首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Numerous seismic refraction traverses were carried out over the Hawaiian Islands to outline the structure of the volcanoes and determine the thickness of the layers of the crust. Results indicate that there is a progressive thickening of the crust in the area from younger to older volcanic islands. High velocity mantle-like material was detected under rift zones and in volcanic plugs. Volcanic regions were found to be intersected by flexure zones in the crust and in the mantle. The seismic refraction method, in conjunction with gravity and magnetic methods, was found to be successful in outlining the horizontal and vertical structures of rift zones and plugs of volcanoes.  相似文献   

2.
Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999~2005,a 3-D P-wave velocity model of the crust under Hainan Island and adjacent regions has been determined. The results show that the pattern of velocity anomalies in the shallower upper crust is somewhat associated with the surface geological tectonics in the region. A relative low-velocity anomaly appears north of the Wangwu-Wenjiao fault zone and a relative high-velocity anomaly appears south of the Wangwu-Wenjiao fault zone,corresponding to the depressed areas in north Hainan Island,where many volcanoes are frequently active and geothermal values are relatively higher,and the uplifted and stable regions in central and south of the Hainan Is-land. In the middle and lower crust velocities are relatively lower in east Hainan than those in west Hainan,possi-bly suggesting the existence of the upwelling of hot materials from the mantle in east Hainan. The pattern of veloc-ity anomalies also indicates that NW faults,i.e.,the Puqian-Qinglan fault,may be shallower,while the E-W Wangwu-Wenjiao fault may be deeper,which perhaps extends down to Moho depth or deeper.  相似文献   

3.
In this paper I present data on the abundances, sizes and crustal age for all volcanoes (volcanic islands and seamounts) which appear on published bathymetric charts of the Pacific Ocean. These new data shed light on the origin of non-hotspot volcanoes and are important, in combination with data on the chemical compositions of seamounts and volcanic islands, for estimates of the bulk composition of ocean crust. These data also provide firm constraints on off-ridge oceanic volcanism models. Results of this study show that the size-frequency distribution of Pacific volcanoes is Poisson-like and that the smallest volcanoes are much more abundant than large ones. This study shows clearly that the most abundant volcanoes on the Earth are the submerged oceanic volcanoes which comprise 5–25% of the oceanic volcanic layer. On Pacific crust of Eocene age and younger, the abundance of volcanoes (number of volcanoes per unit area) increases monotonically with increasing age. Assuming steady state, the production rate of new off-ridge volcanoes (number of volcanoes per unit area per unit time) is inversely proportional to the square root of the lithosphere age [1]. On crust older than Eocene, the number of volcanoes per unit area of crust decreases monotonically with increasing age, however the total volume of lava represented by these edifices increases with increasing age. Size frequency distributions of volcanoes on swaths of successively older crust indicate that these abundance patterns are partly due to the effect of sediment burial of small edifices on old Pacific crust as well as the effect of increased lithosphere thickness on seamount size. These general patterns are not appreciably changed by omitting from consideration known hotspot volcanoes [2] and volcanoes built at fossil constructional plate margins [3].  相似文献   

