首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sea-ice and water samples were collected at 14 stations on the shelves and slope regions of the Chukchi and Beaufort Seas during the spring 2002 expedition as part of the Shelf–Basin Interaction Studies. Algal pigment content, particulate organic carbon and nitrogen, and primary productivity were estimated for both habitats based on ice cores, brine collection and water samples from 5-m depth. The pigment content (0.2–304.3 mg pigments m−2) and primary productivity (0.1–23.0 mg C m−3 h−1) of the sea-ice algae significantly exceeded water-column parameters (0.2 and 1.0 mg pigments m−3; <0.1–0.4 mg C m−3 h−1), making sea ice the habitat with the highest food availability for herbivores in early spring in the Chukchi and Beaufort Seas. Stable isotope signatures for ice and water samples did not differ significantly for δ15N, but for δ13C (ice: −25.1‰ to −14.2‰; water: −26.1‰ to −22.4‰). The analysis of nutrient concentrations and the pulse-amplitude-modulated fluorescence signal of ice algae and phytoplankton indicate that nutrients were the prime limiting factor for sea-ice algal productivity. The estimated spring primary production of about 1–2 g C m−2 of sea-ice algae on the shelves requires the use of substantial nutrient reservoirs from the water column.  相似文献   

2.
Ocean Station Papa (OSP, 50°N 145°W) in the NE subarctic Pacific is characterised as high nitrate low chlorophyll (HNLC). However, little is known about the spatial extent of these HNLC waters or the phytoplankton dynamics on the basin scale. Algal biomass, production and size-structure data are presented from winter, spring and summer between 1992 and 1997 for five stations ranging from coastal to open-ocean conditions. The inshore stations (P04–P16) are characterised by the classical seasonal cycle of spring and late summer blooms (production >3 g C m−2 d−1), diatoms are not Fe-stressed, and growth rate is probably controlled by macronutrient supply. The fate of the phytoplankton is likely sedimentation by diatom-dominated spring blooms, with a pelagic recycling system predominating at other times. The offshore stations (P20/OSP) display low seasonality in biomass and production (OSP, mean winter production 0.3 g C m−2 d−1, mean spring/summer production 0.85 g C m−2 d−1), and are dominated by small algal cells. Low Fe availability prevents the occurrence of diatom blooms observed inshore. The main fate of phytoplankton is probably recycling through the microbial food web, with relatively low sedimentation compared to inshore. However, the supply of macro- and micro-nutrients to the coastal and open ocean, respectively, may vary between years. Variability in macro-nutrient supply to the coastal ocean may result in decreased winter reserve nitrate, summer nitrate limitation, subsequent floristic shifts towards small cells, and reduced primary production. Offshore, higher diatom abundances are occasionally observed, perhaps indicating episodic Fe supply. The two distinct oceanic regimes have different phytoplankton dynamics resulting in different seasonality, community structure and fate of algal carbon. These differences will strongly influence the biogeochemical signatures of the coastal and open-oceanic NE subarctic Pacific.  相似文献   

3.
The bathymetric distribution, abundance and diel vertical migrations (DVM) of zooplankton were investigated along the axis of the Cap-Ferret Canyon (Bay of Biscay, French Atlantic coast) by a consecutive series of synchronous net hauls that sampled the whole water column (0–2000 m in depth) during a diel cycle. The distribution of appendicularians (maximum 189 individuals m−3), cladocerans (maximum 287 individuals m−3), copepods (copepods<4 mm, maximum 773 individuals m−3, copepods>4 mm, maximum 13 individuals m−3), ostracods (maximum 8 individuals m−3), siphonophores (maximum >2 individuals m−3) and peracarids (maximum >600 individuals 1000 m−3) were analysed and represented by isoline diagrams. The biomass of total zooplankton (maximum 18419 μg C m−3, 3780 μg N m−3) and large copepods (>4 mm maximum 2256 μg C m−3, 425 μg N m−3) also were determined. Vertical migration was absent or affected only the epipelagic zone for appendicularians, cladocerans, small copepods and siphonophores. Average amplitude of vertical migration was about 400–500 m for ostracods, some hyperiids and mysids, and large copepods, which were often present in the epipelagic, mesopelagic, and bathypelagic zones. Large copepods can constitute more than 80% of the biomass corresponding to total zooplankton. They may play an important role in the active vertical transfer of carbon and nitrogen.  相似文献   

