首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
王祎婷  谢东辉  李亚惠 《遥感学报》2014,18(6):1169-1181
针对城市及周边区域建造区和自然地表交织分布的特点,探讨了利用归一化植被指数(NDVI)和归一化建造指数(NDBI)构造趋势面的地表温度(LST)降尺度方法,以北京市市区及周边较平坦区域为例实现了LST自960 m向120 m的降尺度转换。分析了LST空间分布特征及NDVI、NDBI对地物的指示性特征;以北京市四至六环为界分析NDVI、NDBI趋势面对地表温度的拟合程度及各自的适用区域;在120 m、240 m、480 m和960 m 4个尺度上评价了NDVI、NDBI和NDVI+NDBI趋势面对LST的拟合程度和趋势面转换函数的尺度效应;对NDVI、NDBI和NDVI NDBI等3种方法的降尺度结果分覆盖类型、分区域对比评价。实验结果表明结合两种光谱指数的NDVI NDBI方法降尺度转换精度有所改善,改善程度取决于地表覆盖类型组合。  相似文献   

2.
This study assesses surface urban heat island (SUHI) effects during heat waves in subtropical areas. Two cities in northern Taiwan, Taipei metropolis and its adjacent medium-sized city, Yilan, were selected for this empirical study. Daytime and night time surface temperature and SUHI intensity of both cities in five heat wave cases were obtained from MODIS Land-Surface Temperature (LST) and compared. In order to assess SUHI in finer spatial scale, an innovated three-dimensional Urbanization Index (3DUI) with a 5-m spatial resolution was developed to quantify urbanization from a 3-D perspective using Digital Terrain Models (DTMs). The correlation between 3DUI and surface temperatures were also assessed. The results obtained showed that the highest SUHI intensity in daytime was 10.2 °C in Taipei and 7.5 °C in Yilan. The SUHI intensity was also higher than that in non-heat-wave days (about 5 °C) in Taipei. The difference in SUHI intensity of both cities could be as small as only 1.0 °C, suggesting that SUHI intensity was enhanced in both large and medium-sized cities during heat waves. Moreover, the surface temperatures of rural areas in Taipei and Yilan were elevated in the intense heat wave cases, suggesting that the SUHI may reach a plateau when the heat waves get stronger and last longer. In addition, the correlation coefficient between 3DUI and surface temperature was greater than 0.6. The innovative 3DUI can be employed to assess the spatial variation of temperatures and SUHI intensity in much finer spatial resolutions than measurements obtained from remote sensing and weather stations. In summary, the empirical results demonstrated intensified SUHI in large and medium-sized cities in subtropical areas during heat waves which could result in heat stress risks of residents. The innovative 3DUI can be employed to identify vulnerable areas in fine spatial resolutions for formulation of heat wave adaptation strategies.  相似文献   

3.
Main objective of this study was to establish a relationship between land cover and land surface temperature (LST) in urban and rural areas. The research was conducted using Landsat, WorldView-2 (WV-2) and Digital Mapping Camera. Normalised difference vegetation index and normalised difference built-up index were used for establishing the relation between built-up area, vegetation cover and LST for spatial resolution of 30 m. Impervious surface and vegetation area generated from Digital Mapping Camera from Intergraph and WV-2 were used to establish the relation between built-up area, vegetation cover and LST for spatial resolutions of 0.1, 0.5 and 30 m. Linear regression models were used to determine the relationship between LST and indicators. Main contribution of this research is to establish the use of combining remote sensing sensors with different spectral and spatial resolution for two typical settlements in Vojvodina. Correlation coefficients between LST and LST indicators ranged from 0.602 to 0.768.  相似文献   