4.
Edifices of stratocones and domes are often situated eccentrically above shallow silicic magma reservoirs. Evacuation of such reservoirs forms collapse calderas commonly surrounded by remnants of one or several volcanic cones that appear variously affected and destabilized. We studied morphologies of six calderas in Kamchatka, Russia, with diameters of 4 to 12 km. Edifices affected by caldera subsidence have residual heights of 250–800 m, and typical amphitheater-like depressions opening toward the calderas. The amphitheaters closely resemble horseshoe-shaped craters formed by large-scale flank failures of volcanoes with development of debris avalanches. Where caldera boundaries intersect such cones, the caldera margins have notable outward embayments. We therefore hypothesize that in the process of caldera formation, these eccentrically situated edifices were partly displaced and destabilized, causing large-scale landslides. The landslide masses are then transformed into debris avalanches and emplaced inside the developing caldera basins. To test this hypothesis, we carried out sand-box analogue experiments, in which caldera formation (modeled by evacuation of a rubber balloon) was simulated. The deformation of volcanic cones was studied by placing sand-cones in the vicinity of the expected caldera rim. At the initial stage of the modeled subsidence, the propagating ring fault of the caldera bifurcates within the affected cone into two faults, the outermost of which is notably curved outward off the caldera center. The two faults dissect the cone into three parts: (1) a stable outer part, (2) a highly unstable and subsiding intracaldera part, and (3) a subsiding graben structure between parts (1) and (2). Further progression of the caldera subsidence is likely to cause failure of parts (2) and (3) with failed material sliding into the caldera basin and with formation of an amphitheater-like depression oriented toward the developing caldera. The mass of material which is liable to slide into the caldera basin, and the shape of the resulted amphitheater are a function of the relative position of the caldera ring fault and the base of the cone. A cone situated mostly outside the ring fault is affected to a minor degree by caldera subsidence and collapses with formation of a narrow amphitheater deeply incised into the cone, having a small opening angle. Accordingly, the caldera exhibits a prominent outward embayment. By contrast, collapse of a cone initially situated mostly inside the caldera results in a broad amphitheater with a large opening angle, i.e. the embayment of the caldera rim is negligible. The relationships between the relative position of an edifice above the caldera fault and the opening angle of the formed amphitheater are similar for the modeled and the natural cases of caldera/cone interactions. Thus, our experiments support the hypothesis that volcanic edifices affected by caldera subsidence can experience large-scale failures with formation of indicative amphitheaters oriented toward the caldera basins. More generally, the scalloped appearance of boundaries of calderas in contact with pre-caldera topographic highs can be explained by the gravitational influence of topography on the process of caldera formation.Editorial responsibility: J. Stix  相似文献   

5.
Abstract West Rota Volcano (WRV) is a recently discovered extinct submarine volcano in the southern Mariana Arc. It is large (25 km diameter base), shallow (up to 300 m below sealevel), and contains a large caldera (6 × 10 km, with up to 1 km relief). The WRV lies near the northern termination of a major NNE‐trending normal fault. This and a second, parallel fault just west of the volcano separate uplifted, thick frontal arc crust to the east from subsiding, thin back‐arc basin crust to the west. The WRV is distinct from other Mariana Arc volcanoes: (i) it consists of a lower, predominantly andesite section overlain by a bimodal rhyolite‐basalt layered sequence; (ii) andesitic rocks are locally intensely altered and mineralized; (iii) it has a large caldera; and (iv) WRV is built on a major fault. Submarine felsic calderas are common in the Izu and Kermadec Arcs but are otherwise unknown from the Marianas and other primitive, intraoceanic arcs. 40Ar–39Ar dating indicates that andesitic volcanism comprising the lower volcanic section occurred 0.33–0.55 my ago, whereas eruption of the upper rhyolites and basalts occurred 37–51 thousand years ago. Four sequences of rhyolite pyroclastics each are 20–75 m thick, unwelded and show reverse grading, indicating submarine eruption. The youngest unit consists of 1–2 m diameter spheroids of rhyolite pumice, interpreted as magmatic balloons, formed by relatively quiet effusion and inflation of rhyolite into the overlying seawater. Geochemical studies indicate that felsic magmas were generated by anatexis of amphibolite‐facies meta‐andesites, perhaps in the middle arc crust. The presence of a large felsic volcano and caldera in the southern Marianas might indicate interaction of large normal faults with a mid‐crustal magma body at depth, providing a way for viscous felsic melts to reach the surface.  相似文献   

