首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Gold mineralisation at the Dobroyde prospect in central New South Wales is hosted by a zoned alteration system characterised by peripheral propylitic alteration, grading inwards through argillic and advanced argillic alteration to a siliceous altered core. Overprinting textures indicate that propylitic, argillic, advanced argillic and siliceous assemblages were successively superimposed on each other. Au grades between 0.3–0.8 ppm are associated with siliceous alteration and cross‐cutting pyrite veinlets. Higher Au grades are associated with barite veins that cut the pyrite veinlets. Native Au, native Te, Au, Pb and Hg tellurides, Pb selenide, chalcopyrite, Zn‐sphalerite and tennantite‐tetrahedrite occur in the barite veins. Microscopic pyrophyllite shears cut the barite veins. The location of the Dobroyde prospect, the orientation of its internal alteration zonation and the orientation of auriferous barite veins in the core of the prospect are controlled by a 330°‐striking fault. Movement on this fault, synchronous with hydrothermal activity, at some time between the Late Ordovician and mid‐Devonian controlled the development of successive phases of brecciation, siliceous alteration, pyrite and later barite‐Au veining in the prospect core. The restricted distribution of auriferous barite veins within the siliceous altered core of the prospect is inferred to be controlled by the relatively brittle rheology of this assemblage during deformation, and its location on the fault that formed the main hydrothermal fluid conduit. Alteration zones distal from this fault remain unmineralised. The Dobroyde prospect may be a product of the same Early Devonian metallogenic epoch as the paragenetically similar Temora and Peak Hill deposits. All three deposits/prospects appear to be localised in splays of either the Gilmore Fault Zone or the Parkes Thrust.  相似文献   

2.
The Jupiter gold deposit in the northeastern Eastern Goldfields Province of the Yilgarn Craton of Western Australia is hosted in greenschist facies metamorphosed tholeiitic basalt, quartz–alkali-feldspar syenite, and quartz–feldspar porphyry. Syenite intrudes basalt as irregularly shaped dykes which radiate from a larger stock, whereas at least three E–W and NE–SW striking quartz–feldspar porphyries intrude both syenite and basalt. Brittle–ductile shear zones are shallow-dipping, NW to NE striking, or are steep-dipping to the south and west. Quartz ± carbonate veins that host gold at Jupiter occur in all lithologies and are divided into: (1) veins that are restricted to the shear zones, (2) discrete veins that are subparallel to shear zone-hosted veins, and (3) stockwork veins that form a network of randomly oriented microfractures in syenite wallrock proximal to shallow-dipping shear zones. The gold-bearing veins comprise mainly quartz, calcite, ankerite, and albite, with minor sericite, pyrite, chalcopyrite, galena, sphalerite, molybdenite, telluride minerals, and gold. Proximal hydrothermal alteration zones to the mineralised veins comprise quartz, calcite, ankerite, albite, and sericite. High gold grades (>2 g/t Au) occur mainly in syenite and in the hanging walls to shallow-dipping shear zones in syenite where there is a greater density of mineralised stockwork veins. The Jupiter deposit has structural and hydrothermal alteration styles that are similar to both granitoid-hosted, but post-magmatic Archaean lode-gold deposits in the Yilgarn Craton and intrusion-related, syn-magmatic, syenite-hosted gold deposits in the Superior Province of Canada. Based on field observations and petrologic data, the Jupiter deposit is considered to be a post-magmatic Archaean lode-gold deposit rather than a syn-intrusion deposit. Received: 5 January 1999 / Accepted: 24 December 1999  相似文献   

3.
The early Palaeozoic Macquarie Arc, southeastern Australia, hosts a variety of major late Ordovician to earliest Silurian subduction-related deposits (e.g., Cadia East, Ridgeway, Cadia Hill, Cowal and Northparkes). However, there is uncertainty about whether coeval high-sulfidation epithermal deposits, which occur in intra-oceanic metallogenic belts elsewhere in the West Pacific, (e.g., Lepanto and Chinkuashih), are also present in the Macquarie Arc. This has led to suggestions that their absence may be due to the poor preservation potential of deposits that form at relatively shallow crustal levels in ancient rocks. We present here an interpretation for evolution of the Peak Hill Au–Cu deposit based on the distribution of alteration facies, sulfur isotope data from several textural forms of pyrite and barite, and an assessment of the regional volcanic and sedimentary facies architecture. These data show that the Peak Hill deposit displays a distinct sub-vertical zoning with a pyrophyllite and vuggy-quartz core, that today extends about 350 m east–west and at least 550 m north–south, which grades out through paragonite+muscovite, kaolinite to a chlorite+epidote alteration zone at the margin. The alteration zoning reflects both lower temperatures and neutralisation of acid fluids with increasing distance from the core, which represents the conduit along which hot acidic hydrothermal fluids were channelled. Several temporally overlapping events of silicification, bladed-quartz-pyrite veining, brecciation and pyrite veining occurred during the last stages of hydrothermal alteration, although most appear to predate mineralisation. Au–Cu mineralisation was associated with late quartz-pyrite-barite veins, and the highest gold grades occur mainly in microcrystalline-quartz-altered rocks in the paragonite+muscovite alteration zone, generally within 50 m outward from the boundary of the pyrophyllite and vuggy-quartz core. Sulfur- and lead-isotope data, and the characteristic zoning of ore minerals and alteration assemblages support a magmatic source for the hydrothermal fluids. Similarities in many of the isotopic signatures between Peak Hill and deposits such as Northparkes support generation of the high-sulfidation mineralisation during the Late Ordovician to earliest Silurian (possibly ca. 440 Ma) metallogenic event. The Late Ordovician to Early Silurian volcanic and sedimentary facies associations at Peak Hill are consistent with alteration and mineralisation occurring in rocks deposited in a submarine setting.  相似文献   