4.
Phytoplankton and bacterial abundance, size-fractionated phytoplankton chlorophyll-a (Chl-a) and production together with bacterial production, microbial oxygen production and respiration rates were measured along a transect that crossed the Equatorial Atlantic Ocean (10°N–10°S) in September 2000, as part of the Atlantic Meridional Transect 11 (AMT 11) cruise. From 2°N to 5°S, the equatorial divergence resulted in a shallowing of the pycnocline and the presence of relatively high nitrate (>1 μM) concentrations in surface waters. In contrast, a typical tropical structure (TTS) was found near the ends of the transect. Photic zone integrated 14C primary production ranged from ∼200 mg C m−2 d−1 in the TTS region to ∼1300 mg C m−2 d−1 in the equatorial divergence area. In spite of the relatively high primary production rates measured in the equatorial upwelling region, only a moderate rise in phytoplankton biomass was observed as compared to nearby nutrient-depleted areas (22 vs. 18 mg Chl-a m−2, respectively). Picophytoplankton were the main contributors (>60%) to both Chl-a biomass and primary production throughout the region. The equatorial upwelling did not alter the phytoplankton size structure typically found in the tropical open ocean, which suggests a strong top-down control of primary producers by zooplankton. However, the impact of nutrient supply on net microbial community metabolism, integrated over the euphotic layer, was evidenced by an average net microbial community production within the equatorial divergence (1130 mg C m−2 d−1) three-fold larger than net production measured in the TTS region (370 mg C m−2 d−1). The entire region under study showed net autotrophic community metabolism, since respiration accounted on average for 51% of gross primary production integrated over the euphotic layer.  相似文献   

5.
Biochemical and productivity measurements and nutrient enrichment experiments were conducted on three cruises in summer and two cruises in winter on the shelf and the basin of the northern South China Sea (SCS) between 2001 and 2004. Phytoplankton production, in terms of depth-integrated new production (INP) or depth-integrated primary production (IPP), was higher in winter than in summer and on the shelf than in the basin. In winter, with deepening of the mixed layer, nitrate from the shallow nitracline that characterized the SCS waters was made available in the surface and supported the highest production of the year. Averaged INP measured in winter (0.25 g C m−2 d−1) was about twice the summer average (0.12 g C m−2 d−1) and was 0.19 g C m−2 d−1 on the shelf compared with 0.15 g C m−2 d−1 in the basin. In winter, average INP on the shelf was higher than the basin (0.34 versus 0.21 g C m−2 d−1); whereas in summer, averaged INP on the shelf (0.13 g C m−2 d−1) and the basin (0.11 g C m−2 d−1) were similar. While averaged IPP measured in the basin was higher in winter than in summer (0.53 versus 0.35 g C m−2 d−1), IPP on the shelf showed little temporal variation (0.82 in winter versus 0.84 g C m−2 d−1 in summer). Considerable spatial and inter-annual variation in production was measured in the shelf waters during summer, which could be linked to discharge volume and plume flow direction of the Zhujiang River. While the shelf waters in summer were mostly nitrogen starved or nitrogen and phosphorus co-limited, excessive river runoff may cause the nutritive state to shift to phosphorus deficiency. Waters with low surface salinities and high fluorescence from riverine mixing could be found extending from the Zhujiang mouth to as far as offshore southern Taiwan after a typhoon passed the northern SCS and brought heavy rainfall. Overall, both nutrient advection in winter and river discharge from the China coast in summer made new nitrogen available and shaped the dynamics of phytoplankton production in these oligotrophic waters.  相似文献   