6.
 Dike propagation and dilation increases the compression of adjacent rocks. On volcanoes, especially oceanic shields, dikes are accordingly thought to be structurally destabilizing. As compression is incremented, volcanic flanks are driven outward or downslope and thus increase their susceptibility to destructive earthquakes and giant landslides. We show, however, that the 2-m-thick dike emplaced along the east rift zone of Kilauea in 1983 actually stabilized that volcano's flank. Specifically, production of flank earthquakes dropped more than twofold after 1983 as maximum downslope motion slowed to 6 cm·year–1 from approximately 40 cm·year–1 during 1980–1982. As much as 65 cm of deflationary subsidence above Kilauea's summit and upper rift zones accompanied the dike intrusion. According to recent estimates, this deflation corresponds to a reduction in magma-reservoir pressure of approximately 4 MPa, probably about as much as the driving pressure of the 1983 dike. The volume of the dike, approximately 0.10–0.15 km3, is orders of magnitude less than the estimated 200- to 250-km3 volume of Kilauea's reservoir of magma and nearby hot, mushy rock. Thus, deflation of that reservoir reduces the compressional load on the flank over a much larger area than intrusion of the dike adds to it, particularly at the dominant depth of seismicity, 8–9 km. A Coulomb block model for flank motion during intervals between major earthquakes requires the low-angle fault beneath Kilauea's flank to exhibit slip weakening, conducive to earthquake instability. Accordingly, the triggering mechanism of destructive earthquakes, several of which have struck Hawaii during the past 150 years, need not require stresses accumulated by dike intrusions. Received: 27 October 1998 / Accepted: 24 May 1999  相似文献   

7.
A new method for obtaining from volcanic surface features the orientations of the principal tectonic stresses is applied to Aleutian and Alaskan volcanoes. The underlying concept for this method is that flank eruptions for polygenetic volcanoes can be regarded as the result of a large-scale natural magmafracturing experiment. The method essentially relies on the recognition of the preferred orientation of radial and parallel dike swarms, primarily using the distribution of monogenetic craters including flank volcanoes. Since dikes tend to propagate in a direction normal to the minimum principal stress (T-axis), the method primarily yields the direction of the maximum horizontal compression (MHC) of regional origin. The direction of the MHC may correspond to either the maximum (P-axis) or intermediate (B-axis) principal stress.The direction of MHC obtained at 20 volcanoes in the Aleutian arc coincides well with the direction of convergence between the Pacific and North American plates. This result provides evidence that in the island arc the inferred direction of MHC is parallel to the maximum principal tectonic stress. In the back-arc region, general E-W trends of MHC are obtained from seven volcanic fields on islands on the Bering Sea shelf and the mainland coast of Alaska. These volcanic fields consist mostly of clusters of monogenetic volcanoes of alkali basalt. In the back-arc region, the trends of MHC may correspond to an E-W intermediate, a vertical maximum, and a N-S minimum principal stress.Implications for the tectonics of island arcs and back-arc regions are: (1) volcanic belts of some island arcs, including the Aleutian arc, are under compressional deviatoric stress in the direction of plate convergence. It is improbable that such arcs would split along the volcanic axis to form actively spreading marginal basins. (2) This compressional stress at the arc, probably generated by underthrusting, appears to be transmitted across the entire arc structure, but is apparently replaced within several hundred kilometers by a stress system characterized by horizontal extension (tensional deviatoric stress) in the back-arc region. (3) The volcanoes associated with these two stress systems differ in type (polygenetic vs. monogenetic) and in the chemistry of their magmas (andesitic vs. basaltic). These differences and the regional differences in orientation of the principal tectonic stresses suggest that the back-arc stress system has its own source at considerable depth beneath the crust.Lamont-Doherty Geological Observatory Contribution No. 2503.  相似文献   