4.
The Tiámaro deposit in Michoacán state has been dated as Lower Cretaceous (Valanginian), though most of the porphyry deposits in central Mexico were dated or have an attributed Eocene–Oligocene age. The host rocks belong to a volcanoplutonic complex overlain by red conglomerates. These rocks were intruded by pre-Valanginian plutonic and hypabissal rocks. Propylitic, phyllic, and argillic alteration assemblages developed, and their superimposition draws the evolution of the deposit. Stage I is represented by propylitic assemblages, stage II contains the main ore forming stockworks and both phyllic and argillic assemblages, and stage III contains late carbonatization assemblages. The obtained temperatures and salinities from inclusion fluids are low for a porphyry-type deposit, but we interpret that the known part of the deposit represents the shallow portion of a bigger deposit. The evolution of mineralizing fluids draws a dilution trend of brines from “porphyry-like” to “epithermal-like” stages. The richest ore zone is roughly located between the 300 and 350 °C isotherms, though unnoticed resources may occur at depth.  相似文献   

5.
 The molybdenite deposit of the Alpeinerscharte (Austria) is situated in Variscan greenschist- to amphibolite-facies metamorphosed granodiorites and granites of the western Tauern Window. These granitoids represent strongly fractionated calc-alkaline I-type magmas with minor S-type components and reveal post-orogenic affinities. Molybdenum contents (average 4.3 ppm) are slightly above the general background of average granites. Molybdenite mineralization is restricted to narrow quartz veins and quartz vein selvages which are presently composed of biotite and (almandine-grossular) garnet. These selvages show geochemical features typical of intermediate argillic alteration in a hydrothermal system postdating granite intrusion: instability of plagioclase causes removal of Na, Ba, Sr, Pb and Eu, while K and Ca remain nearly constant. Rare earth elements (apart from Eu) and metals are extremely enriched. Application of Fe-Mg exchange (garnet-biotite) and oxygen isotope (quartz-garnet, quartz-plagioclase) geothermometers to vein selvage mineral assemblages reveals temperatures of the late-Alpine (35–55 Ma) metamorphic overprint (∼540 °C, 7–10 kbar). Leucocratic rocks composed of mainly orthoclase and plagioclase are occasionally spatially related to molybdenite-bearing veins; they are interpreted as episyenites formed by hydrothermal alteration of the host granite. This episyenitic alteration is characterized by a mass loss of ca. 30%, relative enrichment of plagioclase components, extreme depletion of Si, and minor depletion of Fe, Zn, Cu and Mo. Received: 5 December 1993/Accepted: 24 October 1995  相似文献   

6.
Gold mineralization at Hutti is confined to a series of nine parallel, N–S to NNW–SSE trending, steeply dipping shear zones. The host rocks are amphibolites and meta-rhyolites metamorphosed at peak conditions of 660±40°C and 4±1 kbar. They are weakly foliated (S1) and contain barren quartz extension veins. The auriferous shear zones (reefs) are typically characterized by four alteration assemblages and laminated quartz veins, which, in places, occupy the entire reef width of 2–10 m, and contain the bulk of gold mineralization. A <1.5 m wide distal chlorite-sericite (+biotite, calcite, plagioclase) alteration zone can be distinguished from a 3–5 m wide proximal biotite-plagioclase (+quartz, muscovite, calcite) alteration zone. Gold is both spatially and temporally associated with disseminated arsenopyrite and pyrite mineralization. An inner chlorite-K-feldspar (+quartz, calcite, scheelite, tourmaline, sphene, epidote, sericite) alteration halo, which rims the laminated quartz veins, is characterized by a pyrrhotite, chalcopyrite, sphalerite, ilmenite, rutile, and gold paragenesis. The distal chlorite-sericite and proximal biotite-plagioclase alteration assemblages are developed in microlithons of the S2–S3 crenulation cleavage and are replaced along S3 by the inner chlorite-K-feldspar alteration, indicating a two-stage evolution for gold mineralization. Ductile D2 shearing, alteration, and gold mineralization formed the reefs during retrograde evolution and fluid infiltration under upper greenschist to lower amphibolite facies conditions (560±60°C, 2±1 kbar). The reefs were reactivated in the D3 dextral strike-slip to oblique-slip environment by fault-valve behavior at lower greenschist facies conditions (ca. 300–350°C), which formed the auriferous laminated quartz veins. Later D4 crosscutting veins and D5 faults overprint the gold mineralization. The alteration mineralogy and the structural control of the deposit clearly points to an orogenic style of gold mineralization, which took place either during isobaric cooling or at different levels of the Archean crust. From overlaps in the tectono-metamorphic history, it is concluded that gold mineralization occurred during two tectonic events, affecting the eastern Dharwar craton in south India between ca. 2550 – 2530 Ma: (1) The assemblage of various terranes of the eastern block, and (2) a tectono-magmatic event, which caused late- to posttectonic plutonism and a thermal perturbation. It differs, however, from the pre-peak metamorphic gold mineralization at Kolar and the single-stage mineralization at Ramagiri. Notably, greenschist facies gold mineralization occurred at Hutti 35–90 million years later than in the western Dharwar craton. Editorial handling: G. Beaudoin  相似文献   

