首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
THEEFFECTOFCONTOURHEDGEROWSONCONTROLOFSOILLOSSCAIQiangguo1,LISilong2andWANGXilong3ABSTRACTAnalysiswasconductedbasedonobservat...  相似文献   

2.
Effects of hedgerows on sediment erosion in Three Gorges Dam Area, China   总被引:9,自引:2,他引:7  
The Three Gorges Dam Area refers to the river section from Chongqing to Yichang on the Yangtze River, which has a drainage area of 75,098 km^2, and involves 19 cities and counties. Contour hedgerows have been used in this area to control soil erosion and to improve hillslope stability in the catchment of this river section. Five experimental hedgerow plots were established in 1994 in order to study the effects of hedgerows on erosion control. During the period of 1994-1997, runoff and soil loss data were collected on these test plots, including the chemical and physical properties of soil and related topographical data. The results indicate that: (1) after 4 years of cultivation and crop planting, soil fertility increased dramatically in the hedgerow plots. Soil organic matter, total nitrogen, and total phosphorus contents in the hedgerow plots were 5-9 times higher than that in the control plot. In each of the hedgerow plots, soil structure became more stable, the quantity of granules larger than 0.02 mm increased and those finer than 0.02 mm decreased; (2) All hedgerow plots showed a major effect on reducing soil loss and surface runoff; (3) Overland flow velocity along the upper portion of the hedgerow plots was greatly reduced due to hedgerow resistance, which explains the significant decrease in soil losses in hedgerow plots, despite the fact that the hedgerow plots and the control plots had the same total runoff.  相似文献   

3.
Surface roughness and slope gradient are two important factors influencing soil erosion. The objective of this study was to investigate the interaction of surface roughness and slope gradient in controlling soil loss from sloping farmland due to water erosion on the Loess Plateau, China. Following the surface features of sloping farmland in the plateau region, we manually prepared rough surfaces using four tillage practices (contour drilling, artificial digging, manual hoeing, and contour plowing), with a smooth surface as the control measure. Five slope gradients (3°, 5°, 10°, 15°, and 20°) and two rainfall intensities (60 and 90 mm/hr) were considered in the artificial rainfall simulation experiment. The results showed that the runoff volume and sediment yield increased with increasing slope gradient under the same tillage treatment. At gentle slope gradients (e.g., 3° and 5°), the increase in surface roughness prevented the runoff and sediment production, that is, the surface roughness reduced the positive effect of slope gradient on the runoff volume and sediment yield to a certain extent. At steep slope gradients, however, the enhancing effect of slope gradient on soil erosion gradually increased and surpassed the reduction effect of surface roughness. This study reveals the existence of a critical slope gradient that influences the interaction of surface roughness and slope gradient in controlling soil erosion on sloping farmland. If the slope gradient is equal to or less than the critical value, an increase in surface roughness would decrease soil erosion. Otherwise, the increase in surface roughness would be ineffective for preventing soil erosion. The critical slope gradient would be smaller under higher rainfall intensity. These findings are helpful for us to understand the process of soil erosion and relevant for supporting soil and water conservation in the Loess Plateau region of China.  相似文献   

4.