8.
The northeastern Hainan Province is one of the areas subjected to the strongest, most frequent and longest-lasting volcanic activities in China since the Cenozoic era. Under the influence of magma and fault activities, northeastern Hainan Island has experienced many moderate and strong earthquakes in history. The Qiongshan M7.5 earthquake occurred in this region in 1605. The deformation measurement and InSAR data found a subsidence area in the south of the Qiongshan M7.5 earthquake. Small earthquakes frequently occur in this area. It has been inferred by some studies on this subsidence area, namely the Puqianwan-Fengjiawan seismic belt, that the subsidence and frequent seismic activity are related to the development of deep magma systems. Magnetotelluric methods are very sensitive to subsurface fluid, different temperature conditions, and resistivity property of the medium in the molten state. With the development of magnetotelluric three-dimensional inversion technique, using dense array magnetotelluric data in three-dimensional inversion can image the medium resistivity occurrence state and position in the volcanic area. To study the deep structure of the magma system and its relationship with seismic activity, we conducted MT observations on two profiles that cross Leihuling and Ma'anling volcanoes. Phase tensor decomposition was used to analyze the electrical structure. This paper investigates the two MT profiles using three-dimensional electromagnetic imaging technology and obtains the electrical structure of the two profiles. The result reveals the media properties and high conductivity bodies' occurrence range beneath the volcanic area in the northeastern Hainan. There are obvious differences in the electrical structure of the northeastern Hainan. The resistivity values are high in the east and low in the west. In addition, there are two high conductivity bodies in the northeast of Hainan. The high conductivity body C1 inclines to the west and locates beneath the Chengmai County area in the northwestern Hainan Island(west of the Leihuling-Ma'anling volcanoes). Its resistivity value is less than several Ωm. This low resistive body is 40km long in WE direction and 30km wide in SN direction. Its burial depth is about 2km near the HNL1 profile and 6km near the NHNL1 profile. Its bottom reaches the depth of about 25~30km, which may be close to or through the Moho surface depth of 25~26km in this area. It is speculated that the magma eruption of Leihuling-Ma'anling volcanoes did not migrate vertically from its deep part to the surface. The high conductivity body C2 locates beneath Longquan. The buried depth of C2 tends to be shallower from north to south, but there is no exposed surface in the study area, nor is it connected with the shallow low-resistivity layer. It is speculated that the C2 may be a magmatic sac trapped in the crust, but may have nothing to do with the eruption of Ma'anling-Leihuling volcanoes. The recent volcanic magma in this area comes from the lower crust and upper mantle of the ocean area to the west of Hainan Island. As magma enters the upper and middle crust, it continues to move shallowly and eastward. In this process, it should be blocked by the high resistance structure on the east side of the Changliu-Xiangou Fault and then erupt around this fault, thus forming numerous craters in this area. After the repeated eruption, deep magma channels gradually closed and volcanic activity weakened. The magma in the mid-upper crust cooled consolidated gradually, but the speed was uneven in different areas, resulting in the channels having closed down gradually in some places, and some are in the process of closing. Our results show an uneven rise and fall depth of the low resistivity body in the middle and lower crust. There is no high conductivity body in the deep part of the Puqianwan-Fengjiawan seismic belt and the subsidence area in the northeastern Hainan, which rules out the possibility that the small earthquakes are related to deep magma systems.  相似文献   

9.
The concept of a time-depth correlation between tectonic earthquakes at depth beneath some volcanoes, and their eruptions, developed by the author since 1962, has been confirmed by new observations and successful prediction of renewed volcanic activity in New Zealand.Regular earthquake migrations are observed along the Benioff zone, and volcanic eruptions are found to be related to these seismic migrations beneath the volcanoes, as follows:
Therefore, in island arcs and continental margins, volcanic activity is the result of two processes occurring beneath the volcanoes: (1) a “tectonic process”, a migration of strain release along the downgoing lithosphere, of which the earthquakes are the manifestation; (2) a “magmatic process”, a relatively fast vertical ascent of magmatic material from the deep root of the volcano, where the observed shocks may be the starting signal from this level.The rate of migration of tectonic earthquakes increases with depth in the upper mantle.An empirical time relationship between the earthquakes occurring at depth beneath a volcano and its eruptions, has been successfully tested for renewed activity at White Island in New Zealand, over the period 1977–1978.  相似文献   