4.
High-resolution evapotranspiration (ET) maps can assist demand-based irrigation management. Development of high-resolution daily ET maps requires high-resolution land surface temperature (LST) images. Earth-observing satellite sensors such as the Landsat 5 Thematic Mapper (TM) and MODerate resolution Imaging Spectroradiometer (MODIS) provide thermal images that are coarser than simultaneously acquired visible and near-infrared images. In this study, we evaluated the TsHARP downscaling technique for its capability to downscale coarser LST images using finer resolution normalized difference vegetation index (NDVI) data. The TsHARP technique was implemented to downscale seven coarser scale (240, 360, 480, 600, 720, 840, and 960 m) synthetic images to a 120 m LST image. The TsHARP was also evaluated for downscaling a coarser 960 m LST image to 240 m to mimic MODIS datasets. Comparison between observed 120 m LST images and 120 m LST images downscaled from coarser 240, 360, 480, 600, 720, 840, and 960 m images yielded root mean square errors of 1.0, 1.3, 1.5, 1.6, 1.7, 1.8, and 1.9°C, respectively. This indicates that the TsHARP method can be used for downscaling coarser (960 m) MODIS-based LST images using finer Landsat (120 m) or MODIS (240 m)-derived NDVI images. However, the TsSHARP method should be evaluated further with real datasets before using it for an operational ET remote sensing program for irrigation scheduling purposes.  相似文献   

5.
In this study, we presented a mono-window (MW) algorithm for land surface temperature retrieval from Landsat 8 TIRS. MW needs spectral radiance and emissivity of thermal infrared bands as input for deriving LST. The spectral radiance was estimated using band 10, and the surface emissivity value was derived with the help of NDVI and vegetation proportion parameters for which OLI bands 5 and 4 were used. The results in comparison with MODIS (MOD11A1) products indicated that the proposed algorithm is capable of retrieving accurate LST values, with a correlation coefficient of 0.850. The industrial area, public facilities and military area show higher surface temperature (more than 37 °C) in comparison with adjoining areas, while the green spaces in urban areas (34 °C) and forests (29 °C) were the cooler part of the city. These successful results obtained in the study could be used as an efficient method for the environmental impact assessment.  相似文献   

6.
This study aims to determine the dynamics and controls of Surface Urban Heat Sinks (SUHS) and Surface Urban Heat Islands (SUHI) in desert cities, using Dubai as a case study. A Local Climate Zone (LCZ) schema was developed to subdivide the city into different zones based on similarities in land cover and urban geometry. Proximity to the Gulf Coast was also determined for each LCZ. The LCZs were then used to sample seasonal and daily imagery from the MODIS thermal sensor to determine Land Surface Temperature (LST) variations relative to desert sand. Canonical correlation techniques were then applied to determine which factors explained the variability between urban and desert LST.Our results indicate that the daytime SUHS effect is greatest during the summer months (typically ∼3.0 °C) with the strongest cooling effects in open high-rise zones of the city. In contrast, the night-time SUHI effect is greatest during the winter months (typically ∼3.5 °C) with the strongest warming effects in compact mid-rise zones of the city. Proximity to the Arabian Gulf had the largest influence on both SUHS and SUHI phenomena, promoting daytime cooling in the summer months and night-time warming in the winter months. However, other parameters associated with the urban environment such as building height had an influence on daytime cooling, with larger buildings promoting shade and variations in airflow. Likewise, other parameters such as sky view factor contributed to night-time warming, with higher temperatures associated with limited views of the sky.  相似文献   