7.
The Géant Dormant gold mine is a sulfide-rich quartz vein gold deposit hosted by a volcano-sedimentary sequence and an associated felsic endogenous dome and dikes. The auriferous quartz-sulfide veins were preceded by two synvolcanic gold-bearing mineralizing events: early sulfidic seafloor-related and later disseminated pyrite in the felsic dome. This deposit differs from classical Archean auriferous quartz vein deposits by the low carbonate and high sulfide contents of the veins and by their formation prior to ductile penetrative deformation. The δ18O values of quartz associated with seafloor-related auriferous sulfides average 11.9 ± 0.6‰ (n = 3). The seafloor hydrothermal fluids had a δ18O value of 3.2‰ calculated at 250 °C. The oxygen isotope composition of quartz and chlorite from veins average 12.5 ± 0.3‰ (n = 20) and 5.9 ± 1.1‰ (n = 4) respectively. Assuming oxygen isotope equilibrium between quartz and chlorite, the veins formed at a temperature of ∼275 °C, which is consistent with the calculated temperature of 269 ± 10 °C from chlorite chemistry. The gold-bearing fluids had a δ18O value of 4.7‰ calculated at 275 °C. The δ34S values of sulfides from the three gold events range from 0.6 to 2.8‰ (n = 32) and are close to magmatic values. Sulfur isotope geothermometry constrains the sulfide precipitation in the gold-bearing veins at a temperature of ∼350 °C. The similarity of the isotope data, the calculated δ18O of the mineralizing fluids and the likely seawater fluid source suggest that the three mineralizing events are genetically related to a volcanogenic hydrothermal system. The high value of the auriferous fluids (δ18O = 4.7‰) is attributed to a significant magmatic fluid contribution to the evolved seawater-dominated convective hydrothermal system. The two-stage filling of veins at increasing temperature from quartz-chlorite (275 °C) to sulfides (350 °C) may reflect the progressive maturation of volcanogenic hydrothermal systems. These results, together with field and geochemical data, suggest that formation of gold-rich volcanogenic systems require specific conditions that comprise a magmatic fluid contribution and gold from arc-related felsic rocks, coeval with the mineralizing events. This study shows that some auriferous quartz-vein orebodies in Archean terranes are formed in volcanogenic rather than mesothermal systems. Received: 12 December 1998 / Accepted: 5 July 1999  相似文献   

8.
The recently discovered Hanshan gold deposit in northern Gansu Province, northwestern China, is hosted by a WNW-striking shear zone in Ordovician andesite and basalt. Mineralization consists of surface to near-surface oxidized ore (the yellow sandy gossan type) and three types of primary ore, i.e. early-stage quartz-sericite-pyrite ores in stockworks, early-stage disseminated ore, and the most important late-stage quartz ± calcite-sulfide veins. The ore system is characterized by variable degrees of potassic and silicic alteration. Late-stage gold-related fluid inclusions have homogenization temperatures between 170 to 310 °C, with a peak around 260 °C and low salinities. The ore fluids had high contents of CO2, CH4, and N2. Sulfur isotope measurements of −1.9 to +1.7 per mil for hydrothermal pyrites could be consistent with a hydrothermal fluid source from the mantle, but the oxygen and carbon isotope data from calcite and quartz suggest mixing between mantle and crustal fluid sources. K-Ar ages for hydrothermal sericite from ore zones are 213.9 ± 3.1 and 224.4 ± 3.2 Ma. Due to the arid Cenozoic climate, a yellow gold-bearing gossan developed, which consists of jarosite, gypsum, and relict quartz. It could be a widespread and useful prospecting guide for gold in northwestern China. Received: 1 February 1999 / Accepted: 1 August 1999  相似文献   

