首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
This paper examines the hyperspectral signatures (in the Visible Near Infrared (VNIR)-Shortwave Infrared (SWIR) regions) of soil samples with varying colour and minerals. 36 samples of sands (from river and beach) with differing clay contents were examined using a hyperspectral radiometer operating in the 350–2,500 nm range, and the spectral curves were obtained. Analysis of the spectra indicates that there is an overall increase in the reflectance in the VNIR-SWIR region with an increase in the content of kaolinite clay in the sand samples. As regards the red and black clays and sand mixtures, the overall reflectance increases with decreasing clay content. Several spectral parameters such as depth of absorption at 1,400 nm and 1,900 nm regions, radius of curvature of the absorption troughs, slope at a particular wavelength region and the peak reflectance values were derived. There exists a correlation between certain of these spectral parameters (depth, slope, position, peak reflectance, area under the curve and radius of the curve) and the compositional and textural parameters of the soils. Based on these well-defined relations, it is inferred that hyperspectral radiometry in the VNIR and SWIR regions can be used to identify the type of clay and estimate the clay content in a given soil and thus define its geotechnical category.  相似文献   

2.
Laboratory reflectance spectra of 18 rock samples from the Precambrian basement of north east of Hajjah were measured and analyzed using the instrument of FieldSpec3 with spectral range 0.250–2.500 μm. The aim of this study is to use the spectral reflectance of rocks for mapping the mineral resources in the north east of Hajjah. The altered system in the study area comprises of silicification, sericitification, oxidation, clay minerals and carbonatization. Silicified alteration is not distinguishable in the regions of Visible-Near Infrared (VNIR) and Short wave Infrared (SWIR) of the electromagnetic spectrum, because of lack of diagnostic spectral absorption features in silica in this wavelength. Although the arsenopyrite and pyrite are wide spread in the whole study area their features do not appear in any range of spectra because they exhibit trans-opaque behavior and often lack distinction in VNIR and SWIR. The entire spectral reflectance curves of samples show alteration. Based on the examination of laboratory spectra all samples in the study area show promise in the field of mineral resources.  相似文献   

3.
Spectral features of plant species in the visible to SWIR (0.4–2.5 μm) region have been studied extensively, but scanty attention has been given to plant thermal infrared (TIR: 4–14 μm) properties. This paper presents preliminary results of a study that was conducted first time in India to measure radiance and emissivity properties of eight plant species in TIR spectral region in the field conditions using a FTIR (Fourier Transform Infrared) field spectroradiometer working in 4–14 μm at an agriculture experimental farm. Several spectral features in the emissivity spectra of plant species were observed that are probably related to the leaf chemical constituents, such as cellulose and xylan (hemicellulose) and structural aspects of leaf surface like abundance of trichomes and texture. Observations and results from the field measurements were supported by the laboratory measurements like biochemical analysis. These preliminary field emissivity measurements of leaves in TIR show that there is useful spectral information that may be detectable by field-based instrument. More detailed field and laboratory measurements are underway to explore this research theme.  相似文献   

4.
We have attempted comparative analysis of the utility of linear spectral unmixing (LSU) method and band ratios for delineating bauxite from laterite within the lateritic bauxite provinces of Chotonagpur Plateau, Jharkhand of India. This was attempted based on processing of visible–near infrared (VNIR) and shortwave infrared (SWIR) spectral bands of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. In LSU method, spectral features of main constituent minerals of lateritic bauxite are used to decompose the pixel spectra to estimate the relative abundance of bauxite and laterite in each pixel to spatially delineate bauxite within laterite. We have also compared the bauxite map derived using LSU method with bauxite maps of two band ratios in terms of spatial disposition of bauxite. We also have attempted to relate the abundance values of pixels of LSU-based bauxite map with band ratio values of bauxite pixels of two selected bauxite indices.  相似文献   