6.
Investigations of primary production (PP) were undertaken in the southern Benguela ecosystem during two research surveys in October 2006 and May 2007. Significant differences in environmental conditions, as well as biomass and PP, were observed between October and May. During October, integrated biomass and PP were significantly higher, ranging from 20.43 to 355.01 mg m−2, and 0.71 to 6.98 g C m−2 d−1, respectively, than in May, where the range was 47.92–141.79 mg m−2, and 0.70–3.35 g C m−2 d−1, respectively. Distribution patterns indicated low biomass and PP in newly upwelled water along the coast, higher biomass and PP in the mid-shelf region, while lower values were observed at and beyond the shelf edge. Latitudinal variations showed consistently higher biomass and PP in the St. Helena Bay region compared to biomass and PP south of Cape Town. During both surveys, phytoplankton communities were comprised primarily of diatoms and small flagellates, with no significant differences. Phytoplankton adaptation to environmental variability was characterised by increased PmB and Ek under elevated temperatures and irradiance, while no clear relationships were evident for αB. Generalised Additive Models (GAMs) showed that photosynthetic parameters were all significant predictors of photosynthesis rates (Pz), with PmB being the most important, accounting for 36.97% of the deviance in Pz. However, biomass levels and environmental conditions exerted a much greater influence on Pz, with irradiance explaining the largest proportion (68.24%) of the deviance. Multiple predictor GAMs revealed that 96.26% of the deviance in Pz could be explained by a model which included nitrate, chlorophyll a, and irradiance.  相似文献   

7.
《Marine Chemistry》2006,98(2-4):210-222
This study presents concentrations of dimethylsulphide (DMS) and its precursor compound dimethylsulphoniopropionate (DMSP) in a variety of sea ice and seawater habitats in the Antarctic Sea Ice Zone (ASIZ) during spring and summer. Sixty-two sea ice cores of pack and fast ice were collected from twenty-seven sites across an area of the eastern ASIZ (64°E to 110°E; and the Antarctic coastline north to 62°S). Concentrations of DMS in 81 sections of sea ice ranged from < 0.3 to 75 nM, with an average of 12 nM. DMSP in 60 whole sea ice cores ranged from 25 to 796 nM and showed a negative relationship with ice thickness (y = 125x 0.8). Extremely high DMSP concentrations were found in 2 cores of rafted sea ice (2910 and 1110 nM). The relationship of DMSP with ice thickness (excluding rafted ice) suggests that the release of large amounts of DMSP during sea ice melting may occur in discrete areas defined by ice thickness distribution, and may produce ‘hot spots’ of elevated seawater DMS concentration of the order of 100 nM. During early summer across a 500 km transect through melting pack ice, elevated DMS concentrations (range 21–37 nM, mean 31 nM, n = 15) were found in surface seawater. This band of elevated DMS concentration appeared to have been associated with the release of sea ice DMS and DMSP rather than in situ production by an ice edge algal bloom, as chlorophyll a concentrations were relatively low (0.09–0.42 μg l 1). During fast ice melting in the area of Davis station, Prydz Bay, sea ice DMSP was released mostly as extracellular DMSP, since intracellular DMSP was negligible in both hyposaline brine (5 ppt) and in a melt water lens (4–5 ppt), while extracellular DMSP concentrations were as high as 149 and 54 nM, respectively in these habitats. DMS in a melt water lens was relatively high at 11 nM. During the ice-free summer in the coastal Davis area, DMS concentrations in surface seawater were highest immediately following breakout of the fast ice cover in late December (range 5–14 nM), and then remained at relatively low concentrations through to late February (< 0.3–6 nM). These measurements support the view that the melting of Antarctic sea ice produces elevated seawater DMS due to release of sea ice DMS and DMSP.  相似文献   