9.
The Hercynian mercury mineralization of Las Cuevas is hosted by a highly folded and sheared sequence of basalts, intrusive breccias, slates, psamitic rocks and quartzites. The mineral paragenesis is simple and consists of cinnabar, native mercury and pyrite. Hydrothermal alteration can be divided into `proximal' and `distal' with respect to the mineralized bodies. The proximal alteration (≤1.3 m wide) consists of quartz-pyrophyllite-kaolinite, quartz-pyrophyllite-(kaolinite)-(illite), and quartz-illite-(pyrophyllite)-(kaolinite). The distal alteration (∼100 m wide) consists of (quartz)-illite-chlorite-(pyrophyllite), or rectorite-(chlorite). These assemblages overprint an earlier, regional alteration consisting of quartz-chlorite-albite-carbonates (±ankerite, ±siderite, ±magnesite, ±calcite). The mercury deposit of Las Cuevas can be regarded as an unusual combination of mercury deposition and advanced argillic alteration within a relatively deep environment (≥1.8 km). Received: 3 February 1998 / Accepted: 8 June 1998  相似文献   

10.
Kemess South is the only Cu–Au–Mo mine in the Toodoggone district and a major Cu and Au producer in British Columbia. Porphyry-style Cu–Au–Mo mineralization is mainly hosted by the tabular, SW-plunging, 199.6 ± 0.6-Ma Maple Leaf granodiorite, which intrudes tightly folded, SW-dipping, Permian Asitka Group siltstone and limestone and homogeneous Triassic Takla Group basalt. Southwest-dipping 194.0 ± 0.4-Ma Toodoggone Formation conglomerate, volcaniclastic, and epiclastic rocks overlie the granodiorite and Asitka Group rocks. Minor Cu–Au–Mo mineralization is hosted by the immediate Takla Group basalt country rock, whereas low-tonnage high-grade Cu zones occur beneath a 30-m-thick leached capping in supergene-altered granodiorite and in exotic positions in overlying Toodoggone Formation conglomerate. Granodiorite has an intrusive contact with mineralized and altered Takla Group basalt but displays a sheared contact with unmineralized and less altered Asitka Group siltstone. The North Block fault is a deposit-scale, E-striking, steeply S-dipping normal fault that juxtaposes the granodiorite/basalt ore body against unmineralized Asitka Group rocks. Younger NW- and NE-striking normal–dextral faults cut all rock types, orebodies, and the North Block fault with displacements of up to 100 m and result in the graben-and-horst-style block faulting of the stratigraphy and ore body. Both basalt and granodiorite host comparable vein sequence and alteration histories, with minor variations in hydrothermal mineral assemblages caused by differing protolith chemistry. Early potassic alteration (and associated early-stage Cu ± Au ± Mo mineralization) is partly replaced by phyllic and intermediate argillic alteration associated with main-stage Cu–Au–Mo mineralization. Two main-stage veins have Re–Os molybdenite ages of 201.3 ± 1.2 and 201.1 ± 1.2 Ma. These mineralization ages overlap the 199.6 ± 0.6-Ma U–Pb zircon crystallization age for the Maple Leaf granodiorite. Late-stage pyrite-rich stringer veins and related phyllic alteration assemblages are cut by anhydrite-rich, carbonate-rich, and chlorite veins. Fluids and metals associated with early-, main-, and late-stage veins were probably derived principally from the same deep magma chamber as the Maple Leaf granodiorite. These magmatic-derived fluids interacted with Asitka and Takla Group country rocks and possibly with meteoric and metamorphic fluids prior to mineralization.  相似文献   

11.
The Tirek gold deposit hosted in the Archean shield is one of the richest sources of mined gold for Algeria. The deposit is controlled by the East Ouzzal shear zone (EOSZ), a transcurrent N–S lithospheric fault. The EOSZ is a late Pan-African dextral-ductile shear zone separating two contrasting Precambrian domains: the Archean In Ouzzal block to the west (Orthogenesis with subordinate metasediments reworked and granulitized during the ca. 2 Ga Eburnean event) and a middle Proterozoic block to the east involved in the ca. 600 Ma Pan-African event. The auriferous quartz veins are mainly oriented in two directions, N–S veins hosted in mylonitic rocks and NE–SW veins hosted in gabbroic or gneissic bands. The NE–SW veins contain the richest ore. Gold ore is found in a system of veins and lenticular quartz veinlets arranged in anastomosing networks. The hydrothermal alteration associated with these veins is characteristically a carbonate-sericite-albite-pyrite assemblage. Gold is the main metal of economic importance; it is disseminated in the quartz as grains or fibers along microcracks and as microscopic grains in the host rocks. Microthermometric results and Raman laser data from fluid inclusions demonstrate that the ore-forming fluids contained H2O-CO2±CH4 and were low salinity. Homogenization temperatures are commonly 250–310 °C. In the Tirek deposit, the role of the shear zone that hosts the mineralization was to drain the hydrothermal fluid. Interactions between the fluid and the mafic host rocks and CO2 also contributed to the formation of the hydrothermal gold deposit at Tirek.  相似文献   

