首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
产于层状镁铁质-超镁铁质岩体中的太和岩浆型Fe-Ti氧化物矿床是峨眉山大火成岩省内带几个超大型Fe-Ti氧化物矿床之一。太和岩体长超过3km,宽2km,厚约1.2km。根据矿物含量和结构等特征,整个岩体从下向上可划分为下部岩相带、中部岩相带、上部岩相带。下部岩相带主要以(橄榄)辉长岩和厚层不含磷灰石的块状Fe-Ti氧化物矿层组成。中部岩相带韵律旋回发育,(磷灰石)磁铁辉石岩主要位于旋回的底部,旋回上部为(磷灰石)辉长岩。上部岩相带主要是贫Fe-Ti氧化物的磷灰石辉长岩。太和中部岩相带磷灰石磁铁辉石岩含有5%~12%磷灰石、20%~35%Fe-Ti氧化物、50%~60%硅酸盐矿物,且硅酸盐矿物与磷灰石呈堆积结构。磷灰石磁铁辉石岩中磁铁矿显示高TiO2、FeO、MnO、MgO,且变化范围与趋势接近于攀枝花岩体。钛铁矿FeO分别与TiO2、MgO显示负相关,而FeO分别与Fe2O3、MnO显示正的相关,且TiO2、FeO、MnO、MgO含量变化较大,这些特征都暗示磁铁矿和钛铁矿是从富Fe-Ti-P岩浆中分离结晶。因此,可以推断太和磷灰石磁铁矿辉石岩形成于矿物重力分选和堆积。太和下部岩相带包裹在橄榄石中磁铁矿含有相对较高Cr2O3(0.07%~0.21%),而中部岩相带包裹在橄榄石中磁铁矿Cr2O3(0.00%~0.03%)显著降低,且这些磁铁矿Cr2O3含量变化与单斜辉石Cr含量和斜长石An牌号呈正相关。这些特征印证了形成中部岩相带的相对演化的富Fe-Ti-P母岩浆可能是源自中部岩浆房的混合岩浆。上部岩相带磁铁矿和中部岩相带顶部少量磁铁矿显示较低Ti+V可能是由于岩浆房中累积的岩浆热液对磁铁矿成分进行了改造。  相似文献   

2.
攀枝花岩体钛铁矿成分特征及其成因意义   总被引:2,自引:1,他引:1  
峨眉大火成岩省是全球最大的钒钛磁铁矿床聚集区,攀枝花岩体是其中的典型代表。根据岩性特点,攀枝花岩体主体可划分为上、中、下三个岩相带,其中中部岩相带和下部岩相带岩性旋回非常发育,每个旋回从下向上铁钛氧化物和暗色硅酸盐矿物逐渐减少,块状铁钛氧化物矿石或磁铁矿辉长岩都出现在每个旋回的底部和下部。然而,尽管钛铁矿固相线以下固溶体出溶远弱于磁铁矿,从而能更好地保留成因信息,但其成分变化的成因意义没有受到足够重视。本次研究发现作为主要金属氧化物之一的钛铁矿的成分不仅在不同岩性中有明显差异,同时,中、下部岩相带的各岩性旋回中钛铁矿成分也具有周期性变化。例如,块状矿石中钛铁矿具有最高的MgO和TiO2及最低的FeO、Fe2O3和MnO,而辉长岩中钛铁矿则具有相反的成分特征。同时,钛铁矿的MgO含量与磁铁矿的MgO含量及橄榄石的Fo牌号具有显著的正相关关系。这种规律性变化说明每个旋回可以代表一次比较明显的岩浆补充,每次新岩浆补充后,钛铁矿和磁铁矿及橄榄石都是结晶较早的矿物。与Skaergaard岩体相比,攀枝花岩体钛铁矿的MgO含量较高,表明攀枝花岩体分离结晶过程中铁钛氧化物结晶较早;与挪威Tellnes斜长岩套铁钛矿床中的钛铁矿相比,攀枝花岩体的钛铁矿不仅具有较高的MgO和FeO,还具有极高的TiO2和MnO,但Fe2O3却很低,说明地幔柱背景下形成的钛铁矿与斜长岩套中钛铁矿的成分有显著的区别。  相似文献   