10.
The concept of a time-depth correlation between tectonic earthquakes at depth beneath some volcanoes, and their eruptions, developed by the author since 1962, has been confirmed by new observations and successful prediction of renewed volcanic activity in New Zealand.Regular earthquake migrations are observed along the Benioff zone, and volcanic eruptions are found to be related to these seismic migrations beneath the volcanoes, as follows:
Therefore, in island arcs and continental margins, volcanic activity is the result of two processes occurring beneath the volcanoes: (1) a “tectonic process”, a migration of strain release along the downgoing lithosphere, of which the earthquakes are the manifestation; (2) a “magmatic process”, a relatively fast vertical ascent of magmatic material from the deep root of the volcano, where the observed shocks may be the starting signal from this level.The rate of migration of tectonic earthquakes increases with depth in the upper mantle.An empirical time relationship between the earthquakes occurring at depth beneath a volcano and its eruptions, has been successfully tested for renewed activity at White Island in New Zealand, over the period 1977–1978.  相似文献   

11.
The Klyuchevskoi group of volcanoes (KGV) in Kamchatka is the most powerful existing island arc and subduction zone volcanic center. The Holocene volcanic activity in the southern part of the KGV is concentrated in a large basaltic volcano, Ploskii Tolbachik (PT), altitude 3085 m and in its Tolbachik zone of cinder cones (TZ), length 70 km, which are similar to Hawaiian-type volcanoes and their rifts. A variety of different basalt types are erupted at a rate of 18 × 106 t/yr.  相似文献   

12.
强潮汐激发地震火山活动的新证据   总被引:20,自引:4,他引:16       下载免费PDF全文
强潮汐与火山地震活动密切相关. 天文资料表明, 2000年6月到8月日本Izu半岛最活跃的火山地震活动正好处于天文大潮时期和日长变化最小值时期. 在厄尔尼诺事件和拉尼娜事件发生前后,东西太平洋海面高度分别升降40cm, 水均衡作用使洋壳反向升降13cm. 由此形成的东西太平洋地壳跷跷板运动加强了强潮汐对地震火山活动的激发作用.  相似文献   

13.
《Journal of Geodynamics》2007,43(1):153-169
A Bouguer anomaly map is presented of southern central Iceland, including the western part of Vatnajökull and adjacent areas. A complete Bouguer reduction for both ice surface and bedrock topography is carried out for the glaciated regions. Parts of the volcanic systems of Vonarskarð-Hágöngur, Bárðarbunga-Veiðivötn, Grímsvötn-Laki, and to a lesser extent Kverkfjöll, show up as distinct features on the gravity map. The large central volcanoes with calderas: Vonarskarð, Bárðarbunga, Kverkfjöll and Grímsvötn, are associated with 15–20 mGal gravity highs caused by high density bodies in the uppermost 5 km of the crust. Each of these bodies is thought to be composed of several hundred km3 of gabbros that have probably accumulated over the lifetime of the volcano. The Skaftárkatlar subglacial geothermal areas are not associated with major anomalous bodies in the upper crust. The central volcanoes of Vonarskarð and Hágöngur belong to the same volcanic system; this also applies to Bárðarbunga and Hamarinn, and Grímsvötn and Þórðarhyrna. None of the smaller of the two volcanoes sharing a system (Hágöngur, Hamarinn and Þórðarhyrna) is associated with distinct gravity anomalies and clear caldera structures have not been identified. However, ridges in the gravity field extend between each pair of central volcanoes, indicating that they are connected by dense dyke swarms. This suggests that when two central volcanoes share the same system, one becomes the main pathway for magma, forming a long-lived crustal magma chamber, a caldera and large volume basic intrusive bodies in the upper crust. Short residence times of magma in the crust beneath these centres favour essentially basaltic volcanism. In the case of the second, auxillary central volcano, magma supply is limited and occurs only sporadically. This setting may lead to longer residence times of magma in the smaller central volcanoes, favouring evolution of the magma and occasional eruption of rhyolites. The eastern margin of the Eastern Volcanic Zone is marked by a NE–SW lineation in the gravity field, probably caused by accumulation of low density, subglacially erupted volcanics within the volcanic zone. This lineation lies 5–10 km to the east of Grímsvötn.  相似文献   