5.
In spite of the dominance of traditional mineral exploration methods that demand physical characterization of rocks and intense field work, remote sensing technologies have also evolved in the recent past to facilitate mineral exploration. In the present study, we have processed visible near infrared (VNIR) and shortwave infrared (SWIR) bands of Advanced space-borne thermal emission and reflection radiometer (ASTER) data to detect surface mineralization signatures in Mundiyawas - Khera area in Alwar basin, north-eastern Rajasthan, India using spectral angle mapper (SAM). The potential of SAM method to detect target under variable illumination condition was used to delineate galena, chalcopyrite, malachite etc. as surface signatures of mineralization. It was ensured that the identified surface anomalies were spectrally pure using pixel purity index. Spectral anomalies were validated in the field and also using X-Ray diffraction data. Spectral anomaly maps thus derived were integrated using weight of evidence method with the lineament density, geochemical anomaly, bouger anomaly maps to identify few additional potential areas of mineralization. This study thus establishes the importance of remote sensing in mineral exploration to zero in on potentially ore rich but unexplored zones.  相似文献   

6.
基于Hyperion影像的涩北气田油气信息提取   总被引:1,自引:0,他引:1  
 对柴达木地区涩北气田地质地理环境下的蚀变矿物进行分析,结合卫星高光谱遥感数据Hyperion的图谱,对已知气田区与背景区光谱特征进行相关分析,确定了932.64~1 346.25 nm与2 002.06~2 385.5 nm为油气信息识别的有利波长范围; 利用光谱角制图(SAM)技术提取了涩北气田油气的空间分布信息和台吉乃尔含气构造等远景区,为高光谱遥感油气勘探提供了有效技术方法与途径。  相似文献   

7.
ASTER short-wave infrared bands were used to investigate the spectral discrimination of hydrothermally altered materials, based on the presence of minerals with diagnostic spectral features in wavelengths around 2200 nm (e.g. kaolinite and K-micas). Due to the presence of widespread albitized-greisenized materials, the Serra do Mendes granitoid, located in area of tropical savannah environment in Central Brazil, was selected for this study. The Spectral Angle Mapper (SAM) technique was used as an attempt to detect the presence of hydroxyl-bearing minerals in the domain of the hydrothermally altered materials. Results indicated that areas of altered materials were discriminated from the surrounding mainly due to the high overall reflectance of the whitish lithosols in these areas. The detection of hydroxyl-bearing minerals was blurred by the presence of a sparse grass cover in the alteration zone, which caused a slight increase in the SAM classification angles. As a consequence, the remote detection of hydroxyl-bearing minerals was restricted to a small number of pixels from barren areas. Results indicate that, for the environmental conditions of the study area, ASTER data are more efficacious for spectral characterization of rock–soil-vegetation associations than for the detection of alteration-derived minerals.  相似文献   

8.
Spectral feature fitting (SFF) is a commonly used strategy for hyperspectral imagery analysis to discriminate ground targets. Compared to other image analysis techniques, SFF does not secure higher accuracy in extracting image information in all circumstances. Multi range spectral feature fitting (MRSFF) from ENVI software allows user to focus on those interesting spectral features to yield better performance. Thus spectral wavelength ranges and their corresponding weights must be determined. The purpose of this article is to demonstrate the performance of MRSFF in oilseed rape planting area extraction. A practical method for defining the weighted values, the variance coefficient weight method, was proposed to set up criterion. Oilseed rape field canopy spectra from the whole growth stage were collected prior to investigating its phenological varieties; oilseed rape endmember spectra were extracted from the Hyperion image as identifying samples to be used in analyzing the oilseed rape field. Wavelength range divisions were determined by the difference between field-measured spectra and image spectra, and image spectral variance coefficient weights for each wavelength range were calculated corresponding to field-measured spectra from the closest date. By using MRSFF, wavelength ranges were classified to characterize the target's spectral features without compromising spectral profile's entirety. The analysis was substantially successful in extracting oilseed rape planting areas (RMSE  0.06), and the RMSE histogram indicated a superior result compared to a conventional SFF. Accuracy assessment was based on the mapping result compared with spectral angle mapping (SAM) and the normalized difference vegetation index (NDVI). The MRSFF yielded a robust, convincible result and, therefore, may further the use of hyperspectral imagery in precision agriculture.  相似文献   