7.
Land cover changes associated with urbanisation modify microclimate, leading to urban heat islands, whereby cities are warmer than the surrounding countryside. Understanding the factors causing this phenomenon could help urban areas adapt to climate change and improve living conditions of inhabitants. In this study, land surface temperatures (LST) of Aarhus, a city in the high latitudes, are estimated from the reflectance of a thermal band (TIRS1; Band 10; 10.60–11.19 μm) of Landsat 8 on five dates in the summer months (one in 2015, and four in 2018). Spectral indices, modelled on the normalised difference vegetation index (NDVI), using all combinations of the first seven bands of Landsat 8 are calculated and their relationships with LST, analysed. Land cover characteristics, in terms of the percentages of tree cover, building cover and overall vegetation cover are estimated from airborne LiDAR data, building footprints and 4-band aerial imagery, respectively. The correlations between LST, the spectral indices and land cover are estimated.The difference in mean temperature between the rural and urban parts of Aarhus is up to 3.96 °C, while the difference between the warmer and colder zones (based on the mean and SD of LST) is up to 13.26 °C. The spectral index using the near infrared band (NIR; Band 5; 0.85-0.88 μm) and a short-wave infrared band (SWIR2; Band 7; 2.11–2.29 μm) has the strongest correlations (r: 0.62 to 0.89) with LST for the whole study area. This index is the inverse of normalised burn ratio (NBR), which has been used for mapping burnt areas. Spectral indices using different combinations of the infrared bands have stronger correlations with LST than the more widely used vegetation indices such as NDVI. The percentage of tree cover has a higher negative correlation (Pearson’s r: -0.68 to -0.75) with LST than overall vegetation cover (r: -0.45 to -0.63). Tree cover and building cover (r: 0.53 to 0.71) together explain up to 68 % of the variation in LST. Modification of tree and building cover may therefore have the potential to regulate urban LST.  相似文献   

8.
The urban forest plays an important role in mitigating the urban heat island. However, the cooling effects of different types of urban forest are unclear. In addition, the fairness of the cooling effect of the urban forest has not been discussed. In this study, the land surface temperature (LST) of Changchun City, China was obtained from Landsat ETM+ data and then correlated with detailed urban forest information derived from the high-spatial-resolution Google Maps in order to determine the cooling intensity and cooling distance of different types of urban forest. In addition, the Gini coefficient was used to evaluate the equity of cooling services provided by the urban forest. The results indicated that (1) the total area of urban forest in Changchun City is 106.69 km2 and is composed of attached forest (AF, 45.83 km2), road forest (RF, 23.87 km2), ecological public welfare forest (EF, 23.24 km2) and landscape forest (LF, 13.75 km2); (2) the cooling effect of different types of urban forest varies. The cooling intensity and cooling distance are 3.2 °C and 125 m (LF), 0.2 °C and 150 m (EF) and 0.6 °C and 5 m (AF), and RF had no cooling effect; and (3) the cooling effect of urban forest benefits approximately 760,000 people in Changchun City, and the Gini coefficient of the cooling services of urban forest was 0.29, indicating that the cooling service was reasonable. Therefore, we demonstrated that ETM+ and Google data are a convenient and affordable approach to study the LST on an urban scale, and the Gini coefficient could be a meaningful indicator to evaluate urban ecological services.  相似文献   

9.
Our study examines the relationships among various environmental variables in Surat city using remote sensing. Landsat Thematic Mapper satellite data were used in conjugation with geospatial techniques to study urbanization and correlation among satellite-derived biophysical parameters namely, normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), normalized difference water index (NDWI), normalized difference bareness index (NDBaI) and land surface temperature (LST). A modified NDWI (MNDWI) was used for extracting areas under water. Land use/land cover classification was performed using hierarchical decision tree classification technique using ERDAS IMAGINE Expert classifier with an accuracy of 90.4% for 1990 and 85% for 2009. It was found that city has expanded over 42.75 sq.km within two decades. Built-up, fallow and sediment land use classes exhibited high dynamics with increase of nearly 200% and 50% and decrease of 55% respectively from 1990 to 2009. Vegetation and water classes were less dynamic with 20% decrease and 15% increase. The transformation of land parcels from vegetation to built-up, vegetation to fallow and fallow to built-up has resulted in increase of LST by 5.5 ± 2.6°C, 6.7 ± 3°C and 3.5 ± 2.9°C, respectively.  相似文献   