Hedgerow is one of the most important rural landscapes in the world, especially in Europe. Knowledge about the hydrological role of hedgerows is useful in many fields of study, such as hydrological modelling and rural landscape management. The aim of this study was to investigate the impact of a hedgerow on rainfall distribution, soil-water potential gradient, lateral water transfer and water balance. A hillslope with a hedgerow perpendicular to the slope was monitored. To evaluate hedgerow rainfall interception, rainfall was measured (hourly, daily, and by rainfall event) both next to and up to 16 m upslope and 12 m downslope perpendicularly away from the hedgerow. The strongest correlation between rainfall next to the hedgerow and rainfall at more distant points was obtained using data measured per rainfall event. The average percentage of rainfall intercepted equalled 28% for the leafed period and 12% for the leafless period. The impact of the hedgerow on spatial rainfall distribution was related to distance from the hedgerow and rainfall amount. Annual distribution of soil-water potential showed that the hedgerow influenced it up to 9 m upslope and 6 m downslope, the area in which most of the hedgerow's roots were observed. The soil was driest at the end of summer, which delayed soil rewetting during autumn in areas surrounding the hedgerow. Annual groundwater dynamics exhibited three distinct periods due to temporal rainfall distribution and, especially at the end of summer, root-water uptake. In addition, the total potential gradient showed that unsaturated flow was directed towards the hedgerow in summer and autumn. These results indicate that at the local scale hedgerows influences (1) spatial rainfall distribution, (2) soil rewetting, and (3) groundwater recharge, often at distances well beyond the hedgerow's drip line. Consequently, the processes involved in soil-water dynamics around hedgerows should be integrated into relevant hydrological models, especially for catchments with a dense hedgerow network. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Land degradation is becoming a serious problem in the west coast region of India where one of the world's eight biodiversity hotspots,the‘Western Ghats’,is present.Poor land management practices and high rainfall have led to increasing problems associated with land degradation.A long-term(13-year)experiment was done to evaluate the impact of soil and water conservation measures on soil carbon sequestration and soil quality at three different depths under cashew nut cultivation on a 19%slope.Five soil and water conservation measures-continuous contour trenches,staggered contour trenches,halfmoon terraces,semi-elliptical trenches,and graded trenches all with vegetative barriers of Stylosanthes scabra and Vetiveria zizanoides and control were evaluated for their influence on soil properties,carbon sequestration,and soil quality under cashews.The soil and water conservation measures improved significantly the soil organic carbon,soil organic carbon stock,carbon sequestration rate and microbial activity compared to the control condition(without any measures).Among the measures tested,continuous contour trenches with vegetative barriers outperformed the others with respect to soil organic carbon stock,sequestration rate,and microbial activity.The lower metabolic quotient with the measures compared to the control indicated alleviation of environmental stress on microbes.Using principal component analysis and a correlation matrix,a minimum dataset was identified as the soil available nitrogen,bulk density,basal soil respiration,soil pH,acid phosphatase activity,and soil available boron and these were the most important soil properties controlling the soil quality.Four soil quality indices using two summation methods(additive and weighted)and two scoring methods(linear and non-linear)were developed using the minimum dataset.A linear weighted soil quality index was able to statistically differentiate the effect of soil and water conservation measures from that of the control.The highest value of the soil quality index of 0.98 was achieved with continuous contour trenches with a vegetative barrier.The results of the study indicate that soil and water conservation measures for cashews are a potential strategy to improve the soil carbon sequestration and soil quality along with improving crop productivity and reducing the erosion losses.  相似文献   

6.
In many agricultural areas, hedgerows give rise to strong expectations of reducing the inputs of excess nitrate to the groundwater and rivers. This study aims to analyse the spatial and seasonal influences of a hedgerow on nitrate dynamics in the soil and groundwater. Nitrate (NO3?) and chloride (Cl?) concentrations were measured with spatially dense sampling in the unsaturated soil and in the groundwater along a transect intersecting a bottomland oak (Quercus rubor) hedgerow after the growing season and during the dormant season. We explain NO3? dynamics by using Cl? as an index of tree‐root extension and water transfer. At the end of the growing season, NO3? is entirely absorbed by the trees over a large and deep volume corresponding to the rooting zone, where, in contrast Cl? is highly concentrated due to root exclusion. However, these observed patterns in the soil have no influence on the deep groundwater composition at this season. During the dormant season, water transfer processes feeding the shallow groundwater layer are different upslope and downslope from the hedgerow in relation to the thickness of the unsaturated zone. Upslope, the shallow groundwater is fed by rainwater infiltration through the soil which favours Cl? dilution. Right under the hedge and downslope, the rapid ascent of the groundwater near the ground surface prevents rainwater input and Cl? dilution. Under the hedgerow the highest concentrations of Cl? coincide with the absence of NO3? in the shallow groundwater layer and with high concentrations of dissolved organic carbon. The absence of NO3? during the dormant season seems to be due to denitrification in the hedgerow rooting zone when it is rapidly saturated by groundwater. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
《水文科学杂志》2013,58(4):883-892
Abstract

Contour benches are earthen structures constructed across cultivated slopes, at intervals down the slope, largely used in semi-arid zones. The results of an experiment to monitor water and sediment balance inside a contour bench terrace system are presented. The study site, located in the El-Gouazine watershed (central Tunisia), includes two terraced plots of approximately 3000 m2, one of which was left fallow for several years, while the other was tilled. The characteristics of rainfall—runoff processes and erosion inside both terraced plots during a two-year period (2004–2006) are described. Ploughing reduced runoff by 75%. Erosion was monitored following runoff episodes that produced observable deposits in the bench channel. After ploughing, erosion was reduced by 44% between July 2004 and July 2005 and by 50% between October 2005 and July 2006. However, erosion per millimetre of runoff was about twice as great on the tilled soil as on the fallow. Even though ploughing weakens the soil, it seems to reduce erosion by increasing infiltration. For the studied rain events, ploughing used in combination with contour bench terraces seems to have limited erosion and enhanced the effectiveness of contour bench terrace management.  相似文献   

8.
