首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers the hemispheric pattern of solar filaments using newly developed simulations of the real photospheric and 3D coronal magnetic fields over a six-month period, on a global scale. The magnetic field direction in the simulation is compared directly with the chirality of observed filaments, at their observed locations. In our model the coronal field evolves through a continuous sequence of nonlinear force-free equilibria, in response to the changing photospheric boundary conditions and the emergence of new magnetic flux. In total 119 magnetic bipoles with properties matching observed active regions are inserted. These bipoles emerge twisted and inject magnetic helicity into the solar atmosphere. When we choose the sign of this active-region helicity to match that observed in each hemisphere, the model produces the correct chirality for up to 96% of filaments, including exceptions to the hemispheric pattern. If the emerging bipoles have zero helicity, or helicity of the opposite sign, then this percentage is much reduced. In addition, the simulation produces a higher proportion of filaments with the correct chirality after longer times. This indicates that a key element in the evolution of the coronal field is its long-term memory, and the build-up and transport of helicity from low to high latitudes over many months. It highlights the importance of continuous evolution of the coronal field, rather than independent extrapolations at different times. This has significant consequences for future modelling such as that related to the origin and development of coronal mass ejections.  相似文献   

2.
In this paper we analyse the non-potential magnetic field and the relationship with current (helicity) in the active region NOAA 9077 in 2000 July, using photospheric vector magnetograms obtained at different solar observatories and also coronal extreme-ultraviolet 171-Å images from the TRACE satellite.
We note that the shear and squeeze of magnetic field are two important indices for some flare-producing regions and can be confirmed by a sequence of photospheric vector magnetograms and EUV 171-Å features in the solar active region NOAA 9077. Evidence on the release of magnetic field near the photospheric magnetic neutral line is provided by the change of magnetic shear, electric current and current helicity in the lower solar atmosphere. It is found that the 'Bastille Day' 3B/5.7X flare on 2000 July 14 was triggered by the interaction of the different magnetic loop systems, which is relevant to the ejection of helical magnetic field from the lower solar atmosphere. The eruption of the large-scale coronal magnetic field occurs later than the decay of the highly sheared photospheric magnetic field and also current in the active region.  相似文献   

3.
The structure of electric current and magnetic helicity in the solar corona is closely linked to solar activity over the 11-year cycle, yet is poorly understood. As an alternative to traditional current-free “potential-field” extrapolations, we investigate a model for the global coronal magnetic field which is non-potential and time-dependent, following the build-up and transport of magnetic helicity due to flux emergence and large-scale photospheric motions. This helicity concentrates into twisted magnetic flux ropes, which may lose equilibrium and be ejected. Here, we consider how the magnetic structure predicted by this model – in particular the flux ropes – varies over the solar activity cycle, based on photospheric input data from six periods of cycle 23. The number of flux ropes doubles from minimum to maximum, following the total length of photospheric polarity inversion lines. However, the number of flux rope ejections increases by a factor of eight, following the emergence rate of active regions. This is broadly consistent with the observed cycle modulation of coronal mass ejections, although the actual rate of ejections in the simulation is about a fifth of the rate of observed events. The model predicts that, even at minimum, differential rotation will produce sheared, non-potential, magnetic structure at all latitudes.  相似文献   

4.
We present the evolution of magnetic field and its relationship with mag- netic(current)helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station,longitudinal magne- tograms by MDI of SOHO and white light images of TRACE.The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere,even if the mean current helicity density brings the general chiral property in a layer of solar active regions.As new magnetic flux emerges in active regions,changes of photospheric cur- rent helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected,including changes in sign caused by the injection of magnetic helicity of opposite sign.Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere, the injected magnetic helicity is probably not proportional to the current helicity den- sity remaining in the photosphere.The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions(such as,delta active regions).They represent different aspects of mag- netic chirality.A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere.  相似文献   

