommended by experts and developed based upon earthquake data obtained from tectonic environments similar to those in and around the studied area were weighted and used for assessment of seismic hazard in the frame of logic tree approach. Considering a grid of 1.2 × 1.2 km covering the study area, ground acceleration for every node was calculated. Hazard maps at bedrock conditions were produced for peak ground acceleration, in addition to return periods of 74, 475 and 2475 years.  相似文献   

15.
The first step in a seismicity analysis usually consists of defining the seismogenic units, seismic zones or individual faults. The worldwide delimitation of these zones involves an enormous effort and is often rather subjective. Also, a complete recording of faults will not be available for a long time yet. The seismicity model presented in this paper therefore is not based on individually defined seismic zones but rather on the assumption that each point in a global 1/2° grid of coordinates represents a potential earthquake source. The corresponding seismogenic parameters are allocated to each of these points. The earthquake occurrence frequency, one of the most important parameters, is determined purely statistically by appropriately spreading out the positions of past occurrences. All the other significant seismicity characteristics, such as magnitude-frequency relations, maximum possible magnitude and attenuation laws including the dependence on focal depth are determined in a global 1/2° grid of co-ordinates. This method of interpreting seismicity data allows us to establish a transparent, sufficiently precise representation of seismic hazard which is ideally suited for computer-aided risk analyses.  相似文献   

16.
The aim of this study is to understand the seismic characteristics of fault systems, which play key roles in the geodynamics of the Mt. Etna and the ascending magma. Understanding the seismic behaviour of fault systems and their relationship to volcanic and seismic phenomena may provide a useful contribution to a better understanding of dynamic processes at Mt. Etna. The seismicity in two periods (1874–1913 and 1981–1996), which include some important eruptions, have been analysed. Quantitative analysis of seismicity has been performed. Calculating fractal dimension allows us to distinguish between random, periodic and clustered scale-invariant time distributions of volcanic events. Correlations between fractal clustering evolution at long, mid and short term and eruptive processes has been found.  相似文献   

17.
More than 30 cases of seismicity associated with dam reservoir sites are known throughout the world. Despite the lack of data in some areas, where seismicity occurred after reservoir impounding, there have been distinct seismic patterns observed in seismic areas after dam projects implantation. This has demonstrated that reservoir loading can trigger earthquakes. A mechanism of earthquake generation by reservoir impounding is proposed here with particular application to the Brazilian cases and to areas subject to low confining stress conditions in stable regions. Six artificial lakes are described and the associated earthquake sources are discussed in terms of natural or induced seismicity. Earthquake monitoring in Brazil up to 1967, when Brasilia's seismological station started operation, was mainly based in personal communications to the media. Therefore, there is a general lack of seismic records in relatively uninhabited areas, making it difficult to establish a seismic risk classification for the territory and to distinguish natural from induced seismicity. Despite this, cases reported here have shown an alteration of the original seismic stability in dam sites, after reservoir loading, as observed by the inhabitants or records from Brasilia's seismological station. All cases appear to be related to an increase in pore pressure in permeable rocks or fracture zones which are confined between impermeable rock slabs of more competent rock. It is apparent that some cases show some participation of high residual stress conditions in the area.  相似文献   

18.
The seismic hazard assessment of a site that lies in the low seismic region affected by the future existence of a large dam has been given less attention in many studies. Moreover, this condition is not addressed directly in the current seismic codes. This paper explains the importance of such information in mitigating the seismic hazard properly. Ulu Padas Area in Northern Borneo is used as an example for a case study of a site classified as a low seismic region. It is located close to the border of Malaysia, Brunei Darussalam, and Indonesia and may have a large dam in the future as the region lies in hilly geography with river flow. This study conducts probabilistic and deterministic seismic hazard analyses, and reservoir-triggered seismicity of a site affected by the future existence of a large dam. The result shows that the spectrum acceleration of the maximum design earthquake for the investigated site in the Ulu Padas Area in Northern Borneo is taken from the reservoir-triggered seismicity earthquake at short periods and from the current condition at longer periods.  相似文献   

19.
Moment tensors and micromechanical models   总被引:4,自引:0,他引:4  
A numerical modelling approach that simulates cracking and failure in rock and the associated seismicity is presented and a technique is described for quantifying the seismic source mechanisms of the modelled events. The modelling approach represents rock as an assemblage of circular particles bonded together at points of contact. The connecting bonds can break under applied stress forming cracks and fractures in the modelled rock. If numerical damping is set to reproduce realistic levels of attenuation, then energy is released when the bonds break and seismic source information can be obtained as damage occurs. A technique is described by which moment tensors and moment magnitudes can be calculated for these simulated seismic events. The technique basically involves integrating around the source and summing the components of force change at the surrounding particle contacts to obtain the elements of the moment tensor matrix. The moment magnitude is then calculated from the eigenvalues of the moment tensor. The modelling approach is tested by simulating a well-controlled experiment in which a tunnel is excavated in highly stressed granite while microseismicity is recorded. The seismicity produced by the model is compared to the actual recorded seismicity underground. The model reproduces the spatial and temporal distribution of seismicity observed around the tunnel and also the magnitudes of the events. A direct comparison between the actual and simulated moment tensors is not performed due to the two-dimensional nature of the model, however, qualitative comparisons are presented and it is shown that the model produces intuitively realistic source mechanisms. The ability to obtain seismic source information from the models provides a unique means for model validation through comparison with actual recorded seismicity. Once it is established that the model is performing in a realistic manner, it can then be used to examine the micromechanics of cracking, failure and the associated seismicity and to help resolve the non-uniqueness of the geophysical interpretation. This is demonstrated by examining in detail the mechanics of one of the modelled seismic events by observation of the time dependence of the moment tensor and by direct examination of the particle motions at the simulated source.  相似文献   

20.
The Italian catalogue contains many earthquakes of moderate to high epicentral intensity which are located in areas of low seismicity and near big cities. Some of them have been inserted in the catalogue after one historical record only. This study investigates many such events in the 1000–1690 time-window showing that a great number of them are fake. Starting by an operational definition of ‘fake quake’, this paper shows the procedures adopted, and the main results which contribute in a significant way to the reassessment of seismicity and seismic hazard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号