3.
The Neoproterozoic Korab Kansi mafic-ultramafic intrusion is one of the largest (100 km2) intrusions in the Southern Eastern Desert of Egypt. The intrusion consists of Fe-Ti-bearing dunite layers, amphibole peridotites, pyroxenites, troctolites, olivine gabbros, gabbronorites, pyroxene gabbros and pyroxene-hornblende gabbros, and also hosts significant Fe-Ti deposits, mainly as titanomagnetite-ilmenite. These lithologies show rhythmic layers and intrusive contacts against the surrounding granites and ophiolitic-island arc assemblages. The wide ranges of olivine forsterite contents (Fo67.9-85.7), clinopyroxene Mg# (0.57–0.95), amphibole Mg# (0.47–0.88), and plagioclase compositions (An85.8-40.9) indicate the role of fractional crystallization in the evolution from ultramafic to mafic rock types. Clinopyroxene (Cpx) has high REE contents (2–30 times chondrite) with depleted LREE relative to HREE, like those crystallized from ferropicritic melts generated in an island-arc setting. Melts in equilibrium with Cpx also resemble ferropicrites crystallized from olivine-rich mantle melts. Cpx chemistry and its host rock compositions have affinities to tholeiitic and calc-alkaline magma types. Compositions of mafic-ultramafic rocks are depleted in HFSE (e.g. Nb, Ta, Zr, Th and U) relative to LILE (e.g. Li, Rb, Ba, Pb and Sr) due to the addition of subduction-related hydrous fluids (rich in LILE) to the mantle source, suggesting an island-arc setting. Fine-grained olivine gabbros may represent quenched melts approximating the primary magma compositions because they are typically similar in assemblage and chemistry as well as in whole-rock chemistry to ferropicrites. We suggest that the Korab Kansi intrusion crystallized at temperatures ranging from ~700 to 1100 °C from ferropicritic magma derived from melting of metasomatized mantle at <5 Kbar. These hydrous ferropicritic melts were generated in the deep mantle and evolved by fractional crystallization under high ƒO2 at relatively shallow depth. Fractionation formed calc-alkaline magmas during the maturation of an island arc system, reflecting the role of subduction-related fluids. The interaction of metasomatized lithosphere with upwelling asthenospheric melts produced the Fe and Ti-rich ferropicritic parental melts that are responsible for precipitating large quantities of Fe-Ti oxide layers in the Korab Kansi mafic-ultramafic intrusion. The other factors controlling these economic Fe-Ti deposits beside parental melts are high oxygen fugacity, water content and increasing degrees of mantle partial melting. The generation of Ti-rich melts and formation of Fe-Ti deposits in few layered intrusions in Egypt possibly reflect the Neoproterozoic mantle heterogeneity in the Nubian Shield. We suggest that Cryogenian-Tonian mafic intrusions in SE Egypt can be subdivided into Alaskan-type intrusions that are enriched in PGEs whereas Korab Kansi-type layered intrusions are enriched in Fe-Ti-V deposits.  相似文献   

4.
The Freetown layered complex, located on the western coast of Sierra Leone, is a rift-related tholeiitic intrusion associated with the Jurassic (~193 Ma) opening of the Atlantic Ocean at midlatitude. The complex is ~ 60 km long, 14 km wide, and 7 km thick along a major E-W traverse extending from Waterloo to York. Gravity data and dips of laminations in the layered rocks suggest that the intrusive complex is lopolithic in shape, with some parts presently being submarine.

The exposed rocks consist of a rhythmically layered sequence of troctolite, olivine gabbro, gabbronorite, gabbro, and anorthosite. The complex has been divided into four zones delineated by (1) topographic expression, whereby the base of each zone forms a scarp, and the top forms dip slopes and strike valleys; and (2) cyclical repetition of rock types (Wells, 1962). A new detailed stratigraphic section along the Waterloo-York traverse is presented, in which Zone 3 is subdivided into an upper 2000-m-thick anorthosite-gabbro interval and a lower 1700-m-thick rhythmically layered subzone.