5.
This paper examines the way that transition region surface waves, generated in 2‐D numerical simulations of the nonmagnetic solar atmosphere when various synthetic photospheric drivers are applied, drive the granulation of the transition region/lower coronal region into convection cells. It is shown that these cells are generated by both synthetic point drivers and synthetic horizontally coherent p‐mode drivers. These cells cause the conversion of driven signals in vertical velocity into coronal signals predominantly in horizontal velocity, which if carried over to a case with a magnetic field included could cause mode conversion. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We analyze the process of formation of delta configuration in some well-known super active regions based on photospheric vector magnetogram observations. It is found that the magnetic field in the initial developing stage of some delta active regions shows a potential-like configuration in the solar atmosphere, the magnetic shear develops mainly near the magnetic neutral line with magnetic islands of opposite polarities, and the large-scale photospheric twisted field forming gradually later. Some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, supposed to be generated in the subatmosphere, is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and not entirely consistent with the relationship with magnetic shear in some delta active regions. (3) T  相似文献   

7.
Motivated by recent high-resolution observations of the solar surface, we investigate the problem of non-linear magnetoconvection in a three-dimensional compressible layer. We present results from a set of numerical simulations which model the situation in which there is a weak imposed magnetic field. This weak-field regime is characterized by vigorous granular convection and spatially intermittent magnetic field structures. When the imposed field is very weak, magnetic flux tends to accumulate at the edges of the convective cells, where it forms compact, almost 'point-like' structures which are reminiscent of those observed in the quiet Sun. If the imposed field is slightly stronger, there is a tendency for magnetic flux to become concentrated into 'ribbon-like' structures which are comparable to those observed in solar plages. The dependence of these simulations upon the strength of the imposed magnetic field is analysed in detail, and the concept of the fractal dimension is used to make a further, more quantitative comparison between these simulations and photospheric observations.  相似文献   

8.
Mackay  D.H.  Gaizauskas  V. 《Solar physics》2003,216(1-2):121-142
In this paper we seek the origin of the axial component of the magnetic field in filaments by adapting theory to observations. A previous paper (Mackay, Gaizauskas, and van Ballegooijen, 2000) showed that surface flows acting on potential magnetic fields for 27 days – the maximum time between the emergence of magnetic flux and the formation of large filaments between the resulting activity complexes – cannot explain the chirality or inverse polarity nature of the observed filaments. We show that the inclusion of initial helicity, for which there is observational evidence, in the flux transport model results in sufficiently strong dextral fields of inverse polarity to account for the existence and length of an observed filament within the allotted time. The simulations even produce a large length of dextral chirality when just small amounts of helicity are included in the initial configuration. The modeling suggests that the axial field component in filaments can result from a combination of surface (flux transport) and sub-surface (helicity) effects acting together. Here surface effects convert the large-scale helicity emerging in active regions into a smaller-scale magnetic-field component parallel to the polarity inversion line so as to form a magnetic configuration suitable for a filament.  相似文献   

9.
It is now accepted that the solar activity has direct impact on the Earth climate, but is also responsible for the geomagnetic storms. It is thus fundamental to understand the mechanisms responsible for this activity. We present here first some aspects of the solar activity at the different atmospheric layers of the sun: active region at photospheric levels, filaments (prominences) and flares at chromospheric level and CME's at coronal level. A quick sum‐up of the principal characteristics of each is given as well as the key questions still under investigation. In the second part, two principal parameters are presented to describe these features: helicity and topology. Finally, we sum‐up the observational challenges for new solar telescopes.  相似文献   

10.
We discuss the study of solar magnetic fields based on the photospheric vector magnetograms of solar active regions which were obtained at Huairou Solar Observing Station near Beijing in the period of 22nd and 23th solar cycles. The measurements of the chromospheric magnetic field and the spatial configuration of the field at the lower solar atmosphere inferred by the distribution of the solar photospheric and chromospheric magnetic field. After the analysis on the formation process of delta configuration in some super active regions based on the photospheric vector magnetogram observations, some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, proposed to be generated in the subatmosphere, is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and the relationship with magnetic shear in some delta active regions completely. (3) The proposition is that the large-scale delta active regions are formed from contribution by highly sheared non-potential magnetic flux bundles generated in the subatmosphere. We present some results of a study of the magnetic helicity. We also compare these results with other data sets obtained by magnetographs (or Stokes polarimeters) at different observatories, and analyze the basic chirality of the magnetic field in the solar atmosphere.  相似文献   