12.
The Rosia Poieni deposit is the largest porphyry copper deposit in the Apuseni Mountains, Romania. Hydrothermal alteration and mineralization are related to the Middle Miocene emplacement of a subvolcanic body, the Fundoaia microdiorite. Zonation of the alteration associated with the porphyry copper deposit is recognized from the deep and central part of the porphyritic intrusion towards shallower and outer portions. Four alteration types have been distinguished: potassic, phyllic, advanced argillic, and propylitic. Potassic alteration affects mainly the Fundoaia subvolcanic body. The andesitic host rocks are altered only in the immediate contact zone with the Fundoaia intrusion. Mg-biotite and K-feldspar are the main alteration minerals of the potassic assemblage, accompanied by ubiquitous quartz; chlorite, and anhydrite are also present. Magnetite, pyrite, chalcopyrite and minor bornite, are associated with this alteration. Phyllic alteration has overprinted the margin of the potassic zone, and formed peripheral to it. It is characterized by the replacement of almost all early minerals by abundant quartz, phengite, illite, variable amounts of illite-smectite mixed-layer minerals, minor smectite, and kaolinite. Pyrite is abundant and represents the main sulfide in this alteration zone. Advanced argillic alteration affects the upper part of the volcanic structure. The mineral assemblage comprises alunite, kaolinite, dickite, pyrophyllite, diaspore, aluminium-phosphate-sulphate minerals (woodhouseite-svanbergite series), zunyite, minamyite, pyrite, and enargite (luzonite). Alunite forms well-developed crystals. Veins with enargite (luzonite) and pyrite in a gangue of quartz, pyrophyllite and diaspore, are present within and around the subvolcanic intrusion. This alteration type is partially controlled by fractures. A zonal distribution of alteration minerals is observed from the centre of fractures outwards with: (1) vuggy quartz; (2) quartz + alunite; (3) quartz + kaolinite ± alunite and, in the deeper part of the argillic zone, quartz + pyrophyllite + diaspore; (4) illite + illite-smectite mixed-layer minerals ± kaolinite ± alunite, and e) chlorite + albite + epidote. Propylitic alteration is present distal to all other alteration types and consists of chlorite, epidote, albite, and carbonates. Mineral parageneses, mineral stability fields, and alteration mineral geothermometers indicate that the different alteration assemblages are the result of changes in both fluid composition and temperature of the system. The alteration minerals reflect cooling of the hydrothermal system from >400 °C (biotite), to 300–200 °C (chlorite and illite in veinlets) and to lower temperatures of kaolinite, illite-smectite mixed layers, and smectite crystallization. Hydrothermal alteration started with an extensive potassic zone in the central part of the system that passed laterally to the propylitic zone. It was followed by phyllic overprint of the early-altered rocks. Nearly barren advanced argillic alteration subsequently superimposed the upper levels of the porphyry copper alteration zones. The close spatial association between porphyry mineralization and advanced argillic alteration suggests that they are genetically part of the same magmatic-hydrothermal system that includes a porphyry intrusion at depth and an epithermal environment of the advanced argillic type near the surface.Editorial handling: B. Lehmann  相似文献   

13.
Summary Quartz-tourmaline vein-hosting rocks of the Okote area belong to the Neoproterozoic Adola Belt. Metasomatic auriferous quartz-tourmaline veins occur in ductile N–S trending, sinistral shear zones. These veins commonly contain quartz, carbonates, and tourmaline, with minor pyrite, and accessory chalcopyrite, pyrrhotite, and gold. Tourmaline forms isolated euhedral crystals in the fracture surfaces of quartz carbonate veins. Many of the tourmaline crystals are optically zoned with a bluish core and a bluish to brown rim. Electron microprobe analyses show that the tourmalines comprise an intermediate dravite-schorl solid solution with a mean FeO/(FeO + MgO) = 0.47. Abrupt transitions between the colour zones within single tourmaline crystals are accompanied by relative variations in the FeO/(FeO + MgO) ratios. The tourmaline separates indicate that the tourmalines contain highly variable average contents of trace elements. Chondrite-normalized rare earth element (REE) abundances of tourmaline separates from auriferous veins show LREE-enriched to LREE-depleted patterns with negative to positive Eu anomalies and a flat, near-chondritic HREE pattern. The auriferous quartz-tourmaline veins have LREE-enriched patterns without a Eu anomaly and a flat HREE pattern, but tourmaline-free gold-quartz veins have very low REE contents and LREE-depleted patterns also without Eu anomalies. The FeO/(FeO + MgO) ratios, major and trace element compositions, and the types of wall-rock alteration are used to suggest that the sources of boron are dominantly metamorphic (dehydration and devolatilization processes), but do not totally exclude the possibility of a magmatic source. The occurrences of high-grade gold associated with tourmaline make tourmaline a valuable prospecting guide for hydrothermal gold mineralization in the Adola Belt, southern Ethiopia. Received November 17, 1999; revised version accepted July 23, 2001  相似文献   