10.
An improved methodology for the extraction and mapping of urban built-up areas at a global scale is presented in this study. The Moderate Resolution Imaging Spectroradiometer (MODIS)-based multispectral data were combined with the Visible Infrared Imager Radiometer Suite (VIIRS)-based nighttime light (NTL) data for robust extraction and mapping of urban built-up areas. The MODIS-based newly proposed Urban Built-up Index (UBI) was combined with NTL data, and the resulting Enhanced UBI (EUBI) was used as a single master image for global extraction of urban built-up areas. Due to higher variation of the EUBI with respect to geographical regions, a region-specific threshold approach was used to extract urban built-up areas. This research provided 500-m-resolution global urban built-up map of year 2014. The resulted map was compared with three existing moderate-resolution global maps and one high-resolution map in the United States. The comparative analysis demonstrated finer details of the urban built-up cover estimated by the resultant map.  相似文献   

11.
Land surface temperature (LST) of Beijing area was retrieved from Landsat TM thermal band data utilizing a radiative transfer equation and the urban heat island (HUI) effects of Beijing and its relationship with land cover and normalized difference vegetation index (NDVI) were discussed. The result of LST showed that the urban LST was evidently higher than the suburban one. The average urban LST was found to 4. 5°C and 9°C higher than the suburban and outer suburban temperature, respectively, which demonstrated the prominent UHI effects in Beijing. Prominent negative correlation between LST and NDVI was found in the urban area, which suggested the low percent vegetation cover in the urban area was the main cause of the urban heat island.  相似文献   

12.
This paper provides an approach for rapid and accurate estimation of built-up areas on a per pixel-basis using a integration of two coarse spatial resolution remote sensing data namely DMSP-OLS and MODIS NDVI. The DMSP-OLS data due to its free availability, high temporal resolution and wide swath was used for regional level mapping of built-up areas. However, due to its low radiometric resolution, the built-up areas cannot be estimated accurately from the DMSP-OLS data. In present study, the DMSP-OLS data was combined with MODIS NDVI data to develop an Human Settlement Index (HSI) image, which estimated the fraction of built-up area on a per pixel basis. The resultant HSI image conveys more information than both the individual datasets. These temporal HSI images were then used for monitoring urban growth in Indo-Gangetic plains during the 2001–2007 time period. Thus, the present research can be very useful for regional level monitoring of built-up areas from coarse resolution data within limited time and minimal cost.  相似文献   

13.
Cairo region is characterized by a range of physiographic features, including: flat agricultural lands, bare sandy deserts, highlands, calcareous terrains and urban land use. A time series data-set (300 images) acquired from the Moderate Resolution Imaging Spectroradiometer for the period July 2002–June 2015 were utilized to retrieve the spatial variations in the mean land surface temperature (LST) for the above-mentioned surface features. Results showed that vegetation, topography and surface albedo have negative correlations with LST. Vegetation/LST correlation has the maximum regression coefficient (R2 = 0.68) and albedo/LST has the minimum (R2 = 0.03). Cultivated lands reveal the lowest mean LST (<32 °C), whereas industrial lands exhibit the highest LST (>40 °C) of Cairo region. There is a considerable urban heat island formed at Helwan south of Cairo, where heavy industries are settled. Industrial activities raised the mean LST of the region by at least 4 °C than the surrounding urban lands.  相似文献   

14.
There has been an increasing interest in mapping and monitoring urban land use/land cover using remote sensing techniques. However, there still exist quite a number of challenges in deriving urban extent and its expansion density from remote sensing data quantitatively. This study utilized Landsat TM/ETM+ remote sensing data to assess urban expansion and its thermal characteristics with a case study in the city of Changsha, China. We proposed a new approach for quantitatively determining built-up area, its expansion density and their respective relationship with land surface temperature (LST) patterns. An urban expansion metric was also developed using a moving window mechanism to identify urban built-up area and its expansion density based on selected threshold values. The study suggested that urban extent and its expansion density, as well as surface thermal characteristics and patterns could be identified through quantitatively derived remotely sensed indices and LST, which offer meaningful characteristics in quantifying urban expansion density and urban thermal pattern. Results from the case study demonstrated that: (1) the built-up area and urban expansion density have significantly increased in the city of Changsha from 1990 to 2001; and (2) the differences of urban expansion densities correspond to thermal effects, where a high percentage of imperviousness is usually associated with the area covered by high surface temperature.  相似文献   