9.
The goal of this research is to map land cover patterns and to detect changes that occurred at Alkali Flat and Lake Lucero, White Sands using multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and hyperspectral Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The other objectives of this study were: (1) to evaluate the information dimensionality limits of Landsat 7 ETM+, ASTER, ALI, Hyperion, and AVIRIS data with respect to signal-to-noise and spectral resolution, (2) to determine the spatial distribution and fractional abundances of land cover endmembers, and (3) to check ground correspondence with satellite data. A better understanding of the spatial and spectral resolution of these sensors, optimum spectral bands and their information contents, appropriate image processing methods, spectral signatures of land cover classes, and atmospheric effects are needed to our ability to detect and map minerals from space. Image spectra were validated using samples collected from various localities across Alkali Flat and Lake Lucero. These samples were measured in the laboratory using VNIR–SWIR (0.4–2.5 μm) spectra and X-ray Diffraction (XRD) method. Dry gypsum deposits, wet gypsum deposits, standing water, green vegetation, and clastic alluvial sediments dominated by mixtures of ferric iron (ferricrete) and calcite were identified in the study area using Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and n-D Visualization. The results of MNF confirm that AVIRIS and Hyperion data have higher information dimensionality thresholds exceeding the number of available bands of Landsat 7 ETM+, ASTER, and ALI data. ASTER and ALI data can be a reasonable alternative to AVIRIS and Hyperion data for the purpose of monitoring land cover, hydrology and sedimentation in the basin. The spectral unmixing analysis and dimensionality eigen analysis between the various datasets helped to uncover the most optimum spatial–spectral–temporal and radiometric-resolution sensor characteristics for remote sensing based on monitoring of seasonal land cover, surface water, groundwater, and alluvial sediment input changes within the basin. The results demonstrated good agreement between ground truth data and XRD analysis of samples, and the results of Matched Filtering (MF) mapping method.  相似文献   

10.
This paper is an attempt to introduce the role of earth observation technology and a type of digital earth processing in mineral resources exploration and assessment. The sub-pixel distribution and quantity of alteration minerals were mapped using linear spectral unmixing (LSU) and mixture tuned matched filtering (MTMF) algorithms in the Sarduiyeh area, SE Kerman, Iran, using the visible-near infrared (VNIR) and short wave infrared (SWIR) bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument and the results were compared to evaluate the efficiency of methods. Three groups of alteration minerals were identified: (1) pyrophylite-alunite (2) sericite-kaolinite, and (3) chlorite-calcite-epidote. Results showed that high abundances within pixels were successfully corresponded to the alteration zones. In addition, a number of unreported altered areas were identified. Field observations and X-ray diffraction (XRD) analysis of field samples confirmed the dominant mineral phases identified remotely. Results of LSU and MTMF were generally similar with overall accuracy of 82.9 and 90.24%, respectively. It is concluded that LSU and MTMF are suitable for sub-pixel mapping of alteration minerals and when the purpose is identification of particular targets, rather than all the elements in the scene, the MTMF algorithm could be proposed.  相似文献   

11.
Information on Earth's land surface cover is commonly obtained through digital image analysis of data acquired from remote sensing sensors. In this study, we evaluated the use of diverse classification techniques in discriminating land use/cover types in a typical Mediterranean setting using Hyperion imagery. For this purpose, the spectral angle mapper (SAM), the object-based and the non-linear spectral unmixing based on artificial neural networks (ANNs) techniques were applied. A further objective had been to investigate the effect of two approaches for training sites selection in the SAM classification, namely of the pixel purity index (PPI) and of the direct selection of training points from the Hyperion imagery assisted by a QuickBird imagery and field-based training sites. Object-based classification outperformed the other techniques with an overall accuracy of 83%. Sub-pixel classification based on the ANN showed an overall accuracy of 52%, very close to that of SAM (48%). SAM applied using the training sites selected directly from the Hyperion imagery supported by the QuickBird image and the field visits returned an increase accuracy by 16%. Yet, all techniques appeared to suffer from the relatively low spatial resolution of the Hyperion imagery, which affected the spectral separation among the land use/cover classes.  相似文献   