Although the protective role of leaf litter cover against soil erosion is known for a long time, little research has been conducted on the processes involved. Moreover, the impact of soil meso‐ and macrofauna within the litter layer on erosion control is not clear. To investigate how leaf litter cover and diversity as well as meso‐ and macrofauna influence sediment discharge in subtropical forest ecosystems, a field experiment has been carried out in Southeast China. A full‐factorial random design with 96 micro‐scale runoff plots and 7 domestic leaf species was established and erosion was triggered by a rainfall simulator. Our results demonstrate that leaf litter cover protects soil from erosion (?82 % sediment discharge on leaf covered plots) by rainfall and this protection is removed as litter decomposes. The protective effect is influenced by the presence or absence of soil meso‐ and macrofauna. Fauna presence increases soil erosion rates significantly by 58 %, while leaf species diversity shows a non‐significant negative trend. We assume that the faunal effect arises from arthropods slackening and processing the soil surface as well as fragmenting and decomposing the protecting leaf litter covers. Even though the diversity level did not show a significant influence, single leaf species in monocultures show rather different impacts on sediment discharge and thus, erosion control. In our experiment, runoff plots with leaf litter from Machilus thunbergii showed the highest sediment discharge (68.0 g m?2) whereas plots with Cyclobalanopsis glauca showed the smallest rates (7.9 g m?2). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Reliable assessment of the spatial distribution of soil erosion is important for making land management decisions, but it has not been thoroughly evaluated in karst geo‐environments. The objective of this study was to modify a physically based, spatially distributed erosion model, the revised Morgan, Morgan and Finney (RMMF) model, to estimate the superficial (as opposed to subsurface creep) soil erosion rates and their spatial patterns in a 1022 ha karst catchment in northwest Guangxi, China. Model parameters were calculated using local data in a raster geographic information system (GIS) framework. The cumulative runoff on each grid cell, as an input to the RMMF model for erosion computations, was computed using a combined flow algorithm that allowed for flow into multiple cells with a transfer grid considering infiltration and runoff seepage to the subsurface. The predicted spatial distributions of soil erosion rates were analyzed relative to land uses and slope zones. Results showed that the simulated effective runoff and annual soil erosion rates of hillslopes agreed well with the field observations and previous quantified redistribution rates with caesium‐137 (137Cs). The estimated average effective runoff and annual erosion rate on hillslopes of the study catchment were 18 mm and 0.27 Mg ha?1 yr?1 during 2006–2007. Human disturbances played an important role in accelerating soil erosion rates with the average values ranged from 0.1 to 3.02 Mg ha?1 yr?1 for different land uses. The study indicated that the modified model was effective to predict superficial soil erosion rates in karst regions and the spatial distribution results could provide useful information for developing local soil and water conservation plans. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Soil erosion hinders the recovery and development of ecosystems in semiarid regions. Rainstorms, coupled with the absence of vegetation and improper land management, are important causes of soil erosion in such areas. Greater effort should be made to quantify the initial erosion processes and try to find better solutions for soil and water conservation. In this research, 54 rainfall simulations were performed to assess the impacts of vegetation patterns on soil erosion in a semiarid area of the Loess Plateau, China. Three rainfall intensities (15 mm h‐1, 30 mm h‐1 and 60 mm h‐1) and six vegetation patterns (arbors‐shrubs‐grass ‐A‐S‐G‐, arbors‐grass‐shrubs ‐A‐G‐S‐, shrubs‐arbors‐grass ‐S‐A‐G‐, shrubs‐grass‐arbors ‐S‐G‐A‐, grass‐shrubs‐arbors ‐G‐S‐A‐ and grass‐arbors‐shrubs ‐G‐A‐S‐) were examined at different slope positions (summits, backslopes and footslopes) in the plots (33.3%, 33.3%, 33.3%), respectively. Results showed that the response of soil erosion to rainfall intensity differed under different vegetation patterns. On average, increasing rainfall intensity by 2 to 4 times induced increases of 3.1 to 12.5 times in total runoff and 6.9 to 46.4 times in total sediment yield, respectively. Moreover, if total biomass was held constant across the slope, the patterns of A‐G‐S and A‐S‐G (planting arbor at the summit position) had the highest runoff (18.34 L m‐2 h‐1) and soil losses (197.98 g m‐2 h‐1), while S‐A‐G had the lowest runoff (5.51 L m‐2 h‐1) and soil loss (21.77 g m‐2 h‐1). As indicated by redundancy analysis (RDA) and Pearson correlation results, a greater volume of vegetation located on the back‐ and footslopes acted as effective buffers to prevent runoff generation and sediment yield. Our findings indicated that adjusting vegetation position along slopes can be a crucial tool to control water erosion and benefit ecosystem restoration on the Loess Plateau and other similar regions of the world. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

11.
