首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Landsat系列卫星对地观测40年回顾及LDCM前瞻   总被引:7,自引:0,他引:7  
姜高珍  韩冰  高应波  杨崇俊 《遥感学报》2013,17(5):1033-1048
Landsat系列卫星数据凭借其长期连续、全球覆盖、适中的时间空间分辨率和科学的数据存档与分发策略等优势,逐渐成为地表特征和地球系统科学研究中最有效的遥感数据之一,并广泛应用于生态环境、农林地矿、能源资源、教育科研和政府管理等领域。而第8代陆地卫星--陆地卫星数据连续任务卫星(LDCM)于2013年2月发射升空,该卫星携带了运行性陆地成像仪(OLI)和热红外传感器(TIRS)两种传感器。与Landsat 7/ETM+相比,OLI/TIRS在波段设置、辐射分辨性能和扫描方式上都得到很大改进,其中OLI共包括9个波段,新增海岸带(coastal)监测和卷云(cirrus)识别波段,TIRS则设置了两个热红外波段。如果LDCM能够成功升空运行,它将继续承担起长期连续对地观测的使命。  相似文献   

2.
The successful launch of Landsat 8 provides a new data source for monitoring land cover, which has the potential to significantly improve the characterization of the earth’s surface. To assess data performance, Landsat 8 Operational Land Imager (OLI) data were first compared with Landsat 7 ETM + data using texture features as the indicators. Furthermore, the OLI data were investigated for land cover classification using the maximum likelihood and support vector machine classifiers in Beijing. The results indicated that (1) the OLI data quality was slightly better than the ETM + data quality in the visible bands, especially the near-infrared band of OLI the data, which had a clear improvement; clear improvement was not founded in the shortwave-infrared bands. Moreover, (2) OLI data had a satisfactory performance in terms of land cover classification. In summary, OLI data were a reliable data source for monitoring land cover and provided the continuity in the Landsat earth observation.  相似文献   

3.
Coffee is a commodity of international trade significance, and its value chain can benefit from age-specific thematic maps. This study aimed to assess the potential of Landsat 8 OLI to develop these maps. Using field-collected samples with the random forest classifier, splitting coffee into three age classes (Scheme A) was compared with running the classification with one compound coffee class (Scheme B). Higher overall classification accuracy was obtained in Scheme B (90.3% for OLI and 86.8% for ETM+) than in Scheme A (86.2% for OLI and 81.0% for ETM+). The NIR band of OLI was the most important band in intra-class discrimination of coffee. Landsat 8 OLI mapped area closely matched farm records (R2?=?0.88) compared to that of Landsat 7 ETM+ (R2?=?0.78). It was concluded that Landsat 8 OLI data can be used to produce age-specific thematic maps in coffee production areas although disaggregating coffee classes reduces overall accuracy.  相似文献   

4.
Sentinel-1A C-SAR and Sentinel-2A MultiSpectral Instrument (MSI) provide data applicable to the remote identification of crop type. In this study, six crop types (beans, beetroot, grass, maize, potato, and winter wheat) were identified using five C-SAR images and one MSI image acquired during the 2016 growing season. To assess the potential for accurate crop classification with existing supervised learning models, the four different approaches namely kernel-based extreme learning machine (KELM), multilayer feedforward neural networks, random forests, and support vector machine were compared. Algorithm hyperparameters were tuned using Bayesian optimization. Overall, KELM yielded the highest performance, achieving an overall classification accuracy of 96.8%. Evaluation of the sensitivity of classification models and relative importance of data types using data-based sensitivity analysis showed that the set of VV polarization data acquired on 24 July (Sentinel-1A) and band 4 data (Sentinel-2A) had the greatest potential for use in crop classification.  相似文献   

5.
利用重庆市彭水县Landsat-8 OLI遥感数据和ERDAS-9.3软件进行一系列的图像增强及几何校正处理,对波段进行相关性分析,按照波段特征,选取OLI7、OLI5、OLI4波段作为基础信息源。应用图像的掩膜技术,除去植被信息的干扰,并结合典型的蚀变矿物光谱特征,运用主成分分析方法提取该区域的矿化蚀变信息,主要为铁染及羟基蚀变信息。分析表明,区域已开采矿产资源的分布情况与结果吻合,为后续的区域找矿工作提供了可靠方向。  相似文献   