12.
Arecanut is one of the predominant plantation crop grown in India. Yield of this crop depends upon age of the crop and there is no information on the spectral behaviour of arecanut crops across its ages. In this study popular supervised classification algorithms were utilized for age discrimination of arecanut crops using Hyperion imagery. Arecanut plantations selected for the study are located in Channagiri Taluk, Davanagere district of Karnataka state, India. Ground truth information collected involves: (i) GPS coordinates of selected plots, (ii) spectral reflectance of arecanut crops with age ranging from 1 to 50 years, using handheld spectroradiometer with 1 nm spectral resolution. These spectral measurements were made close in time to the acquisition of Hyperion imagery to build age-based spectral library. It is observed from the analysis that crops of ages below 3, 3–7, 8–15 and above 15 years were showing distinct spectral behaviour. Accordingly, crops age ranging from 1 to 50 were grouped into four classes. Classification of arecanut crops based on age groups was performed using methods like spectral angle mapper, support vector machine and minimum distance classifier, and were compared to find the most suitable method. Among the classification methods adopted, support vector machine with linear kernel function resulted in most accurate classification method with overall accuracy of 72% for within class seperability. Individual age group classification producer’s accuracy varied minimum of 12.5% for 3–7 years age group and maximum of 86.25% for above 15 years age group. It may be concluded that, not only age- based arecanut crop classification is possible, but also it is possible to develop age-based spectral library for plantation crop like arecanut.  相似文献   

13.
In this study, a high spectral resolution GER-2600 spectroradiometer was used to obtain the spectral data of soil samples that were polluted with four different types of petroleum–hydrocarbons products: Diesel, Gasoline, Crude Oil and Fuel Oil. The polluted soil samples were prepared in the laboratory at five concentrations levels: unpolluted soil, 2500, 100,000, 250,000 ppm and pure pollutant. Spectral data were pre-processed and then analysed with various approaches: Principal Components Transformation and ANOVA, Spectral Angle Mapper (SAM), Hydrocarbon Index (HI) and Spectral Mixture Analysis (SMA). The results showed that it was possible to determine the different spectral response between clean soil and some of the polluted soils: crude oil at concentrations higher than 100,000 ppm were the easiest to recognize; while samples polluted with gasoline at concentrations below 250,000 ppm were the most difficult to distinguish from non-polluted samples.  相似文献   

14.
在分析哈密黄山铜镍矿区典型地物波谱特征的基础上,设计了基于ASTER数据的蚀变信息提取流程,详细论述了对4组含不同离子或基团的常见蚀变矿物应用主成分分析(PCA)进行蚀变信息提取、采用光谱角制图法(spectral angle mapper,SAM)进行干扰异常筛选的“SAM去干扰异常主分量门限技术”.4组(9种)蚀变矿物包括:含Fe离子的矿物(针铁矿、赤铁矿)、含CO23-基团的矿物(方解石、白云石)、含Al - OH基团的矿物(白云母、蒙脱石、高岭石)以及含Mg - OH基团的矿物(绿泥石、绿帘石).蚀变矿物信息提取结果表明,“SAM去干扰异常主分量门限技术”方法可行,对ASTER数据的应用效果与实际情况比较吻合,充分证明ASTER在短波红外范围内具有很强的矿物刻画能力.  相似文献   