14.
The Duolong district is located in the south Qiangtang terrane of Tibet and is the most significant ore cluster within the Bangongco-Nujiang metallogenic belt. Duolong contains one giant, three large and two medium to small-sized porphyry (±epithermal ± breccia) copper deposits and several other mineralized porphyry bodies. All deposits are closely associated with early Cretaceous (123–115 Ma) intermediate-felsic intrusions. Naruo is a poorly studied porphyry-breccia copper deposit in the north of the Duolong district. Hydrothermal alteration surrounding the ore-bearing granodiorite at Naruo is characterized by an inner potassic zone and an outer propylitic zone, overlapped locally by minor phyllic and argillic alteration assemblages. A detailed paragenetic study has identified five distinct hydrothermal veins (M, A, B, C, D) within the porphyry system. Hydrothermal B veins are strongly related to copper mineralization. Strong propylitic alteration is also observed throughout the hydrothermal breccias identified at Naruo. Sandstone breccia, diorite-bearing breccia and granodiorite-bearing breccia were identified according to the distribution and composition of clasts. U-Pb zircon dating has determined the ages of the ore-bearing granodiorite (121.6 ± 1.3 Ma) and a barren intrusion (115.5 ± 1.1 Ma) within the porphyry system, diorite clasts (122.3 ± 0.9 Ma) and later diorite matrix (120.5 ± 1.0 Ma) in the hydrothermal breccia system, suggesting that with the exception of the late barren intrusion, they all belong to the same mineralizing event at Duolong. The geological and geochemical evidence presented in this study suggest that the porphyry and breccia systems may have originated from the same magma source, but are now spatially independent.  相似文献   

15.
The Betam gold deposit, located in the southern Eastern Desert of Egypt, is related to a series of milky quartz veins along a NNW-trending shear zone, cutting through pelitic metasedimentary rocks and small masses of pink granite. This shear zone, along with a system of discrete shear and fault zones, was developed late in the deformation history of the area. Although slightly sheared and boudinaged within the shear zone, the auriferous quartz veins are characterised by irregular walls with a steeply plunging ridge-in-groove lineation. Shear geometry of rootless intra-folial folds and asymmetrical strain shadows around the quartz lenses suggests that vein emplacement took place under a brittle–ductile shear regime, clearly post-dating the amphibolite-facies regional metamorphism. Hydrothermal alteration is pervasive in the wallrock metapelites and granite including sericitisation, silicification, sulphidisation and minor carbonatisation. Ore mineralogy includes pyrite, arsenopyrite and subordinate galena, chalcopyrite, pyrrhotite and gold. Gold occurs in the quartz veins and adjacent wallrocks as inclusions in pyrite and arsenopyrite, blebs and globules associated with galena, fracture fillings in deformed arsenopyrite or as thin, wire-like rims within or around rhythmic goethite. Presence of refractory gold in arsenopyrite and pyrite is inferred from microprobe analyses. Clustered and intra-granular trail-bound aqueous–carbonic (LCO2 + Laq ± VCO2) inclusions are common in cores of the less deformed quartz crystals, whereas carbonic (LCO2 ± VCO2) and aqueous H2O–NaCl (L + V) inclusions occur along inter-granular and trans-granular trails. Clathrate melting temperatures indicate low salinities of the fluid (3–8 wt.% NaCl eq.). Homogenisation temperatures of the aqueous–carbonic inclusions range between 297 and 323°C, slightly higher than those of the intra-granular and inter-granular aqueous inclusions (263–304°C), which are likely formed during grain boundary migration. Homogenisation temperatures of the trans-granular H2O–NaCl inclusions are much lower (130–221°C), implying different fluids late in the shear zone formation. Fluid densities calculated from aqueous–carbonic inclusions along a single trail are between 0.88 and 0.98 g/cm3, and the resulting isochores suggest trapping pressures of 2–2.6 kbar. Based on the arsenopyrite–pyrite–pyrrhotite cotectic, arsenopyrite (30.4–30.7 wt.% As) associated with gold inclusions indicates a temperature range of 325–344°C. This ore paragenesis constrains f S2 to the range of 10−10 to 10−8.5 bar. Under such conditions, gold was likely transported mainly as bisulphide complexes by low salinity aqueous–carbonic fluids and precipitated because of variations in pH and f O2 through pressure fluctuation and CO2 effervescence as the ore fluids infiltrated the shear zone, along with precipitation of carbonate and sericite. Wallrock sulphidation also likely contributed to destabilising the gold–bisulphide complexes and precipitating gold in the hydrothermal alteration zone adjacent to the mineralised quartz veins.  相似文献   