8.
Between November 2001 and March 2002 an Australian/Japanese collaborative study completed six passes of a transect line in the Seasonal-Ice Zone (south of 62°S) along 140°E. Zooplankton samples were collected with a NORPAC net on 22–28 November, and a Continuous Plankton Recorder on 10–15 January, 11–12 February, 19–22 February, 25–26 February, and 10–11 March. Zooplankton densities were lowest on 22–28 November (ave=61 individuals (ind) m−3), when almost the entire transect was covered by sea ice. By 10–15 January sea surface temperature had increased by ∼2 °C across the transect line, and the study area was ice-free. Total zooplankton abundance had increased to maximum levels for the season (ave=1301 ind m−3; max=1979 ind m−3), dominated by a “Peak Community” comprising Oithona similis, Ctenocalanus citer, Clausocalanus laticeps, foraminiferans, Limacina spp., appendicularians, Rhincalanus gigas and large calanoid copepodites (C1–3). Total densities declined on each subsequent transect, returning to an average of 169 ind m−3 on 10–11 March. The seasonal density decline was due to the decline in densities of “Peak Community” taxa, but coincided with the rise of Euphausia superba larvae into the surface waters, increased densities of Salpa thompsoni, and an increased contribution of C4 to adult stages to the populations of Calanoides acutus, Calanus propinquus and Calanus simillimus. The seasonal community succession appeared to be influenced by the low sea ice extent and southward projection of the ACC in this region. The relatively warm ACC waters, together with low krill biomass, favoured high densities of small grazers during the January/February bloom conditions. The persistence of relatively warm surface waters in March and the seasonal decrease in chlorophyll a biomass provided favorable conditions for salps, which were able to penetrate south of the Southern Boundary.  相似文献   

9.
Seawater samples were collected for microbial analyses between 55 and 235 m depth across the Arctic Ocean during the SCICEX 97 expedition (03 September–02 October 1997) using a nuclear submarine as a research platform. Abundances of prokaryotes (range 0.043–0.47×109 dm−3) and viruses (range 0.68–11×109 dm−3) were correlated (r=0.66, n=150) with an average virus:prokaryote ratio of 26 (range 5–70). Biomass of prokaryotes integrated from 55 to 235 m ranged from 0.27 to 0.85 g C m−2 exceeding that of phytoplankton (0.005–0.2 g C m−2) or viruses (0.02–0.05 g C m−2) over the same depth range by an order of magnitude on average. Using transmission electron microscopy (TEM), we estimated that 0.5% of the prokaryote community on average (range 0–1.4%) was visibly infected with viruses, which suggests that very little of prokaryotic secondary production was lost due to viral lysis. Intracellular viruses ranged from 5 to >200/cell, with an average apparent burst size of 45±38 (mean±s.d.; n=45). TEM also revealed the presence of putative metal-precipitating bacteria in 8 of 13 samples, which averaged 0.3% of the total prokaryote community (range 0–1%). If these prokaryotes are accessible to protistan grazers, the Fe and Mn associated with their capsules might be an important source of trace metals to the planktonic food web. After combining our abundance and mortality data with data from the literature, we conclude that the biomass of prokaryoplankton exceeds that of phytoplankton when averaged over the upper 250 m of the central Arctic Ocean and that the fate of this biomass is poorly understood.  相似文献   

10.
Six research cruises were conducted off the west coast of Vancouver Island between April and October of 1997 and 1998 as part of the Canadian GLOBEC project to compare nutrient and phytoplankton dynamics between ENSO (1997) and non-ENSO (1998) years. Limited sampling also was conducted during three cruises in 1999. During the 1997 ENSO period, there was a shallow thermocline (∼10 m) that resulted in a shallower mixed layer, lower salinity and density, and stronger summer stratification. In general on the shelf, the 1997 growing season was characterized by higher nitrate (7.5 μM) and silicic acid (17 μM) concentrations, lower total chlorophyll (∼76 mg m−2), lower phytoplankton carbon biomass (0.2 mg C L−1), and lower diatom abundance and biomass than in 1998. Phytoplankton assemblages were dominated by nanoplankton in 1997 and by diatoms in 1998. These results suggest that the 1997 ENSO was responsible for a reduction in the growth and biomass of larger phytoplankton cells. In mid-1998, the hydrographic characteristics off the west coast of Vancouver Island changed suddenly. The 1997 poleward transport of warm water reversed to an equatorward transport of coastal water in July 1998, which was accompanied by normal summer upwelling. During 1998, a large diatom bloom (mainly dominated by Chaetoceros debilis, Leptocylindrus danicus and to a lesser extent by Skeletomema and Pseudo-nitzschia sp.) was observed in July over the continental shelf. This large bloom resulted in chlorophyll concentrations of up to 400 mg m−2, primary productivity of up to 11 g C m−2 d−1, and near undetectable dissolved nitrogen concentrations at some of the shelf stations in 1998. In contrast, during 1997, the sub-tropical waters that were advected over the slope, resulted in low chlorophyll a and primary productivity (generally <1 g C m−2 d−1). Therefore, there was a sharp contrast between the very high primary productivity on the shelf in July 1998, due to normal nutrient replenishment from summer upwelling and outflow from the Strait of Juan de Fuca, and the lower primary productivity during the 1997 ENSO year. During 1998, non-ENSO conditions resulted in phytoplankton biomass that was twice as high on the shelf as that measured in regions beyond the continental shelf of the west coast of Vancouver Island.  相似文献   