6.
Developing techniques are required to generate agricultural land cover maps to monitor agricultural fields. Landsat 8 Operational Land Imager (OLI) offers reflectance data over the visible to shortwave-infrared range. OLI offers several advantages, such as adequate spatial and spectral resolution, and 16 day repeat coverage, furthermore, spectral indices derived from Landsat 8 OLI possess great potential for evaluating the status of vegetation. Additionally, classification algorithms are essential for generating accurate maps. Recently, multi-Grained Cascade Forest, which is also called deep forest, was proposed, and it was shown to give highly competitive performance for classification. However, the ability of this algorithm to generate crop maps with satellite data had not yet been evaluated. In this study, the reflectance at 7 bands and 57 spectral indices calculated from Landsat 8 OLI data were evaluated for its potential for crop type identification.  相似文献   

7.
研究山区地表水体信息OLI遥感数据去阴影自动提取方法,设计基于数字高程模型与指数提取的决策树分类方法,提高水体自动识别的精度。该方法选取改进的归一化水体指数、归一化植被指数、比值植被指数、主成分分析前3个分量以及波段之间的组合运算,并结合DEM构建决策树分类规则。综合采用单波段阈值、谱间关系、植被指数和水体指数阈值完成山体水体的去阴影识别研究,与计算机自动识别分类方法比较,其精度明显提高。结果表明,决策树分类方法在精度上明显高于常用的计算机自动分类方法,可以很好地被利用于OLI遥感数据水体信息的海量、大范围提取。  相似文献   

8.
Accurate wetland maps are a fundamental requirement for land use management and for wetland restoration planning. Several wetland map products are available today; most of them based on remote sensing images, but their different data sources and mapping methods lead to substantially different estimations of wetland location and extent. We used two very high-resolution (2 m) WorldView-2 satellite images and one (30 m) Landsat 8 Operational Land Imager (OLI) image to assess wetland coverage in two coastal areas of Tampa Bay (Florida): Fort De Soto State Park and Weedon Island Preserve. An initial unsupervised classification derived from WorldView-2 was more accurate at identifying wetlands based on ground truth data collected in the field than the classification derived from Landsat 8 OLI (82% vs. 46% accuracy). The WorldView-2 data was then used to define the parameters of a simple and efficient decision tree with four nodes for a more exacting classification. The criteria for the decision tree were derived by extracting radiance spectra at 1500 separate pixels from the WorldView-2 data within field-validated regions. Results for both study areas showed high accuracy in both wetland (82% at Fort De Soto State Park, and 94% at Weedon Island Preserve) and non-wetland vegetation classes (90% and 83%, respectively). Historical, published land-use maps overestimate wetland surface cover by factors of 2–10 in the study areas. The proposed methods improve speed and efficiency of wetland map production, allow semi-annual monitoring through repeat satellite passes, and improve the accuracy and precision with which wetlands are identified.  相似文献   

9.
综合比较Landsat 8 OLI遥感影像与地面同步水质监测结果,发现Landsat 8的近红外波段与其他波段的组合和水体浊度具有较高的相关性,以此为基础运用OLI的第1、3、5波段组合建立了汉江中下游浊度的遥感反演数学模型。根据该模型生成了2013年4~11月共3幅汉江中下游浊度分布图,并进行了空间分析。精度验证表明,模型相对误差在15%左右,R2=0.71,表明运用Landsat 8 OLI可有效地监测该区域水体浊度分布情况。  相似文献   