16.
Gold-bearing veins within the Liese zone of the Pogo deposit display a two-stage evolutionary history that records temporal variation in kinematics, fluid chemistry and temperature. Several stacked shallow northwest-dipping shear veins are developed at Pogo, and collectively comprise the Liese Zone. Veins consist of: (1) early, narrow biotite-bearing shear veins; (2) white quartz veins with pyrite-arsenopyrite bands, referred to as main stage quartz veins, that have sericite-Fe-Mg carbonate alteration envelopes and which exploit the early shear veins; and (3) extension veins that form as steeper offshoots from the main stage veins. The presence and orientation of oblique fabrics developed in the older biotite-bearing shear veins are indicative of top-to-the-south displacement under ductile to semi-brittle conditions at higher temperatures. In contrast, the orientation of the extension veins and local sigmoidal shapes indicate a component of top-to-the-northwest normal displacement on the main stage veins in their present orientation, and brittle to semi-brittle conditions of formation. Dolomite-sericite alteration surrounding main stage veins may represent late to post-mineral hydrothermal fluid exploitation of vein margins during ongoing normal displacement along vein systems. All types of veining overprint 107–106 Ma, post-metamorphic granitic dykes. Molybdenite in main stage quartz assemblages has returned Re-Os ages of 104.2±1.1 Ma, significantly older than 96 to 91 Ma 40Ar/39Ar ages obtained from vein alteration assemblages that may reflect thermal resetting during post-mineral fault related hydrothermal activity, magmatism and/or retrograde cooling of the lithologic sequence. Unlike typical mesothermal shear vein hosted gold systems, Pogo is temporally and tectonically separated from metamorphic deformation events, and has a comparable kinematic and geometric architecture to Cretaceous plutonic gold deposits in the region. We interpret the deposit to have formed during a regional Cretaceous extensional event during multi-stage exploitation of extensional fault surfaces by hydrothermal fluid from a cooling magmatic source.Editorial handling: S.G. Hagemann  相似文献   

17.
综合找矿方法在河台金矿找矿预测中的应用   总被引:1,自引:0,他引:1  
河台金矿是一个典型的与韧性剪切带有关的金矿床,也是目前粤西、桂东南已发现的最大的金矿床。为了给深边部的找矿提供科学依据,本文应用伽马能谱、地电化学及数值模拟产生的体积应变异常带对本区进行了找矿预测实验研究。伽马能谱K异常带指示了本区糜棱岩化及热液蚀变过程中引起的钾化蚀变作用,金矿体与糜棱岩化带主要分布在K异常带中;地电化学异常带可能代表了本区不同深度矿体在地表的垂直投影;体积应变异常带及其附近有利于发展为本区的含矿糜棱岩化带。在同一构造成矿体系中,根据相似类比原则,表明以上三种方法在本区进行找矿预测可行。综合以上三种方法,圈定了3个可能的含矿带,建议对其进行验证。  相似文献   

18.
Abstract: The Milyang pyrophyllite deposit, which is embedded in the Late Cretaceous Yuchon Group of the Kyongsang Supergroup, is one of the largest hydrothermal clay deposits in the Kyongsang basin, southeast Korea. Host rocks of the deposit are porphyritic andesite lava and minor andesitic lapilli tuff. In the Milyang district, a hydrothermally altered zone is about 2 × 3 km in extent; we can recognize the concentric arrangement of advanced argillic, propylitic, and sericitic alteration zones from the central to peripheral parts of the zone. The Milyang pyrophyllite deposit forms a part of the advanced argillic alteration zone. The Milyang pyrophyllite deposit is subdivided into the following four zones based on mineral assemblages: the pyrophyllite zones 1, 2, 3, and the silicified zone. The pyrophyllite zone 1, which occupies the central part of the deposit, comprises mainly pyrophyllite, kaolinite, and diaspore without quartz. Diaspore nodules often concentrate in beds 40–50 cm thick. Andalusite, dumortierite, and tourmaline locally occur as network veins, crack‐filler, or small spherulitic spots. The Al2O3 content of the ore ranges from 27 to 36 wt%. The pyrophyllite zone 2, which constitutes a major part of the deposit, comprises mainly pyrophyllite, kaolinite, and quartz. The Al2O3 content of the ore ranges from 15 to 24 wt%. The pyro‐phyllite zone 3 is the hematite‐rich marginal facies of the deposit. The silicified zone, which occurs as beds and septa, is mostly composed of quartz with minor pyrophyllite and kaolinite; the SiO2 contents range from 79 to 90 wt%. Comparing chemical compositions of the high‐Al ores with those of unaltered host andesite, the Fe, Ca, alkalis, HFSE, and HREE contents are significantly depleted, whereas S, B, As, Sr, and LREE are enriched. The hydrothermal alteration of the Milyang pyrophyllite deposit can be classified into the following four stages: 1) extensive sericitic and propylitic alteration, 2) medium‐temperature (200–250°C) advanced argillic alteration, 3) high‐temperature (250–350°C or more) advanced argillic alteration, and 4) retrograde low‐temperature alteration. The heat and some volatile components such as B and S would be derived from the Pulguksa Granite intruded underneath the deposit.  相似文献   