15.
In the present study, the Cartosat-I digital elevation model (DEM) was utilized to deduce the vertical characteristics of Ranchi urban area and its relation to long term built-up expansion (1927–2010). The DEM represents moderate variation in terrain relief ranging from 595 m to 754 m with majority of area exhibiting upto 3° of slope and 3° to 6° indicating flat to undulating nature of terrain in Ranchi township. The DEM was used to generate location of sinks within urban area, which are generally delineated along the drainage channels, adjacent to high-rise built-up land and along the elevated road network. The pattern of urban sprawl over the eight decades (1927–2010) were examined with reference to terrain relief zones, which indicated that the built-up growth was mainly taken place over the elevation range of moderate (620–660 m) (67.0%) and high relief (660–680 m) (19.8%) zones. Although earlier preference for built-up development was more in high elevation zones (660–680 m), the low elevation zones (<600–620 m) are now preferred for multistoried built-up land development where better groundwater availability occur. The spatial pattern of vertical growth of built-up land was assessed using contour density obtained from Cartosat-I DEM. The results show that the high density contours predominately correspond to hilly area and high-rise buildings at majority of locations. The urban sprawl pattern and population trend exhibited rapid increase in vertical built-up growth after 1996 indicating beginning of urban densification in Ranchi township.  相似文献   

16.
Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.  相似文献   

17.
李娜娜  吴骅  栾庆祖 《遥感学报》2021,25(8):1808-1820
地表温度LST(Land Surface Temperature)是城市热环境研究的重要参数之一,城市下垫面极为复杂,LST空间差异性较高。高空间分辨率LST对精细化城市热环境监测和缓解具有重要意义。目前大部分城市遥感LST降尺度研究仍以二维角度为主,缺乏建筑三维结构的考虑。本研究同时考虑地表二维和三维指标,构建基于随机森林方法的降尺度模型,开展MODIS 1 km LST降尺度研究(100 m),并探讨二维和三维建筑形态对LST影响的空间尺度效应。另外,为了弥补随机森林模型缺乏物理基础的不足,参考热辐射传输方程,将方程中传感器接收的辐亮度和与大气透过率相关的大气可降水量,加入降尺度模型构建中。为了更好利用真实观测的MODIS 1 km LST验证降尺度结果,故将MODIS LST和所有指标因子升尺度至5 km,开展5 km LST降尺度至1 km研究,进一步研究探讨大气顶层辐亮度和大气可降水量对LST降尺度的影响。研究结果表明:(1)随机森林模型中增加辐亮度和大气可降水量前后,通过将5 km LST降尺度后1 km LST与原始MODIS 1 km LST相比,RMSE和R2分别由3.1 K和0.5提高至0.38 K和0.94。(2)当随机森林模型中增加建筑形态指标后,模型的袋外分数OOB_score由0.46提高至0.49,模拟的100 m LST与ASTER LST产品比较,R2有所降低,可能的原因是ASTER 和MODIS LST的反演方法和传感器不同,造成两者在100 m尺度下的对比性差一些。但是当驱动因子中增加MOD02和MOD05后,RMSE和R2由2.4 K和0.29提高至1.2 K和0.68,进一步说明MOD02和MOD05在1 km LST降至100 m过程中,起到至关重要作用。(3)在1 km和100 m尺度下,增加建筑形态后,模型OOB_score均有提高,并且建筑形态指标的重要性有所不同,在100 m尺度下独立建筑形态的影响程度有所增加。综上,MODIS LST在城市地区降尺度研究中需要考虑大气顶层辐亮度、大气可降水量和建筑形态的影响,并且不同的建筑形态对LST的重要性存在空间尺度效应。  相似文献   