Based on observations of runoff plots and field investigations of gully cross-sections, impacts of various soil and water conservation measures on runoff and sediment yield are analyzed for different rainfall conditions. The results show that antecedent rainfall and rainfall intensity are the main factors affecting the runoff and soil erosion processes. Rainfall events with antecedent rainfall can produce high runoff and sediment yield. Large differences in the characteristics of two rainfall events will result in greater variations of total runoff and sediment yield from the same runoff plot. Under the same soil control measure and rainfall condition, soil and water conservation measures can reduce the impacts of antecedent rainfall and rainfall intensity on runoff and soil erosion. Among various measures, level terrace seems to be the greatest for soil conservation purposes. Combining with engineering measures,Vegetation measures is also effective in controlling runoff and soil erosion. In the initial stage of vegetation enclosure measures, engineering measure is necessary to improve the environment for ecological recovery. Gully head protection can control gully erosion effectively, but the effectiveness of gully head protection would be reduced when rainfall intensity increases. Therefore, the design of a gully head protection structure must be based on local hydrological conditions.  相似文献   

12.
PHYSICALPROCESSBASEDSOILEROSIONMODELINASMALLWATERSHEDINTHEHILLYLOESSREGION1CAIQiangguo2ABSTRACTAphysicalprocesbasedperstorm...  相似文献   

13.
Soil erosion by water is a pressing environmental problem caused and suffered by agriculture in Mediterranean environments. Soil conservation practices can contribute to alleviating this problem. The aim of this study is to gain more profound knowledge of the effects of conservation practices on soil losses by linking crop management and soil status to runoff and sediment losses measured at the outlet of a catchment during seven years. The catchment has 27.42 ha and is located in a commercial farm in southern Spain, where a package of soil conservation practices is an essential component of the farming system. The catchment is devoted to irrigated annual crops with maize–cotton–wheat as the primary rotation. Mean annual rainfall‐induced runoff coefficient was 0.14 and mean annual soil loss was 2.4 Mg ha?1 y?1. Irrigation contributed to 40% of the crop water supply, but the amount of runoff and sediment yield that it generated was negligible. A Principal Components Analysis showed that total soil loss is determined by the magnitude of the event (rainfall and runoff depths, duration) and by factors related to the aggressiveness of the events (rainfall intensity and preceding soil moisture). A third component showed the importance of crop coverage to reduce sediment losses. Cover crops grown during autumn and early winter and crop residues protecting the soil surface enhanced soil conservation notably. The role of irrigation to facilitate growing cover crops in Mediterranean environments is discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Changes of soil surface roughness under water erosion process   总被引:5,自引:0,他引:5       下载免费PDF全文
The objective of this study was to determine the changing characteristics of soil surface roughness under different rainfall intensities and examine the interaction between soil surface roughness and different water erosion processes. Four artificial management practices (raking cropland, artificial hoeing, artificial digging, and contour tillage) were used according to the local agriculture customs of the Loess Plateau of China to simulate different types of soil surface roughness, using an additional smooth slope for comparison purposes. A total of 20 rainfall simulation experiments were conducted in five 1 m by 2 m boxes under two rainfall intensities (0.68 and 1.50 mm min?1) on a 15° slope. During splash erosion, soil surface roughness decreased in all treatments except raking cropland and smooth baseline under rainfall intensity of 0.68 mm min?1, while increasing for all treatments except smooth baseline under rainfall intensity of 1.50 mm min?1. During sheet erosion, soil surface roughness decreased for all treatments except hoeing cropland under rainfall intensity of 0.68 mm min?1. However, soil surface roughness increased for the artificial hoeing and raking cropland under rainfall intensity of 1.50 mm min?1. Soil surface roughness has a control effect on sheet erosion for different treatments under two rainfall intensities. For rill erosion, soil surface roughness increased for raking cropland and artificial hoeing treatments, and soil surface roughness decreased for artificial digging and the contour tillage treatments under two rainfall intensities. Under rainfall intensity of 0.68 mm min?1, the critical soil surface roughness was 0.706 cm for the resistance control of runoff and sediment yield. Under rainfall intensity of 1.50 mm min?1, the critical soil surface roughness was 1.633 cm for the resistance control of runoff, while the critical soil surface roughness was 0.706 cm for the resistance control of sediment yield. These findings have important implications for clarifying the erosive nature of soil surface roughness and harnessing sloped farmland. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Lirong Lin  Jiazhou Chen 《水文研究》2015,29(9):2079-2088