Inverted pigeonite first became a cumulus phase at the bottom of Zone 2, before disappearing near the middle of Zone 3 at the anorthosite-gabbro interval, only to reappear at the top of Zone 4 with cumulus titanomagnetite. Mineral compositions in the complex range from An72 to An72 plagioclase, Fo56 to Fo75 olivine, En38.5 to En44.8 augite, and En54.9 to En74.6 orthopyroxene. The compositions of plagioclase and olivine in Zone 2 vary irregularly, although the overall trend is toward reverse differentiation. By contrast, Zone 4 is characterized by a rapid decrease in Fo and An from the base of the zone upward, followed by an increase. Cryptic variation also is shown by the Ni content of olivine and Cr content of clinopyroxene.

The overall pattern of cryptic variation in the complex suggests continual leakage of fresh magma into the chamber, followed by oscillatory spikes in the rhythmically layered subzone of Zone 3, where major influxes of new magma occurred. The changes in mineral compositions and modal abundances as a function of stratigraphic height are the result of magma recharge, followed by mixing of new and evolved resident magmas in the Freetown magma chamber. This probably resulted in the expansion of the chamber and crystallization in situ without any discharge. The inferred crystallization sequence for each zone is different, reflecting different magma compositions and changes that occur in the magmas during crystallization. The alternative hypotheses that the Freetown Complex formed from a single parental magma, or that mineral layering was the result of the crystallization sequence Fe-Ti oxides→olivine→pyroxene→plagioclase, are not supported by the evidence.  相似文献   

5.
斜长岩体中Fe-Ti-P矿床的特征与成因   总被引:3,自引:0,他引:3       下载免费PDF全文
岩体型斜长岩为由90%以上斜长石组成的岩浆岩,具变压结晶的特点,仅形成于元古宙(2.1~0.9Ga),常赋存有Fe-Ti-P矿床。Fe-Ti-P矿体既呈整合层状也呈透镜状和席状等不规则形式产出;矿石类型有块状和侵染状,前者矿石矿物含量>70%,后者矿石矿物含量为20%~70%;矿物组成上,不同矿床稍有差别:部分矿床的Fe-Ti氧化物以钛磁铁矿为主、钛铁矿次之,而其他矿床则以赤钛铁矿为主、磁铁矿次之。一些矿床磷灰石含量较高,出现仅由Fe-Ti氧化物和磷灰石组成的铁钛磷灰岩。研究表明,Fe-Ti-P矿床由富Fe、Ti的岩浆演化形成,其母岩浆是在深部岩浆房中大量结晶斜长石后的残余岩浆。部分学者认为不同矿石经正常的结晶分异作用并堆晶形成,但该机制很难解释呈不规则状产出的矿石;其他学者则认为不混熔作用对矿石的富集(尤其是脉状、席状的铁钛磷灰岩)有重要作用,但该机制缺乏岩相学和地球化学方面的证据。河北大庙Fe-Ti-P矿体呈透镜状、席状等不连续地分布于斜长岩中,矿体不发育明显岩浆分层,但仍出现不同矿石的相带。依据详细的岩相学、矿体中矿物含量和成分的变化规律以及全岩地球化学特征,我们判断大庙矿床中不同矿石为堆晶矿物和晶隙流体的混合产物,它们由铁闪长质岩浆经结晶分异和堆晶作用形成,与不混熔作用关系不大。矿体不规则状产出的特点可能与岩浆动力分异作用有关,并伴随有小范围的亚固相迁移。  相似文献   