14.
Eruptive suites from Tonga (tholeiitic), Raoul Island (tholeiitic) and Macauley Island (high-alumina) are characterised by low alkalis, an absence of andesites in the range 56–65% silica, and restricted acidity for minor glassy differentiates (SiO2=65–68 %). These volcanics form a chain of islands overlying a seismic zone which extends from Tonga to the central volcanic region of North Island, New Zealand where a calc-alkaline series contains basaltic, andesitic and rhyolitic members in that order of increasing abundance. Within this continental suite, tholeiitic and high-alumina phases are recognised as closely similar to the intra-oceanic Tonga-Kermadec magma types and show petrochemical gradation into the medium-silica andesites, apparently by sialic assimilation.  相似文献   

15.
新生代渤海中部强烈沉降的物理条件和深部过程   总被引:5,自引:4,他引:1       下载免费PDF全文
新生代时期渤海中部的强烈沉降,是多种物理条件的共同作用结果,这些条件是由裂谷期和后裂谷期的深部过程产生成的.裂谷期在异常热地幔背景下的渤海地壳隆起、减薄、张裂,地幔热物质上升侵入地壳,莫霍界面位置升高,积累了重力势能;后裂谷期岩石圈(层)的冷却、收缩及下地壳的相变导致密度增大,加上巨厚沉积物的持续增生,使地壳处于重力不平衡状态,向下的垂直力远大于向上的浮托力,同时还有东部后退位移性板块边界和下地壳侧向流动的支持,使渤海中部成为下沉速率最快、沉降幅度最大的凹陷盆地.后裂谷期的早期的盆地下沉具有分散、局部性特征,表现为多个凹陷和凸起交替组合格局;晚期转变为大范围的整体沉降,显示重力均衡和补偿过程是从浅往深发展的.先存的郯庐断裂带对沉降的空间范围有局部边界控制性作用,其本身可能受到盆地发展的强烈改造影响.盆地的基本变形机制是上地壳的水平向脆性张破裂和垂直向或近垂直向的正断层-剪切破裂,地震震源机制解和大地震时的地表破裂表现的水平错动反映中、下地壳的走滑-平移型应力状态及相应的瞬间水平剪切破裂,它与上地壳残留的伸展、下沉相容并存于三维地壳体内.  相似文献   

16.
Mount Sidley is a complex, polygenetic stratovolcano composed primarily of phonolitic and trachytic lavas and subordinate pyroclastic lithologies at the southern extremity of the Executive Committee Range, a linear chain of volcanoes in central Marie Byrd Land, Antarctica. Detailed field investigation coupled with 14 high precision 40Ar/39Ar age determinations reveal a 1.5 million year life span between 5.7 and 4.2 Ma in which three major phonolitic central vent edifices (Byrd, Weiss and Sidley volcanoes) and their calderas were developed (5.7–4.8 Ma). This was followed (4.6–4.5 Ma) by the eruption of trachytic magmas from multiple vent localities further south, and then by small volume benmoreite-mugearite lavas and tephras around 4.4–4.3 Ma at the southern end of Mount Sidley. The final phase of activity was the eruption of basanite cones at approximately 4.2 Ma. The southward migration of volcanic activity was accompanied by distinct changes in magma composition and is best explained by the sequential release of magmas stored within an intricate system of conduits and chambers in the crust by tectonically driven (magma assisted?) fracture propagation. The style of volcanic migration at Mount Sidley is emulated on a larger scale by other volcanoes in the Executive Committee Range, in which progressive southward displacement of volcanic activity corresponds with significant petrological variations between major centers.  相似文献   