10.
薛朝辉  钱思羽 《遥感学报》2022,26(6):1121-1142
科学准确地监测红树林是保护海陆过渡性生态系统的基础和前提,但红树林分布于潮间带,难以进行大规模人工监测。遥感技术能够对红树林进行长时间、大面积监测,但已有研究尚存不足。一方面,红树林分布于热带、亚热带区域,受到天气条件限制难以获得长时间覆盖的有效光学遥感数据;另一方面,红树林极易与其他陆生植被混淆,仅利用多波段数据的光谱信息难以精确识别。本文以恒河三角洲孙德尔本斯地区为例,基于谷歌地球引擎GEE(Google Earth Engine)获取2016年全年的Landsat 8 OLI和Sentinel-2 MSI数据,利用物候信息进行红树林提取研究。首先,基于最小二乘回归构建两个传感器在相同指数之间的关系,重建时间序列数据,之后根据可分性判据选取增强型植被指数EVI(Enhanced Vegetation Index)和陆地表面水分指数LSWI(Land Surface Water Index)。其次,对两个指数的时间序列数据进行Savitzky-Golay滤波处理,并分别提取生长期始期等13种物候信息。最后,将两个指数的物候信息进行特征级联,采用随机森林RF(Random Forest)方法进行分类,提取研究区红树林范围。实验结果表明:Landsat 8 OLI和Sentinel-2 MSI数据融合可有效提升时间序列质量,与基于单一传感器数据的分类结果相比,总体精度提高1.58%;物候信息可以显著增强红树林与其他植被的可分性,与直接使用时间序列数据的分类结果相比,总体精度提高1.92%;同时考虑EVI和LSWI指数可极大地提升分类效果,与采用单一指数相比,总体精度分别提高14.11%和9.69%。因此,本文通过数据融合、物候信息提取和指数特征级联可以更好地提取红树林,总体精度达到91.02%,Kappa系数为0.892。研究验证了物候信息在红树林遥感监测中的应用潜力,提出的方法对科学准确地监测全球或区域红树林具有一定参考价值。  相似文献   

11.
Bracken fern is an invasive plant that presents serious environmental, ecological and economic problems around the world. An understanding of the spatial distribution of bracken fern weeds is therefore essential for providing appropriate management strategies at both local and regional scales. The aim of this study was to assess the utility of the freely available medium resolution Landsat 8 OLI sensor in the detection and mapping of bracken fern at the Cathedral Peak, South Africa. To achieve this objective, the results obtained from Landsat 8 OLI were compared with those derived using the costly, high spatial resolution WorldView-2 imagery. Since previous studies have already successfully mapped bracken fern using high spatial resolution WorldView-2 image, the comparison was done to investigate the magnitude of difference in accuracy between the two sensors in relation to their acquisition costs. To evaluate the performance of Landsat 8 OLI in discriminating bracken fern compared to that of Worldview-2, we tested the utility of (i) spectral bands; (ii) derived vegetation indices as well as (iii) the combination of spectral bands and vegetation indices based on discriminant analysis classification algorithm. After resampling the training and testing data and reclassifying several times (n = 100) based on the combined data sets, the overall accuracies for both Landsat 8 and WorldView-2 were tested for significant differences based on Mann-Whitney U test. The results showed that the integration of the spectral bands and derived vegetation indices yielded the best overall classification accuracy (80.08% and 87.80% for Landsat 8 OLI and WorldView-2 respectively). Additionally, the use of derived vegetation indices as a standalone data set produced the weakest overall accuracy results of 62.14% and 82.11% for both the Landsat 8 OLI and WorldView-2 images. There were significant differences {U (100) = 569.5, z = −10.8242, p < 0.01} between the classification accuracies derived based on Landsat OLI 8 and those derived using WorldView-2 sensor. Although there were significant differences between Landsat and WorldView-2 accuracies, the magnitude of variation (9%) between the two sensors was within an acceptable range. Therefore, the findings of this study demonstrated that the recently launched Landsat 8 OLI multispectral sensor provides valuable information that could aid in the long term continuous monitoring and formulation of effective bracken fern management with acceptable accuracies that are comparable to those obtained from the high resolution WorldView-2 commercial sensor.  相似文献   

12.
应用时间序列EVI的MERSI多光谱混合像元分解   总被引:1,自引:0,他引:1  
李耀辉  王金鑫  李颖 《遥感学报》2016,20(3):459-467
针对风云3数据的特点,本文将EVI生长曲线引入多光谱混合像元的分解。首先,利用Landsat8 OLI影像,采用支持向量机的分类方法,提取研究区域的耕地信息,利用该信息对风云MERSI数据进行掩膜处理,获得研究区域的耕地影像。接着,利用MERSI时序影像,计算像元EVI值,通过SG滤波,构建农作物(端元)和混合像元的EVI生长曲线。通过实地调查,获取研究区的农作物端元,尤其对主要的农作物玉米,在空间上均匀选取了14个端元。然后,采用传统的方法,将14种玉米端元生长曲线分别与其它端元组合,进行混合像元分解。发现分解的效果差异很大,提取的玉米种植面积从191.90 km2到574.83 km2不等。为提高分解精度,借用光谱匹配(光谱夹角最小)的方法(用生长曲线代替光谱曲线)自适应选择与混合像元EVI曲线最相似的玉米端元作为组合端元,进行混合像元分解。结果得到玉米的种植面积为589.95 km2,比传统方法的最好(相对)精度提高了2%。  相似文献   