6.
The Hongge magmatic Fe-Ti-V oxide deposit in the Panxi region, SW China, is hosted in a layered mafic–ultramafic intrusion. This 2.7-km-thick, lopolith-like intrusion consists of the lower, middle, and upper zones, which are composed of olivine clinopyroxenite, clinopyroxenite, and gabbro, respectively. Abundant Fe-Ti oxide layers mainly occur in the middle zone and the lower part of the upper zone. Fe-Ti oxides include Cr-rich and Cr-poor titanomagnetite and granular ilmenite. Cr-rich titanomagnetite is commonly disseminated in the olivine clinopyroxenite of the lower parts of the lower and middle zones and contains 1.89 to 14.9 wt% Cr2O3 and 3.20 to 16.2 wt% TiO2, whereas Cr-poor titanomagnetite typically occurs as net-textured and massive ores in the upper middle and upper zones and contains much lower Cr2O3 (<0.4 wt%) but more variable TiO2 (0.11 to 18.2 wt%). Disseminated Cr-rich titanomagnetite in the ultramafic rocks is commonly enclosed in either olivine or clinopyroxene, whereas Cr-poor titanomangetite of the net-textured and massive ores is mainly interstitial to clinopyroxene and plagioclase. The lithology of the Hongge intrusion is consistent with multiple injections of magmas, the lower zone being derived from a single pulse of less differentiated ferrobasaltic magma and the middle and upper zones from multiple pulses of more differentiated magmas. Cr-rich titanomagnetite in the disseminated ores of the lower and middle zones is interpreted to represent an early crystallization phase whereas clusters of Cr-poor titanomagnetite, granular ilmenite, and apatite in the net-textured ores of the middle and upper zones are thought to have formed from an Fe-Ti-(P)-rich melt segregated from a differentiated ferrobasaltic magma as a result of liquid immiscibility. The dense Fe-Ti-(P)-rich melt percolated downward through the underlying silicate crystal mush to form net-textured and massive Fe-Ti oxide ores, whereas the coexisting Si-rich melt formed the overlying plagioclase-rich rocks in the intrusion.  相似文献   

7.
罗照华 《地学前缘》2020,27(5):61-69
火成岩中可以包含多种晶体群这一发现具有重要意义,使得成因矿物学重新成为揭示岩浆系统演化的基本指导思想。但是,这种重要性在许多文献中都没有得到反映,其典型实例就是镁铁质层状侵入体中堆晶岩的成因。争论在于堆晶矿物是循环晶还是母岩浆的液相线相。因此,本文致力于探讨四川攀西地区镁铁质层状侵入体中堆晶岩的形成过程,重申成因矿物学的重要意义。显微镜观察表明,堆晶单斜辉石富含Fe-Ti氧化物出溶叶片(含叶片辉石),表明其形成环境明显不同于与斜长石呈共结关系的单斜辉石(无叶片辉石);无叶片辉石和斜长石中的橄榄石包裹体呈浑圆状,表明了橄榄石与结晶环境间的热力学不平衡。橄榄石与熔体间Fe-Mg分配关系分析表明,根据母岩浆成分推测的橄榄石Fo值远低于岩体中观测橄榄石化学成分变化范围(Fo61-Fo81)的高限,表明至少部分橄榄石不是寄主侵入体的液相线相。橄榄石的Mg#值(100×Mg/(Mg+Fe))与微量元素(特别是Ni)的相关关系表明存在多种橄榄石晶体群,它们形成于不同的热力学环境中。晶体沉降过程分析表明,寄主岩浆析出的晶体几乎不可能发生快速重力沉降来形成堆晶岩。所有这些证据都表明,形成堆晶岩的矿物主要来自岩浆系统深部不同的岩浆房中,是被岩浆携带输运到终端岩浆房的循环晶。  相似文献   

8.
Cliff S.J. Shaw   《Lithos》1997,40(2-4):243-259
The Coldwell alkaline complex is a large (> 350 km2) gabbro and syenite intrusion on the north shore of Lake Superior. It was emplaced at 1108 Ma during early magmatic activity associated with the formation of the Mid-Continent Rift of North America. The eastern gabbro forms a partial ring dyke on the outer margin of the complex and consists of at least three discrete intrusions. The largest of these is the layered gabbro that comprises a 300 m thick fine- to medium-grained basal unit overlain by up to 1100 m of variably massive to layered gabbroic cumulates which vary from olivine gabbro to anorthosite. Several xenoliths of Archaean metamorphic rocks that range in size from 10's to 100's of meters are present in the central part of the intrusion. Within discrete horizons in the layered gabbro are many centimeter- to meter-scale, gabbroic xenoliths. The main cumulus minerals, in order of crystallization, are plagioclase, olivine and clinopyroxene ± Fe-Ti oxides. Biotite and Fe-Ti-oxide are the dominant intercumulus phases. Orthopyroxene occurs not as a cumulus phase but as peritectic overgrowths on cumulus olivine. A detailed petrographic and mineral chemical study of samples from two stratigraphically controlled traverses through the layered gabbro indicates that the stratigraphy cannot be correlated along the 33 km strike of the ring dyke. Mineral compositions show both normal and reversed fractionation trends. These patterns are interpreted to record at least three separate intrusions of magma into restricted dilatant zones within the ring dyke possibly associated with ongoing caldera collapse. Calculations of parental melt composition using mineral — melt equilibria show that even the most primitive gabbros crystallized from an evolved magma with mg# of 0.42-0.49. The presence of orthopyroxene overgrowths on cumulus olivine suggests rising silica activity in the melt during crystallization and implies a subalkaline parentage for the layered gabbro.  相似文献   