Rain‐induced erosion and short‐term drought are the two factors that limit the productivity of croplands in the red soil region of subtropical China. The objective of this study was to estimate the effects of conservation practices on hydraulic properties and root‐zone water dynamics of the soil. A 3‐year experiment was performed on a slope at Xianning. Four treatments were evaluated for their ability to reduce soil erosion and improve soil water conditions. Compared with no practices (CK) and living grass strips (GS), the application of polyacrylamide (PAM) significantly reduced soil crust formation during intense rainfall, whereas rice straw mulching (SM) completely abolished soil crust formation. The SM and PAM treatments improved soil water‐stable aggregates, with a redistribution of micro‐aggregates into macro‐aggregates. PAM and SM significantly increased the soil water‐holding capacity. These practices mitigated the degradation of the soil saturated hydraulic conductivity (Ks) during intense rainfalls. These methods increased soil water storage but with limited effects during heavy rainfalls in the wet period. In contrast, during the dry period, SM had the highest soil water storage, followed by PAM and CK. Grass strips had the lowest soil water storage because of the water uptake during the vigorous grass growth. A slight decline in the soil moisture resulted in a significant decrease in the unsaturated hydraulic conductivity (Ku) of the topsoil. Therefore, the hydraulic conductivity in the field is governed by soil moisture, and the remaining soil moisture is more important than improving soil properties to resist short‐term droughts. As a result, SM is the most effective management practice when compared with PAM and GS, although they all protect the soil hydraulic properties during wet periods. These results suggest that mulching is the best strategy for water management in erosion‐threatened and drought‐threatened red soils. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Agroforestry systems are promoted for providing a number of ecosystem services and environmental benefits, including soil protection and carbon sequestration. This study proposes a modelling approach to quantify the impact of soil redistribution on soil organic carbon (SOC) storage in a temperate hedgerow landscape. Evolution of SOC stocks at the landscape scale was examined by simulating vertical and horizontal SOC transfers in the 0–105 cm soil layer due to soil redistribution by tillage and water processes. A spatially explicit SOC dynamics model (adapted from RothC‐26.3) was used, coupled with a soil‐redistribution model (LandSoil). SOC dynamics were simulated over 90 years in an agricultural hedgerow landscape dedicated to dairy farming, with a mix of cropping and grasslands. Climate and land use were simulated considering business‐as‐usual scenarios derived from existing information on the study area. A net decrease in SOC stocks was predicted at the end of the simulation period. Soil redistribution induced a net SOC loss equivalent to 2 kg C ha?1 yr?1 because of soil exportation out of the study site and an increase in SOC mineralization. Hedgerows and woods were the only land use in which soil redistribution induced net SOC storage. Soil tillage was the main process that induced soil redistribution within cultivated fields. Soil exportation out of the study area was due to erosion by water, but remained low because of the protective role of the hedgerow network. These soil transfers redistributed SOC stocks in the landscape, mostly within cultivated fields. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Developing models to predict on‐site soil erosion and off‐site sediment transport at the agricultural watershed scale represent an on‐going challenge in research today. This study attempts to simulate the daily discharge and sediment loss using a distributed model that combines surface and sub‐surface runoffs in a small hilly watershed (< 1 km2). The semi‐quantitative model, Predict and Localize Erosion and Runoff (PLER), integrates the Manning–Strickler equation to simulate runoff and the Griffith University Erosion System Template equation to simulate soil detachment, sediment storage and soil loss based on a map resolution of 30 m × 30 m and over a daily time interval. By using a basic input data set and only two calibration coefficients based, respectively, on water velocity and soil detachment, the PLER model is easily applicable to different agricultural scenarios. The results indicate appropriate model performance and a high correlation between measured and predicted data with both Nash–Sutcliffe efficiency (Ef) and correlation coefficient (r2) having values > 0.9. With the simple input data needs, PLER model is a useful tool for daily runoff and soil erosion modeling in small hilly watersheds in humid tropical areas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Soil erosion models are essential tools for the successful implementation of effective and adapted soil conservation measures on agricultural land. Therefore, models are needed that predict sediment delivery and quality, give a good spatial representation of erosion and deposition and allow us to account for various soil conservation measures. Here, we evaluate how well a modified version of the spatially distributed multi‐class sediment transport model (MCST) simulates the effectiveness of control measures for different event sizes. We use 8 year runoff and sediment delivery data from two small agricultural watersheds (0·7 and 3·7 ha) under optimized soil conservation. The modified MCST model successfully simulates surface runoff and sediment delivery from both watersheds; one of which was dominated by sheet and the other was partly affected by rill erosion. Moreover, first results of modelling enrichment of clay in sediment delivery are promising, showing the potential of MCST to model sediment enrichment and nutrient transport. In general, our results and those of an earlier modelling exercise in the Belgian Loess Belt indicate the potential of the MCST model to evaluate soil erosion and deposition under different agricultural land uses. As the model explicitly takes into account the dominant effects of soil‐conservation agriculture, it should be successfully applicable for soil‐conservation planning/evaluation in other environments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
SomepeOPlehaverecognizedtheSPatialvariationoflandionnsandgeomorphicPeainthehillyloessregion,NOIthClam(Chenetal.1988).SuchvariationshaVe~linkedtotheverticalzonationofsoilerosionandsedimentproduedoninthisarea(Catetat.1994).HoWeVer,noneOftheStlldiesaPProachtheProbleminaqUantitativemanner.NorweretherelationsbetweensoilerosionPr~sontheoneban4andhydrologicandghgogicalcharacteristicsofthevariouSslopezonesontheother,dearlyestatiIisned.Inaaamon,~stubbesintheareahaveprtridtahotoshowthe~rtanceo…  相似文献   

20.
Agricultural land management requires strategies to reduce impacts on soil and water resources while maintaining food production. Models that capture the effects of agricultural and conservation practices on soil erosion and sediment delivery can help to address this challenge. Historic records of climatic variability and agricultural change over the last century also offer valuable information for establishing extended baselines against which to evaluate management scenarios. Here, we present an approach that combines centennial‐scale reconstructions of climate and agricultural land cover with modelling across four lake catchments in the UK where radiometric dating provides a record of lake sedimentation. We compare simulations using MMF‐TWI, a catchment‐scale model developed for humid agricultural landscapes that incorporates representation of seasonal variability in vegetation cover, soil water balance, runoff and sediment contributing areas. MMF‐TWI produced mean annual sediment exports within 9–20% of sediment core‐based records without calibration and using guide parameter values to represent vegetation cover. Simulations of land management scenarios compare upland afforestation and lowland field‐scale conservation measures to reconstructed historic baselines. Oak woodland versus conifer afforestation showed similar reductions in mean annual surface runoff (8–16%) compared to current moorland vegetation but a larger reduction in sediment exports (26–46 versus 4–30%). Riparian woodland buffers reduced upland sediment yields by 15–41%, depending on understorey cover levels, but had only minor effect on surface runoff. Planting of winter cover crops in the lowland arable catchment halved historic sediment exports. Permanent grass margins applied to sets of arable fields across 15% or more of the catchment led to further significant reduction in exports. Our findings show the potential for reducing sediment delivery at the catchment scale with land management interventions. We also demonstrate how MMF‐TWI can support hydrologically‐informed decision making to better target conservation measures in humid agricultural environments. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号