17.
Pb, Hf, Nd and Sr isotopes of basaltic lavas from the two Réunion Island volcanoes are reported in order to examine the origin of the sources feeding these volcanoes and to detect possible changes through time. Samples, chosen to cover the whole lifetime of the two volcanoes (from 2 Ma to present), yield a chemically restricted (compared to OIB lavas) but complex distribution. Réunion plume isotopic characteristics have been defined on the basis of the composition of uncontaminated shield-building lavas from the Piton de la Fournaise volcano. The average ?Nd, ?Hf, 87Sr/86Sr and 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb isotope ratios calculated for this component are + 4.4, + 9.1, 0.70411, 18.97, 15.59 and 39.03, respectively. In Pb–Pb isotope space, each volcano defines a distinct linear trend but slight variations are also detected within the various volcanic sequences. The Piton des Neiges volcano yields a distinct and significantly more scattered isotopic distribution than Piton de la Fournaise for both Pb, Hf and Nd isotope tracers. A principal component analysis of the Pb isotope data from Piton de la Fournaise reveals a major contribution of the C and EM-1 components (with a clear Dupal flavor) as main components for the modern Réunion plume. The same components have been identified for Piton des Neiges but with a stronger participation of a depleted mantle component and a weaker EM-1 contribution. The compositional change of the lavas erupted by the Piton des Neiges and Piton de la Fournaise volcanoes is attributed to the impingement of two small-scale blobs of plume material at the base of the Réunion lithosphere. Compared to other hot-spots worldwide, in particular Hawaii and Kerguelen, magmas beneath Réunion are generated from a considerably more homogeneous, compositionally more primitive plume higher in 206Pb. Although shallow-level contamination processes have been locally detected they did not alter significantly the composition of the plume magmas. This is tentatively attributed to mantle dynamics producing small, high-velocity blobs that ascend rapidly through the lithosphere, and to the lack of a well-developed magma chamber at depth in the lithosphere.  相似文献   

18.
The study of magmatic plumbing systems of volcanoes (roots of volcanoes) is one of the main tasks facing volcanology. One major object of this research is the Klyuchevskaya group of volcanoes (KGV), in Kamchatka, which is the greatest such group that has been found at any island arc and subduction zone. We summarize the comprehensive research that has been conducted there since 1931. Several conspicuous results derived since the 1960s have been reported, emerging from the study of magma sources, eruptions, earthquakes, deformation, and the deep structure for the KGV. Our discussion of these subjects incorporates the data of physical volcanology relating to the mechanism of volcanic activity and data from petrology as to magma generation. The following five parts can be distinguished in the KGV plumbing system and the associated geophysical model: the source of energy and material at the top of the Pacific Benioff zone at a depth of about 160 km, the region of magma ascent in the asthenosphere, the region of magma storage in the crust-mantle layer at depths of 40–25 km, magma chambers and channelways in the crust, and the bases of volcanic edifices. We discuss and explain the properties of and the relationships between these parts and the mechanisms of volcanic activity and of the KGV plumbing system as they exist today. Methods for calculating magma chambers and conduits, the amount of magma in the system, and its other properties are available.  相似文献   