13.
老挝是一个发展中国家,境内的大多数地方没有开展过土地利用/土地覆盖调查。本文选择老挝琅勃拉邦省的Phonxay区为研究区域,利用Landsat OLI数据进行土地利用/土地覆盖遥感调查与分析。研究过程中,利用ArcGIS Desktop选择训练样本和验证样本,通过Python和ArcPy编程开发了图像分类、精度评价以及面积统计的工作流程序,实现了快速得到分类结果和精度评价信息,分类结果的总精度为89.53%,Kappa系数为0.81。  相似文献   

14.
Support Vector Machines for Cloud Detection over Ice-Snow Areas   总被引:1,自引:0,他引:1  
In polar regions, cloud and underlying ice-snow areas are difficult to distinguish in satellite images because of their high albedo in the visible band and low surface temperature of ice-snow areas in the infrared band. A cloud detection method over ice-snow covered areas in Antarctica is presented. On account of different texture features of cloud and ice-snow areas, five texture features are extracted based on GLCM. Nonlinear SVM is then used to obtain the optimal classification hyperplane from training data. The experiment results indicate that this algorithm performs well in cloud detection in Antarctica, especially for thin cirrus detection. Furthermore, when images are resampled to a quarter or 1/16 of the full size, cloud percentages are still at the same level, while the processing time decreases exponentially.  相似文献   

15.
High spatial resolution satellite data contribute to improving land cover/land use (LCLU) classification in agriculture. A classification procedure based on Quickbird satellite image data was developed to map LCLU of diversified agriculture at sub-communal and communal level (7 km2). Segmentation performance of the panchromatic band in combination with high pass filters (HPF) was tested first. Accuracy of field boundary delineation was evaluated by an object-based segmentation, a per-field and a manual classification, along with a quantitative accuracy assessment. Sub-communal classification revealed an overall accuracy of 84% with a κ coefficient of 0.77 for the per-field vector segmentation compared to an overall accuracy of 56–60% and a κ coefficient of 0.37–0.42 for object-based approaches. Per-field vector segmentation was thus superior and used for LCLU classification at communal level. Overall accuracy scored 83% and the κ coefficient 0.7. In diversified agriculture, per-field vector segmentation and classification achieved higher classification results.  相似文献   

16.
The main aim of this study is to propose a novel hybrid deep learning framework approach for accurate mapping of debris covered glaciers. The framework comprises of integration of several CNNs architecture, in which different combinations of Landsat 8 multispectral bands (including thermal band), topographic and texture parameters are passed as input for feature extraction. The output of an ensemble of these CNNs is hybrid with random forest model for classification. The major pillars of the framework include: (1) technique for implementing topographic and atmospheric corrections (preprocessing), (2) the proposed hybrid of ensemble of CNNs and random forest classifier, and (3) procedures to determine whether a pixel predicted as snow is a cloud edge/shadow (post-processing). The proposed approach was implemented on the multispectral Landsat 8 OLI (operational land imager)/TIRS (thermal infrared sensor) data and Shuttle Radar Topography Mission Digital Elevation Model for the part of the region situated in Alaknanda basin, Uttarakhand, Himalaya. The proposed framework was observed to outperform (accuracy 96.79%) the current state-of-art machine learning algorithms such as artificial neural network, support vector machine, and random forest. Accuracy assessment was performed by means of several statistics measures (precision, accuracy, recall, and specificity).  相似文献   

17.
Rice-acreage estimation of Orissa state was carried out using single-date NOAA-AVHRR data. Selection of optimum date of data acquisition for this purpose was studied using data of six acquisition dates viz. October, 3, 12, 21, 29, November 7 and 26, 1989. Comparative performance of MXL classification of two NOAA bands (Band-1: 0.58–0.68 μm and Band-2: 0.73–1.10 μm) and Normalised Difference Vegetation Index (NDVI) derived from these two-band data was examined. Acreage thus estimated was compared against Bureau of Economics and Statistics (BES) estimate of the same year. The acreage estimation obtained by two band classification was closer to BES estimate than that based on NDVI. Data acquired in the month of October have given better estimate for state level rice acreage than that acquired in the month of November.  相似文献   