9.
The Mazaertag layered intrusion is located in the northwestern part of the Tarim large igneous province where several early Permian layered mafic-ultramafic intrusions host important Fe-Ti oxide deposits. The intrusion covers an area of ~0.13 km~2 and has a vertical stratigraphic thickness of at least300 m. It consists chiefly of olivine clinopyroxenite, and is cut through by the nearby mafic-ultramafic dykes. In this paper, we report new mineral chemistry data and whole-rock chemical and isotopic compositions for the Mazaertag intrusion along with whole-rock isotopic compositions for the nearby mafic dykes. The averaged compositions of cumulus olivine, clinopyroxene and intercumulus plagioclase within individual samples range from Fo_(71-73),Mg~# = 76 to 79 and An_(65-75) but they do not define sustained reversals. The observed mineral compositions are consistent with the differentiation of a single batch of magma in a closed system. Rocks of the Mazaertag intrusion are characterized by enrichment in light REE relative to heavy REE, positive Nb and Ta anomalies and a small range of age-corrected ε_(Nd)(t)(-0.1 to +0.9) and initial ~(87)Sr/~(86)Sr values(0.7044 to 0.7068). The slightly lower ε_(Nd)(t), initial ~(206)Pb/~(204)Pb and higher initial ~(87)Sr/~(86)Sr values of the intrusion compared to those of the least contaminated dykes[ε_(Nd)(t) =+2.8 to +3.4;(~(206)Pb/~(204)Pb)_i = 18.516-18.521;(~(87)Sr/~(86)Sr)_i = 0.7038-0.7041] imply that the Mazaertag magma was subjected to small to modest degrees of contamination by the upper crust. The Sr-Nd isotopic compositions of the least contaminated dykes are consistent with derivation from a FOZO-like mantle source. The parental magma of the Mazaertag intrusion, estimated from clinopyroxene compositions using mineral-melt partition coefficients, has trace element compositions similar to some of the most primitive mafic dykes in the same area. This suggests that the Mazaertag intrusion and mafic dykes shared a similar mantle source. Therefore, the parental magma of the Mazaertag intrusion was interpreted to have originated from a mantle plume. Based on the Cr_2 O_3 contents in titanomagnetite and less-evolved characteristics of the Mazaertag intrusion compared to the Wajilitag Fe-Ti oxide deposit in Bachu, it is speculated that there might not be a potential to find economic Fe-Ti oxide mineralization in the intrusion.  相似文献   

10.
We report data on the geology, mineralogy, petrography, and chemistry of 733 Ma gabbro-peridotite sills from the Late Riphean Dovyren plutonic complex. Thick sills were differentiated into plagiolherzolite to olivine gabbronorite compositions by fractional crystallization of the K-Na series high-Mg low-alkali low-Ti picritic parental magma. The magma already contained up to 5% of intratelluric olivine crystals when entering the reservoir. The sills emplaced before the whole complex, judging by the presence of their fragments as plagiolherzolite xenoliths in the gabbro zone of the Yoko-Dovyren layered pluton. The gabbro-peridotite sills are products of high-temperature within-plate magmatism. High heat flow during the generation of the magma, evident from its high-Mg composition, was likely maintained by the activity of a mantle plume associated with the Neoproterozoic Franklin large igneous province.  相似文献   