19.
A useful tool to elucidate past tectonic environments is the geochemistry of volcanic and sedimentary rocks when used together.The regional structural setting of the Oman Mountains indicates that deep-water sediments and volcanic rocks formed adjacent to the rifted Arabian margin in the Late Triassic near the axis of a narrow ocean basin of Red Sea-type. Tholeiitic to trachytic extrusives formed seamounts associated with Late Triassic reefal build-ups. “Immobile” trace element compositions point to a within-plate origin. The interbedded and overlying Late Triassic deep-sea sedimentary cover comprises ribbon radiolarites and both distal siliclastic and calcareous turbidites that accumulated on an abyssal plain at least ca. 180 km northeast of the Arabian continent. Associated ferromanganiferous oxide-sediments are interpreted as chemical precipitates derived from high-temperature vents in the spreading axis of the young ocean basin. Pervasive regional subsidence took place during end Triassic/Early Jurassic time.Later, in the Cretaceous, oceanic crust was consumed in a northeast-dipping subduction zone. MORB-type crust was subducted while Late Triassic volcanic edifices and sedimentary cover were accreted. During eventual trench-margin collision the Semail ophiolite split into blocks allowing sub-ophiolite melange rocks to be expelled upwards through corridors, creating the Batinah Melange. As the ophiolite nappe ploughed inboard over already thrust-assembled abyssal plain sediments (Hawasina Complex), some duplexes were uplifted, oversteepened, overturned and then slid backwards onto the ophiolite to form the Batinah Sheets.  相似文献   

20.
Sumatra has been a ‘volcanic arc’, above an NE-dipping subduction zone, since at least the Late Permian. The principal volcanic episodes in Sumatra N of the Equator have been in the Late Permian, Late Mesozoic, Palaeogene, Miocene and Quaternary.Late Permian volcanic rocks, of limited extent, are altered porphyritic basic lavas interstratified with limestones and phyllites.Late Mesozoic volcanic rocks, widely distributed along and W of the major transcurrent.Sumatra Fault System (SFS), which axially bisects Sumatra, include ophiolite-related spilites, andesites and basalts. PossiblePalaeogene volcanic rocks include an altered basalt pile with associated dyke-swarm in the extreme NW, intruded by an Early Miocene (19 my) dioritic stock; and variable pyroxene rich basic lavas and agglomerates ranging from alkali basaltic to absarokitic in the extreme SW.Miocene volcanic rocks, widely distributed (especially W of the SFS), and cropping out extensively along the W coast, include calc-alkaline to high-K calc-alkaline basalts, andesites and dacites.Quaternary volcanoes (3 active, 14 dormant or extinct) are irregularly distributed both along and across the arc; thus they lie fore-arc of the SFS near the Equator but well back-arc farther north. The largest concentration of centres, around Lake Toba, includes the >2000 km3 Pleistocene rhyolitic Toba Tuffs. Quaternary volcanics are mainly calc-alkaline andesites, dacites and rhyolites with few basalts; they seem less variable, but on the whole more acid, than the Tertiary. The Quaternary volcanism is anomalous in relation to both southern Sumatra and adjacent Java/Bali: in southern Sumatra, volcanoes are regularly spaced along and successively less active away from the SFS, but neither rule holds in northern Sumatra. Depths to the subduction zone below major calc-alkaline volcanoes in Java/Bali are 160–210 km, but little over 100 km in northern Sumatra, which also lacks the regular K2O-depth correlations seen in Java. These anomalies may arise because Sumatra — being underlain by continental crust — is more akin to destructive continental margins than typical island-arcs such as E Java or Bali, and because the Sumatran subduction zone has a peculiar structure due to the oblique approach of the subducting plate. A further anomaly — an E-W belt of small centres along the back-arc coast — may relate to an incipient S-dipping subduction zone N of Sumatra and not the main NE-dipping zone to its W. Correlation of the Tertiary volcanism with the present tectonic regime is hazardous, but the extensive W coastal volcanism (which includes rather alkaline lavas) is particularly anomalous in relation to the shallow depth (<100 km) of the present subduction zone. The various outcrops may owe their present locations to extensive fault movements (especially along the SFS), to the peculiar structure of the fore-arc (suggested by equally anomalous Sn- and W-bearing granitic batholiths also along the W coast), or they may not be subduction-related at all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号