11.
《Journal of Sea Research》2000,43(3-4):265-273
Concentrations of dimethylsulphoniopropionate (DMSP) were measured in seven pack ice cores from three sites in eastern Antarctica to determine their relation to algal pigments, nutrients (nitrate, silicate and phosphate) and bulk salinity. The algal groups haptophytes, dinoflagellates and diatoms were identified in surface, interior and bottom assemblages in the pack ice cores using the photosynthetic marker pigments 19′-hexanoyloxyfucoxanthin (HEX), peridinin (PER) and fucoxanthin (FUC), respectively. DMSP concentrations were significantly correlated (P<0.01, Pearson) with chlorophyll-a (r=0.58), HEX (r=0.75), PER (r=0.79) and FUC (r=0.63) concentrations. The pool of DMSP within the pack ice (mean 107 nM) was contributed mainly by interior and bottom algal assemblages (mean 94 and 268 nM, respectively), whilst the surface algal assemblages were minor contributors (mean 18 nM). DMSP production and/or accumulation appears to differ between surface, interior and bottom pack ice algal assemblages due to differences in biomass, class composition, and possibly the unique environmental conditions experienced by each assemblage. In pack ice, diatoms appear to be important producers of DMSP, due to their dominance of algal assemblages.  相似文献   

12.
As part of the European Subpolar Ocean Programme (ESOP), the German research icebreaker Polarstern worked in the Greenland Sea in the late winter of 1993. Whilst on passage, the ship encountered a severe winter storm with winds consistently above 20 m s−1 coupled to air temperatures of below −10°C. The underway sensors revealed heat fluxes of greater than 700 W m−2 across most of the Nordic Basin, peaking at greater than 1200 W m−2 when the ship crossed the cold, fresh water of the Jan Mayen Current. This large heat flux coupled to the unique hydrographic conditions present in the Jan Mayen Current allowed sea-ice generation in the form of frazil ice at a rate of 28 cm d−1. This frazil ice then developed into pancake ice. Measurements also were made in the late winter beneath this pancake ice in two remnants of the Odden. In the Jan Mayen Current, hydrographic conditions are such that the ice can exist for a long period of time before eventually decaying due to short-wave radiation at the surface. Towards the centre of the Greenland Sea, hydrographic measurements reveal that the ice is more transient and decays four times more rapidly than ice in the Jan Mayen Current. We discuss the development of the Odden ice tongue in light of these results and add evidence to the argument that the eventual fate of the water stored in the ice is important and could be a relevant factor in the formation of Greenland Sea Deep Water.  相似文献   

13.
Time-series measurements of 234Th activities and particulate organic carbon (POC) concentrations were made at time-series stations (K1, K2, K3, and KNOT) in the northwestern North Pacific from October 2002 to August 2004. Seasonal changes in POC export fluxes from the surface layer (∼100 m) were estimated using 234Th as a tracer. POC fluxes varied seasonally from approximately 0 to 180 mg C m−2 d−1 and were higher in spring–summer than in autumn–winter. The export ratio (e-ratio) ranged from 6% to 55% and was also higher in spring–summer. Annual POC fluxes were estimated to be 31 g C m−2 y−1 in the subarctic region (station K2) and 23 g C m−2 y−1 in the region between the subarctic and subtropical gyres (station K3). POC fluxes and e-ratios in the northwestern North Pacific were much higher than those in most other oceans. The annual POC flux corresponded to 69% of annual new production estimated from the seasonal difference of the nutrient in the Western Subarctic Gyre (45 g C m−2 y−1). These results indicate that much of the organic carbon assimilated in the surface layer of the northwestern North Pacific is transferred to the deep ocean in particulate form. Our conclusions support previous reports that diatoms play an important role in the biological pump.  相似文献   