15.
Hyperion is a space borne sensor which provides powerful tool in discriminating land cover features including urban area and in preparation of urban maps. It gives hyperspectral images in 242 bands within 400?nm to 2,500?nm wavelength range with 10?nm band-width. The Hyperion image in raw form is badly affected with several atmospheric effects which cause haziness. In this study hyperspectral image is atmospherically corrected by using FLAASH model of ENVI. After atmospheric correction the urban area was mapped using the spectral endmember collected by the procedure which includes minimum noise fraction (MNF), pixel purity index (PPI) and n-dimensional visualization in ENVI software. The aim of this study is to map the urban area using several mapping techniques such as Spectral Angle Mapper (SAM), Mixture Tune Matched Filtering (MTMF) and Linear Spectral Unmixing. The urban land covers displayed noticeable differences from one another in the spectral responses in the Hyperion image. The overall accuracy of the SAM classified map was 89.41%, which indicated good potential of Hyperion image for Classification. Use of the other approaches, linear spectral unmixing and MTMF have improved the classification results.  相似文献   

16.
Crop Residue Discrimination Using Ground-Based Hyperspectral Data   总被引:1,自引:0,他引:1  
Crop residue has become an increasingly important factor in agriculture management. It assists in the reduction of soil erosion and is an important source of soil organic carbon (soil carbon sequestration). In recent past, remote sensing, especially narrowband, data have been explored for crop residue assessment. In this context, a study was carried out to identify different narrow-bands and evaluate the performance of SWIR region based spectral indices for crop residue discrimination. Ground based hyperspectral data collected for wheat crop residue was analyzed using Stepwise Discriminant Analysis (SDA) technique to select significant bands for discrimination. Out of the seven best bands selected to discriminate between matured crop, straw heap, combine-harvested field with stubbles and soil, four bands were from SWIR (1980, 2030, 2200, 2440 nm) region. Six spectral indices were computed, namely CAI, LCA, SINDRI, NDSVI, NDI5 and hSINDRI for crop residue discrimination. LCA and CAI showed to be best (F?>?115) in discriminating above classes, while LCA and SINDRI were best (F?>?100) among all indices in discriminating crop residue under different harvesting methods. Comparison of different spectral resolution (from 1 nm to 150 nm) showed that for crop residue discrimination a resolution of 100 nm at 2100–2300 m region would be sufficient to discriminate crop residue from other co-existing classes.  相似文献   

17.
For a satellite sensor with only one or two thermal infrared channels, it is difficult to retrieve the surface emissivity from the received emissive signal. Empirical linear relationship between surface emissivity and red reflectance are already established for deriving emissivity, but the inner physical mechanism remains unclear. The optical constants of various minerals that cover the spectral range from 0.44 to 13.5 μm in conjunction with modern radiative transfer models were used to produce corresponding surface reflectance and emissivity spectra. Compared to the commonly used empirical linear relationship, a more accurate multiple linear relationship between Landsat TM5 emissivity and optical reflectances was derived using the simulated data, which indicated the necessity of replacing the empirical relationship with the new one for improving surface emissivity estimate in the single channel algorithm. The significant multiple linear relationship between broadband emissivity (BBE, 8–13.5 μm) and MODIS spectral albedos was also derived using the same data. This paper demonstrates that there is a physical linkage between surface emissive and reflective variables, and provides a theoretical perspective on estimating surface emissivity for sensors with only one or two thermal infrared channels.  相似文献   

18.
The objective of this study was to investigate the entire spectra (from visible to the thermal infrared; 0.390–14.0 μm) to retrieve leaf water content in a consistent manner. Narrow-band spectral indices (calculated from all possible two band combinations) and a partial least square regression (PLSR) were used to assess the strength of each spectral region. The coefficient of determination (R2) and root mean square error (RMSE) were used to report the prediction accuracy of spectral indices and PLSR models. In the visible-near infrared and shortwave infrared (VNIR–SWIR), the most accurate spectral index yielded R2 of 0.89 and RMSE of 7.60%, whereas in the mid infrared (MIR) the highest R2 was 0.93 and RMSE of 5.97%. Leaf water content was poorly predicted using two-band indices developed from the thermal infrared (R2 = 0.33). The most accurate PLSR model resulted from MIR reflectance spectra (R2 = 0.96, RMSE = 4.74% and RMSE cross validation RMSECV = 6.17%) followed by VNIR–SWIR reflectance spectra (R2 = 0.91, RMSE = 6.90% and RMSECV = 7.32%). Using thermal infrared (TIR) spectra, the PLSR model yielded a moderate retrieval accuracy (R2 = 0.67, RMSE = 13.27% and RMSECV = 16.39%). This study demonstrated that the mid infrared (MIR) and shortwave infrared (SWIR) domains were the most sensitive spectral region for the retrieval of leaf water content.  相似文献   