19.
The Archaean lode-gold deposits at Norseman, Western Australia, consist of auriferous quartz veins in dextral-reverse ductile-brittle shear zones within tholeiitic metabasalts of upper-greenschist to amphibolite facies metamorphic grade. Three types of deposits (Northern, Central, Southern) are delineated on the basis of their spatial distribution, veining style, alteration mineraloty and metamorphic grade of host rocks. Northern deposits, hosted in upper-greenschist to lower-amphibolite facies rocks, comprise massive to laminated quartz veins with selvedges of quartz-chlorite-calcite-biotite-plagioclase assemblages. Central deposits, hosted in lower-amphibolite facies rocks, consist of laminated to massive quartz veins with selvedges of quartz-actinolite-biotite-plagioclasecalcite assemblages. Southern deposits, hosted in middleamphibolite facies metabasalts, consist of banded quartz-diopside-calcite-microcline-zoisite veins. All deposits exhibit variable ductile deformation of veins and contiguous alteration haloes, consistent with a syn-deformational genesis at high temperatures. From Northern to Southern deposits, the alteration assemblages are indicative of higher temperatures of formation, and there are progressively greater degrees of dynamically recovered textures in alteration and gangue minerals. These observations imply that a thermal variation of gold-related hydrothermal alteration exists within the Norseman Terrane over a distance of 40 km, with TNorthern<TCentral<TSouthern This thermal zonation is corroborated by T−XCO 2 phase relations between vein selvedge assemblages, which signify formation temperatures of approximately 420°–475°C, 470°–495°C and >500°C for Northern, Central and Southern deposits, respectively. The sum of structural, petrographic and mineral chemistry data indicates that the alteration assemblages formed in high-temperature, open hydrothermal systems and have not been subsequently metamorphosed. The thermal differences between the deposit groups may reflect (1) a temperature gradient, at relatively constant P, corresponding to the proximity of the deposits to regional granitoid complexes, or (2) formation of the deposits at progressively deeper crustal levels from north to south. In either case the deposits represent a continuum of gold deposition from upper-greenschist to amphibolite facies, now exposed in an oblique section through the Archaean crust at Norseman.  相似文献   

20.
Gossan Hill is an Archean (∼3.0 Ga) Cu–Zn–magnetite-rich volcanic-hosted massive sulfide (VHMS) deposit in the Yilgarn Craton of Western Australia. Massive sulfide and magnetite occur within a layered succession of tuffaceous, felsic volcaniclastic rocks of the Golden Grove Formation. The Gossan Hill deposit consists of two stratigraphically separate ore zones that are stratabound and interconnected by sulfide veins. Thickly developed massive sulfide and stockwork zones in the north of the deposit are interpreted to represent a feeder zone. The deposit is broadly zoned from a Cu–Fe-rich lower ore zone, upwards through Cu–Zn to Zn–Ag–Au–Pb enrichment in the upper ore zone. New sulfur isotope studies at the Gossan Hill deposit indicate that the variation is wider than previously reported, with sulfide δ34S values varying between −1.6 and 7.8‰ with an average of 2.1 ± 1.4‰ (1σ error). Sulfur isotope values have a broad systematic stratigraphic increase of approximately 1.2‰ from the base to the top of the deposit. This variation in sulfur isotope values is significant in view of typical narrow ranges for Archean VHMS deposits. Copper-rich sulfides in the lower ore zone have a narrower range (δ34S values of −1.6 to 3.4‰, average ∼1.6 ± 0.9‰) than sulfides in the upper ore zone. The lower ore zone is interpreted to have formed from a relatively uniform reduced sulfur source dominated by leached igneous rock sulfur and minor magmatic sulfur. Towards the upper Zn-rich ore zone, an overall increase in δ34S values is accompanied by a wider range of δ34S values, with the greatest variation occurring in massive pyrite at the southern margin of the upper ore zone (−1.0 to 7.8‰). The higher average δ34S values (2.8 ± 2.1‰) and their wider range are explained by mixing of hydrothermal fluids containing leached igneous rock sulfur with Archean seawater (δ34S values of 2 to 3‰) near the paleoseafloor. The widest range of δ34S values at the southern margin of the deposit occurs away from the feeder zone and is attributed to greater seawater mixing away from the central upflow zone. Received: 10 June 1999 / Accepted: 28 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号