14.
Zooplankton biomass, gut fluorescence and electron transfer system (ETS) activity were measured in vertical profiles (0–900 m) in two different size classes (<1 and >1 mm) in Canary Island waters. Both size fractions displayed a typical pattern of distribution with higher biomass, gut fluorescence and ETS in the shallower layers at night. By day, however, the vertical distribution varied between the size fractions, with higher biomass of the small fraction in the 0–200 m and a layer of large organisms at depth (∼500 m). For both size fractions, average ETS activity was higher by day than at night at depths between 200 and 600 m. Similarly, gut fluorescence was slightly higher by day below 200 m. The downward export of respiratory carbon was 1.92 and 4.29 mg C m−2 d−1 for samples obtained southwest of Gran Canaria Island and west of Tenerife Island respectively, being 2.68 mg C m−2 d−1 for the whole area. These values represented 16–45% (22–28% for the area) of the calculated passive particulate export production resulting from primary production. The estimated “gut flux” accounted for 0.35 (western zone) and 2.37 mg C m−2 d−1 (southwest of Gran Canaria), being 1.28 mg C m−2 d−1 for the whole area and represented between 3 and 25% (11–14% for the whole area) of the estimated passive particle export flux. These results agree with previous estimates and suggest that diel-migrant zooplankton can play an important role in the downward flux of carbon.  相似文献   

15.
As part of the KErguelen: compared study of the Ocean and the Plateau in Surface water (KEOPS) project in late summer 2005, we examine the phytoplankton community composition and associated primary production in the waters surrounding the Kerguelen Archipelago, with the emphasis on two contrasted environments: (i) the Kerguelen Plateau, where a large bloom occurs annually, and (ii) the high-nutrient low-chlorophyll (HNLC) offshore waters. A biomarker pigment approach was used to assess the community composition in terms of chlorophyll biomass of three phytoplankton size classes, namely micro-, nano-, and picophytoplankton. The second objective was to evaluate a global class-specific approach for estimating the contribution of the three pigment-based size classes to the primary production in the study area. To do so, primary production rates associated with each phytoplankton class were computed from the class-specific chlorophyll biomass coupled to a class-specific primary production model, and compared with in situ measurements of size-fractionated 13C-based primary production. The iron-enriched bloom region was dominated by microphytoplankton (diatoms), which contributed 80–90% to the total primary production (of ≈1 g C m?2 d?1). In the HNLC area, the primary production was about 0.30 g C m?2 d?1, mainly (65%) achieved by small diatoms and nanoflagellates. The model results show a good overall agreement between predicted and measured total primary production rates. In terms of size classes, agreements were higher for the bloom region than for the HNLC waters. Discrepancies in this complex iron-limited area may be explained essentially by the smaller size of diatoms, or a different set of photophysiological properties.  相似文献   

16.
The latitudinal distributions of phytoplankton biomass, composition and production in the Atlantic Ocean were determined along a 10,000-km transect from 50°N to 50°S in October 1995, May 1996 and October 1996. Highest levels of euphotic layer-integrated chlorophyll a (Chl a) concentration (75–125 mg Chl m−2) were found in North Atlantic temperate waters and in the upwelling region off NW Africa, whereas typical Chl a concentrations in oligotrophic waters ranged from 20 to 40 mg Chl m−2. The estimated concentration of surface phytoplankton carbon (C) biomass was 5–15 mg C m−2 in the oligotrophic regions and increased over 40 mg C m−2 in richer areas. The deep chlorophyll maximum did not seem to constitute a biomass or productivity maximum, but resulted mainly from an increase in the Chl a to C ratio and represented a relatively small contribution to total integrated productivity. Primary production rates varied from 50 mg C m−2 d−1 at the central gyres to 500–1000 mg C m−2 d−1 in upwelling and higher latitude regions, where faster growth rates (μ) of phytoplankton (>0.5 d−1) were also measured. In oligotrophic waters, microalgal growth was consistently slow [surface μ averaged 0.21±0.02 d−1 (mean±SE)], representing <20% of maximum expected growth. These results argue against the view that the subtropical gyres are characterized by high phytoplankton turnover rates. The latitudinal variations in μ were inversely correlated to the changes in the depth of the nitracline and positively correlated to those of the integrated nitrate concentration, supporting the case for the role of nutrients in controlling the large-scale distribution of phytoplankton growth rates. We observed a large degree of temporal variability in the phytoplankton dynamics in the oligotrophic regions: productivity and growth rates varied in excess of 8-fold, whereas microalgal biomass remained relatively constant. The observed spatial and temporal variability in the biomass specific rate of photosynthesis is at least three times larger than currently assumed in most satellite-based models of global productivity.  相似文献   