18.
遥感全天候地表温度产品在多云雾地区意义重大,对冰川泥石流多发的藏东南地区极具应用价值,但遥感全天候地表温度空间分辨率不足限制了其在精细化灾害监测中的应用。以藏东南冰川地区为研究区,采用高程、坡度、坡向、地表覆盖类型、植被指数、地表反射率、积雪指数作为全天候地表温度的影响因子,结合移动窗口,进行多种地表温度降尺度方法的对比,进而使用最优的降尺度方法将现有的遥感全天候地表温度产品(TRIMS LST)的空间分辨率从1 km提升至250 m。利用地面站点实测数据的评价结果表明,基于梯度提升决策树(LightGBM)的降尺度方法得到的250 m空间分辨率全天候地表温度的均方根误差在白天/夜间为2.25 K/2.15 K,优于基于多元线性回归和随机森林的降尺度方法,且比原始1 km分辨率全天候地表温度的精度高0.25 K左右。基于Q指数与SIFI指数的图像质量评价结果表明,降尺度得到的250 m地表温度不仅在空间格局和幅值上与原始1 km遥感全天候地表温度一致,而且补充了大量的地表温度空间细节信息。生成得到的250 m分辨率的地表温度对于藏东南冰川地区的灾害分析具有积极的意义。  相似文献   

19.
ABSTRACT

We propose a method for spatial downscaling of Landsat 8-derived LST maps from 100(30?m) resolution down to 2–4?m with the use of the Multiple Adaptive Regression Splines (MARS) models coupled with very high resolution auxiliary data derived from hyperspectral aerial imagery and large-scale topographic maps. We applied the method to four Landsat 8 scenes, two collected in summer and two in winter, for three British towns collectively representing a variety of urban form. We used several spectral indices as well as fractional coverage of water and paved surfaces as LST predictors, and applied a novel method for the correction of temporal mismatch between spectral indices derived from aerial and satellite imagery captured at different dates, allowing for the application of the downscaling method for multiple dates without the need for repeating the aerial survey. Our results suggest that the method performed well for the summer dates, achieving RMSE of 1.40–1.83?K prior to and 0.76–1.21?K after correction for residuals. We conclude that the MARS models, by addressing the non-linear relationship of LST at coarse and fine spatial resolutions, can be successfully applied to produce high resolution LST maps suitable for studies of urban thermal environment at local scales.  相似文献   

20.
Satellite data holds considerable potential as a source of information on rice crop growth which can be used to inform agronomy. However, given the typical field sizes in many rice-growing countries such as China, data from coarse spatial resolution satellite systems such as the Moderate Resolution Imaging Spectroradiometer (MODIS) are inadequate for resolving crop growth variability at the field scale. Nevertheless, systems such as MODIS do provide images with sufficient frequency to be able to capture the detail of rice crop growth trajectories throughout a growing season. In order to generate high spatial and temporal resolution data suitable for mapping rice crop phenology, this study fused MODIS data with lower frequency, higher spatial resolution Landsat data. An overall workflow was developed which began with image preprocessing, calculation of multi-temporal normalized difference vegetation index (NDVI) images, and spatiotemporal fusion of data from the two sensors. The Spatial and Temporal Adaptive Reflectance Fusion Model was used to effectively downscale the MODIS data to deliver a time-series of 30 m spatial resolution NDVI data at 8-day intervals throughout the rice-growing season. Zonal statistical analysis was used to extract NDVI time-series for individual fields and signal filtering was applied to the time-series to generate rice phenology curves. The downscaled MODIS NDVI products were able to characterize the development of paddy rice at fine spatial and temporal resolutions, across wide spatial extents over multiple growing seasons. These data permitted the extraction of key crop seasonality parameters that quantified inter-annual growth variability for a whole agricultural region and enabled mapping of the variability in crop performance between and within fields. Hence, this approach can provide rice crop growth data that is suitable for informing agronomic policy and practice across a wide range of scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号