11.
We show that a steady mean-field dynamo in astrophysical rotators leads to an outflow of relative magnetic helicity and thus magnetic energy available for particle and wind acceleration in a corona. The connection between energy and magnetic helicity arises because mean-field generation is linked to an inverse cascade of magnetic helicity. To maintain a steady state in large magnetic Reynolds number rotators, there must then be an escape of relative magnetic helicity associated with the mean field, accompanied by an equal and opposite contribution from the fluctuating field. From the helicity flow, a lower limit on the magnetic energy deposited in the corona can be estimated. Steady coronal activity including the dissipation of magnetic energy, and formation of multi-scale helical structures therefore necessarily accompanies an internal dynamo. This highlights the importance of boundary conditions which allow this to occur for non-linear astrophysical dynamo simulations. Our theoretical estimate of the power delivered by a mean-field dynamo is consistent with that inferred from observations to be delivered to the solar corona, the Galactic corona, and Seyfert 1 AGN coronae.  相似文献   

12.
From late October to the beginning of November 2003, a series of intense solar eruptive events took place on the Sun. More than six active regions (ARs), including three large ARs (NOAA numbers AR 10484, AR 10486, and AR 10488), were involved in the activity. Among the six ARs, four of them bear obviously quasi-simultaneous emergence of magnetic flux. Based on the global Hα and SOHO/EIT EUV observations, we found that a very long filament channel went through the six ARs. This implies that there is a magnetic connection among these ARs. The idea of large-scale magnetic connectivity among the ARs is supported by the consistency of the same chirality in the three major ARs and in their associated magnetic clouds. Although the detailed mechanisms for the quasi-simultaneous flux emergence and the large-scale flux system formation need to be extensively investigated, the observations provide new clues in studying the global solar activity.  相似文献   

13.
Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceas-ing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilib-rium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares, eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on re- cent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory, we look into the physics behind those features investigated in a succession of previous works, and discuss the approaches they used.  相似文献   

14.
We consider the physical origin of the hemispheric pattern of filament chirality on the Sun. Our 3D simulations of the coronal field evolution over a period of six months, based on photospheric magnetic measurements, were previously shown to be highly successful at reproducing observed filament chiralities. In this paper we identify and describe the physical mechanisms responsible for this success. The key mechanisms are found to be (1) differential rotation of north – south polarity inversion lines, (2) the shape of bipolar active regions, and (3) evolution of skew over a period of many days. As on the real Sun, the hemispheric pattern in our simulations holds in a statistical sense. Exceptions arise naturally for filaments in certain locations relative to bipolar active regions or from interactions among a number of active regions.  相似文献   

15.
Transequatorial Filament Eruption and Its Link to a Coronal Mass Ejection   总被引:3,自引:0,他引:3  
We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament are seen to precede the simultaneous filament eruption and flare in the source active region, NOAA AR 9077, and the full halo-CME in the high corona. Evidence of reconfiguration of large-scale magnetic structures related to the event is illustrated by SOHO EIT and Yohkoh SXT observations, as well as, the reconstructed 3D magnetic lines of force based on the force-free assumption. We suggest that the AR filament in AR9077 was connected to the transequatorial filament. The large-scale magnetic composition related to the transequatorial filament and its sheared magnetic arcade appears to be an essential part of the CME parent magnetic structure. Estimations show that the filament-arcade system has enough magnetic helicity to account for the helicity carried by the related CMEs. In addition, rather global magnetic connectivity, covering almost all the visible range in longitude and a huge span in latitude on the Sun, is implied by the Nancay Radioheliograph (NRH) observations. The analysis of the Bastille Day event suggests that although the triggering of a global CME might take place in an AR, a much larger scale magnetic composition seems to be the source of the ejected magnetic flux, helicity and plasma. The Bastille Day event is the first described example in the literature, in which a transequatorial filament activity appears to play a key role in a global CME. Many tens of halo-CME are found to be associated with transequatorial filaments and their magnetic environment.  相似文献   