17.
Standing stocks and production rates for phytoplankton and heterotrophic bacteria were examined during four expeditions in the western Arctic Ocean (Chukchi Sea and Canada Basin) in the spring and summer of 2002 and 2004. Rates of primary production (PP) and bacterial production (BP) were higher in the summer than in spring and in shelf waters than in the basin. Most surprisingly, PP was 3-fold higher in 2004 than in 2002; ice-corrected rates were 1581 and 458 mg C m−2 d−1, respectively, for the entire region. The difference between years was mainly due to low ice coverage in the summer of 2004. The spatial and temporal variation in PP led to comparable variation in BP. Although temperature explained as much variability in BP as did PP or phytoplankton biomass, there was no relationship between temperature and bacterial growth rates above about 0 °C. The average ratio of BP to PP was 0.06 and 0.79 when ice-corrected PP rates were greater than and less than 100 mg C m−2 d−1, respectively; the overall average was 0.34. Bacteria accounted for a highly variable fraction of total respiration, from 3% to over 60% with a mean of 25%. Likewise, the fraction of PP consumed by bacterial respiration, when calculated from growth efficiency (average of 6.9%) and BP estimates, varied greatly over time and space (7% to >500%). The apparent uncoupling between respiration and PP has several implications for carbon export and storage in the western Arctic Ocean.  相似文献   

18.
Whereas diatoms (class Bacillariophyceae) often dominate phytoplankton taxa in the Amazon estuary and shelf, their contribution to phytoplankton dynamics and impacts on regional biogeochemistry are poorly understood further offshore in the western tropical Atlantic Ocean (WTAO). Thus, relative contribution of diatoms to phytoplankton biomass and primary production rates and associated environmental conditions were quantified during three month-long cruises in January–February 2001, July–August 2001, and April–May 2003. The upper water column was sampled at 6 light depths (100%, 50%, 25%, 10%, 1% and 0.1% of surface irradiance) at 64 stations between 3° and 14°N latitude and 41° and 58°W longitude. Each station was categorized as ‘oceanic’ or ‘plumewater’, based on principal component analysis of eight physical, chemical and biological variables. All stations were within the North Brazil Current, and plumewater stations were characterized by shallower mixed layers with lower surface salinities and higher dissolved silicon (dSi) concentrations than oceanic stations. The major finding was a much greater role of diatoms in phytoplankton biomass and productivity at plumewater stations relative to oceanic stations. Mean depth-integrated bSi concentrations at the plumewater and oceanic stations were 14.2 and 3.7 mmol m−2, respectively. Mean depth-integrated SiP rates at the plumewater and oceanic stations were 0.17 and 0.02 mmol m−2 h−1, respectively. Based on ratios of SiP and PP rates, and typical Si:C ratios, diatoms contributed on average 29% of primary productivity at plumewater stations and only 3% of primary productivity at oceanic stations. In contrast, phytoplankton biomass (as chlorophyll a concentrations) and primary production (PP) rates (as 14C uptake rates) integrated over the euphotic zone were not significantly different at plumewater and oceanic stations. Chlorophyll a concentrations ranged from 8.5 to 42.4 mg m−2 and 4.0 to 38.0 mg m−2 and PP rates ranged from 2.2 to 11.2 mmol m−2 h−2 and 1.8 to 10.8 mmol m−2 h−2 at plumewater and oceanic stations, respectively. A conservative estimate of annual integrated SiP in offshore waters of Amazon plume between April and August is 0.59 Tmol Si, based on mean SiP rates in plumewaters and satellite-derived estimates of the area of the Amazon plume. In conclusion, river plumewaters dramatically alter the silicon dynamics of the WTAO, forming extensive diatom-dominated phytoplankton blooms that may contribute significantly to the global Si budget as well as contributing to energy and matter flow off of the continental shelf.  相似文献   