19.
Concealed and fossilized geothermal systems are not characterized by obvious surface manifestations like hotsprings and fumaroles, therefore, could not be easily identifiable using conventional techniques. In this investigation, the applicability of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion data-sets were evaluated in discriminating hydrothermal alteration minerals associated with geothermal systems as a proxy in identifying subtle Geothermal systems at Yankari Park, Nigeria. Feature-oriented principal component selection, spectral angle mapper, linear spectral unmixing were applied to ASTER data based on spectral characteristics of hydrothermal alteration key minerals for a systematic selective extraction of the information of interest. Analytical imaging and geophysics-developed processing methods were applied to Hyperion data for mapping iron oxide/hydroxide minerals and clay mineral assemblages in hydrothermal alteration zones. The results indicate that ASTER and Hyperion could be complemented for reconnaissance stage of targeting subtle alteration mineral assemblages associated with geothermal systems.  相似文献   

20.
ABSTRACT

We designed a unique hyperspectral experiment from the Earth Observing One (EO-1) orbit change to evaluate solar illumination effects over tropical forests in Brazil. Ten nadir-viewing Hyperion images collected over a fixed site and period of the year (July to August) were selected for analysis. We evaluated variations in reflectance and in 16 narrowband vegetation indices (VIs) with increasing solar zenith angle (SZA) from the pre-drift (2004–2008) to the EO-1 drift period (2011–2016). To detect changes in reflectance and shadows, we applied spectral mixture analysis (SMA) and principal component analysis (PCA) and calculated the similarity spectral angle (θ) between the vegetation spectra measured with variable SZA. The magnitude of the illumination effects was also evaluated from change-point analysis and nonparametric Mann-Whitney U tests applied over the time series. Finally, we complemented our experiment using the PROSAIL model to simulate the VIs variation with increasing SZA resultant from satellite drift. The results showed significant changes in Hyperion reflectance and VIs, especially when the EO-1 crossed the study area at earlier times and larger SZA in 2015 (9:05 a.m.; SZA = 59°) and 2016 (8:30 a.m.; SZA = 67°). Compared to the pre-drift period (10:30 a.m.; SZA = 45°), the SZA differences of 14° (2015) and 22° (2016) increased the shade fractions and decreased the vegetation brightness. PCA separated the pre-drift and drift reflectance datasets, showing shifts in scores due to changes in brightness. θ increased with SZA, indicating changes in the shape of the vegetation spectra with drift. For most VIs, the change-point analysis indicated 2015 (SZA = 59°) as the predominant year of detected changes. Compared to the EO-1 original orbit, the Plant Senescence Reflectance Index (PSRI), Anthocyanin Reflectance Index (ARI) and Structure Insensitive Pigment Index (SIPI) presented the largest positive changes during drift, while the Photochemical Reflectance Index (PRI), Visible Atmospherically Resistant Index (VARI) and Enhanced Vegetation Index (EVI) had the largest negative changes. The effect size of the illumination geometry on these VIs was large, as indicated by increasing values of the Cohen’s r metric toward 2016. The anisotropy of the Hyperion VIs was generally consistent with that from PROSAIL in the simulated pre-drift and drift periods. Focusing on structural indices, it affected the relationships between VIs and simulated leaf area index (LAI) at large SZA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号