18.
Optical image classification converts spectral data into thematic information from the spectral signature of each object in the image. However, spectral separability is influenced by intrinsic characteristics of the targets, as well as the characteristics of the images used. The classification process will present more reliable results when aspects associated with natural environments (climate, soil, relief, water, etc.) and anthropic environments (roads, constructions, urban area) begin to be considered, as they determine and guide land use and land cover (LULC). The objectives of this study are to evaluate the integration of environmental variables with spectral variables and the performance of the Random Forest algorithm in the classification of Landsat-8 OLI images, of a watershed in the Eastern Amazon, Brazil. The classification process used 96 predictive variables, involving spectral, geological, pedological, climatic and topographic data and Euclidean distances. The selection of variables to construct the predictive models was divided into two approaches: (i) data set containing only spectral variables, and (ii) set of environmental variables added to the spectral data. The variables were selected through nonlinear correlation analysis, with the Randomized Dependence Coefficient and the Recursive Feature Elimination (RFE) method, using the Random Forest classifier algorithm. The spectral variables NDVI, bands 2, 4, 5, 6 and 7 of the dry season and band 4 of the rainy season were selected in both approaches (i and ii). The Euclidean distance from the urban area, Arenosol soil class, annual precipitation, precipitation in February and precipitation of the wettest quarter were the variables selected from the auxiliary data set. This study showed that the addition of environmental data to the spectral data reduces the limitation of the latter, regarding the discrimination of the different classes of LULC, in addition to improving the accuracy of the classification. The addition of soil classes to spectral variables provided a reduction in errors for vegetation classification (Evergreen Forest and Cerrado Sensu Stricto), as it was able to inform about nutrient availability and water storage capacity. The study demonstrates that the addition of environmental variables to the spectral variables can be an alternative to improve monitoring in areas of ecotone in Neotropical regions.  相似文献   

19.
The present study evaluates the performance of Indian Remote Sensing (JRS) LISS Jl and LISS III data having spatial resolutions of 36 m and 23.5 m respectively in the Classification accuracy of rice, mustard and potato crops grown in West Bengal, India. The role of Middle infra-red (MIR.) band, of IRS 1C LISS III was also investigated in this context. The results indicated that in case of crop like rice which was grown over large contiguous fields, no significant change in classification accuracy was observed between LISS II and LISS III data. However, the accuracy increased by 5–7 per cent with the inclusion of MIR band mainly due to better separability between lowland rice and other hill vegetation. In case of crops like mustard and potato which were grown on small size or less contiguous fields, the classification accuracy increased by 5–8 per cent due to higher spatial resolution of LISS III. Inclusion of MIR band did not improve the accuracy of these crops.  相似文献   

20.
Abstract

An important methodological and analytical requirement for analyzing spatial relationships between regional habitats and species distributions in Mexico is the development of standard methods for mapping the country's land cover/land use formations. This necessarily involves the use of global data such as that produced by the Advanced Very High Resolution Radiometer (AVHRR). We created a nine‐band time‐series composite image from AVHRR Normalized Difference Vegetation Index (NDVI) bi‐weekly data. Each band represented the maximum NDVI for a particular month of either 1992 or 1993. We carried out a supervised classification approach, using the latest comprehensive land cover/vegetation map created by the Mexican National Institute of Geography (INEGI) as reference data. Training areas for 26 land cover/vegetation types were selected and digitized on the computer's screen by overlaying the INEGI vector coverage on the NDVI image. To obtain specific spectral responses for each vegetation type, as determined by its characteristic phenology and geographic location, the statistics of the spectral signatures were subjected to a cluster analysis. A total of 104 classes distributed among the 26 land cover types were used to perform the classification. Elevation data were used to direct classification output for pine‐oak and coastal vegetation types. The overall correspondence value of the classification proposed in this paper was 54%; however, for main vegetation formations correspondence values were higher (60‐80%). In order to obtain refinements in the proposed classification we recommend further analysis of the signature statistics and adding topographic data into the classification algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号