19.
To better understand the cause of high summer primary productivity in the Ulleung Basin located in the southwest part of the East/Japan Sea, the spatial dynamics of primary, new, and regenerated productivities (PP, NP, and RP) were examined along the path of the Tsushima Warm Current system in summer 2008. We compared hydrographic and chemical parameters in the Ulleung Basin with those of the Kuroshio Current in the Western Pacific Ocean and the East China Sea. In summer, integrated primary productivity (IPP, 0.37–0.96 g C m−2 d−1) and integrated new productivity (INP, 26–221 mg N m−2 d−1) within the euphotic zone in the Ulleung Basin were higher than those in the East China Sea and the Western Pacific Ocean (0.17–0.28 g C m−2 d−1, 2−5 mg N m−2 d−1, respectively). In contrast, there was no pronounced spatial variation in integrated regenerated productivity (IRP, 43–824 mg N m−2 d−1). Strong positive correlations between IPP and INP (also the f-ratio), and between nitrate uptake rate in the mixed layer and nitrate upward flux through the top of pycnocline in summer in the Ulleung Basin imply that the high IPP was mainly supported by supply of nitrate from the underlying water in the euphotic zone. Shallowing of the pycnocline depth as the current enters the East/Japan Sea facilitates nitrate supply from the nutrient-replete cold water immediately below the pycnocline through nitrate upward flux. A subsurface maximum in PP at or above the pycnocline and a high f-ratio further support the importance of this source of nitrate for maintaining the high summer PP in the Ulleung Basin. In comparison, the high PP layer was observed at the surface in the following fall and spring in the Ulleung Basin. Our results demonstrate the importance of hydrographic features in enhancing PP in this oligotrophic Tsushima Warm Current system.  相似文献   

20.
Abundance distribution and cellular characteristics of picophytoplankton were studied in two distinct regions of the equatorial Pacific: the western warm pool (0°, 167°E), where oligotrophic conditions prevail, and the equatorial upwelling at 150°W characterized by high-nutrient low-chlorophyll (HNLC) conditions. The study was done in September–October 1994 during abnormally warm conditions. Populations of Prochlorococcus, orange fluorescing Synechococcus and picoeukaryotes were enumerated by flow cytometry. Pigment concentrations were studied by spectrofluorometry. In the warm pool, Prochlorococcus were clearly the dominant organisms in terms of cell abundance, estimated carbon biomass and measured pigment concentration. Integrated concentrations of Prochlorococcus, Synechococcus and picoeukaryotes were 1.5×1013, 1.3×1011 and 1.5×1011 cells m−2, respectively. Integrated estimated carbon biomass of picophytoplankton was 1 g m−2, and the respective contributions of each group to the biomass were 69, 3 and 28%. In the HNLC waters, Prochlorococcus cells were slightly less numerous than in the warm pool, whereas the other groups were several times more abundant (from 3 to 5 times). Abundance of Prochlorococcus, Synechococcus and picoeukaryotes were 1.2×1013, 6.2×1011 and 5.1×1011 cells m−2, respectively. The integrated biomass was 1.9 g C m−2. Prochlorococcus was again the dominant group in terms of abundance and biomass (chlorophyll, carbon); the respective contributions of each group to the carbon biomass were 58, 7 and 35%. In the warm pool the total chlorophyll biomass was 28 mg m−2, 57% of which was divinyl chlorophyll a. In the HNLC waters, the total chlorophyll biomass was 38 mg m−2, 44% of which was divinyl chlorophyll a. Estimates of Prochlorococcus, Synechococcus and picoeukaryotes cell size were made in both hydrological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号