16.
Coronal Magnetic Flux Rope Equilibria and Magnetic Helicity   总被引:1,自引:0,他引:1  
1 INTRODUCTIONObservations show that the magnetic helicity of solar magnetic structures has a predominantsign in each hemisphere of the Sun, positive in the southern hemisphere and negative in thenorthern, regardless of the solar cycle (Rust, 1994). The magnetic helicity is strictly conservedin the frame of ideal MHD (WOltjer, 1958), and approximately conserved in the presence ofresistive dissipation and magnetic reconnection in a highly conductive plajsma (Taylor, 1974;Berger, 1984; H…  相似文献   

17.
The frequencies of solar p-modes are known to change over the solar cycle. There is also recent evidence that the relation between frequency shift of low-degree modes and magnetic flux or other activity indicators differs between the rising and falling phases of the solar cycle, leading to a hysteresis in such diagrams. We consider the influence of the changing large-scale surface distribution of the magnetic flux on low-degree ( l ≤3) p-mode frequencies. To that end, we use time-dependent models of the magnetic flux distribution and study the ensuing frequency shifts of modes with different order and degree as a function of time. The resulting curves are periodic functions (in simple cases just sine curves) shifted in time by different amounts for the different modes. We show how this may easily lead to hysteresis cycles comparable to those observed. Our models suggest that high-latitude fields are necessary to produce a significant difference in hysteresis between odd- and even-degree modes. Only magnetic field distributions within a small parameter range are consistent with the observations by Jiménez-Reyes et al. Observations of p-mode frequency shifts are therefore capable of providing an additional diagnostic of the magnetic field near the solar poles. The magnetic distribution that is consistent with the p-mode observations also appears reasonable compared with direct measurements of the magnetic field.  相似文献   

18.
Zhixing Mei  Jun Lin   《New Astronomy》2008,13(7):526-540
The flare-related, persistent and abrupt changes in the photospheric magnetic field have been reported by many authors during recent years. These bewildering observational results pose a challenge to the current flare theories in which the photospheric magnetic field usually remains unchanged in the eruption. In this paper, changes in the photosphere magnetic field during the solar eruption are investigated based on the catastrophe model. The results indicate that the projection effect is an important source that yields the change in the observed photospheric magnetic field in the line-of-sight. Furthermore one may observe the change in the normal component of magnetic field if the spectrum line used to measure the photospheric magnetic field does not exactly come from the photospheric surface. Our results also show that the significance of selecting the correct spectral lines to study the photospheric field becomes more apparent for the magnetic configurations with complex boundary condition (or background field).  相似文献   

19.
We summarize studies of helical properties of solar magnetic fields such as current helicity and twist of magnetic fields in solar active regions (ARs), that are observational tracers of the alpha-effect in the solar convective zone (SCZ). Information on their spatial distribution is obtained by analysis of systematic mag-netographic observations of active regions taken at Huairou Solar Observing Station of National Astronomical Observatories of Chinese Academy of Sciences. The main property is that the tracers of the alpha-effect are antisymmetric about the solar equator. Identifying longitudinal migration of active regions with their individual rotation rates and taking into account the internal differential rotation law within the SCZ known from helioseismology, we deduce the distribution of the effect over depth. We have found evidence that the alpha-effect changes its value and sign near the bottom of the SCZ, and this is in accord with the theoretical studies and numerical simulations. We discuss  相似文献   

20.
Daily magnetogram observations of the large-scale photospheric magnetic field have been made at the John M. Wilcox Solar Observatory at Stanford since May of 1976. These measurements provide a homogeneous record of the changing solar field through most of solar cycle 21.Using the photospheric data, the configuration of the coronal and heliospheric fields can be calculated using a Potential Field - Source Surface model. This provides a three - dimensional picture of the heliospheric field evolution during the solar cycle.In this note we announce the publication of UAG Report No. 94, an Atlas containing the complete set of synoptic charts of the measured photospheric magnetic field, the computed field at the source surface, and the coefficients of the multipole expansion of the coronal field. The general underlying structures of the solar and heliospheric fields, which determine the environment for solar-terrestrial relations and provide the context within which solar activity related events occur, can be approximated from these data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号