11.
The Wajilitag igneous complex is part of the early Permian Tarim large igneous province in NW China, and is composed of a layered mafic–ultramafic intrusion and associated syenitic plutons. In order to better constrain its origin, and the conditions of associated Fe–Ti oxide mineralization, we carried out an integrated study of mineralogical, geochemical and Sr–Nd–Hf isotopic analyses on selected samples. The Wajilitag igneous rocks have an OIB-like compositional affinity, similar to the coeval mafic dykes in the Bachu region. The layered intrusion consists of olivine clinopyroxenite, coarse-grained clinopyroxenite, fine-grained clinopyroxenite and gabbro from the base upwards. Fe–Ti oxide ores are mainly hosted in fine-grained clinopyroxenite. Forsterite contents in olivines from the olivine clinopyroxenite range from 71 to 76 mol%, indicating crystallization from an evolved magma. Reconstructed composition of the parental magma of the layered intrusion is Fe–Ti-rich, similar to that of the Bachu mafic dykes. Syenite and quartz syenite plutons have εNd(t) values ranging from +1.4 to +2.9, identical to that for the layered intrusion. They may have formed by differentiation of underplated magmas at depth and subsequent fractional crystallization. Magnetites enclosed in olivines and clinopyroxenes have Cr2O3 contents higher than those interstitial to silicates in the layered intrusion. This suggests that the Cr-rich magnetite is an early crystallized phase, whereas interstitial magnetite may have accumulated from evolved Fe–Ti-rich melts that percolated through a crystal mush. Low V content in Cr-poor magnetite (<6600 ppm) is consistent with an estimate of oxygen fugacity of FMQ + 1.1 to FMQ + 3.5. We propose that accumulation of Fe–Ti oxides during the late stage of magmatic differentiation may have followed crystallization of Fe–Ti-melt under high fO2 and a volatile-rich condition.  相似文献   

12.
《International Geology Review》2012,54(18):2249-2275
ABSTRACT

The Piqiang intrusion is one of the two important ma?c-ultrama?c layered intrusions that host giant Fe-Ti-V oxide deposits in the Permian Tarim Large Igneous Province, NW China. The intrusion mainly consists of gabbro, anorthosite and minor plagioclase-bearing clinopyroxenite in the marginal zone. Disseminated to massive Fe-Ti oxide ores occur as layers and lenses within the gabbro. SHRIMP zircon U-Pb results from both a gabbro from the Piqiang intrusion and a granite from the surrounding granitic dyke yield ages of ~270 Ma. Geochemically, the Piqiang silicate rocks are enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE), moderately depleted in high ?eld strength elements (HFSE), and have a limited range of Sr-Nd-Hf isotopic compositions. The similar mineralogy, mineral compositions, and trace element characteristics of the layered units suggest that all the rocks are co-magmatic. The parental magma is Fe-Ti-rich and is akin to the most primitive diabasic dyke which is associated with the Piqiang intrusion. Partial melting of the Tarim mantle plume with involvement of a subduction-metasomatized lithospheric mantle source best explains the geochemistry and petrogenesis of the parental magmas of the Piqiang intrusion. We propose that the lithospheric mantle source may have been metasomatized by subduction-related materials and the metasomatic enrichment of this source region which may be correlated with oceanic sediment recycling during southward subduction of the South Tianshan oceanic slab during the Early-Middle Paleozoic. Crystal settling and mechanical sorting is the predominant process responsible for the formation of the massive Fe-Ti oxide ores in the Piqiang intrusion. Central to ore formation is a combination of the protracted differentiation history of a Fe-Ti-enriched parental magma and the later addition of external H2O from the country rocks to the slowly cooling magma chamber.  相似文献   

13.
Rare dunite and 2-pyroxene gabbro xenoliths occur in banded trachyte at Puu Waawaa on Hualalai Volcano, Hawaii. Mineral compositions suggest that these xenoliths formed as cumulates of tholeiitic basalt at shallow depth in a subcaldera magma reservoir. Subsequently, the minerals in the xenoliths underwent subsolidus reequilibration that particularly affected chromite compositions by decreasing their Mg numbers. In addition, olivine lost CaO and plagioclase lost MgO and Fe2O3 during subsolidus reequilibration. The xenoliths also reacted with the host trachyte to form secondary mica, amphibole, and orthopyroxene, and to further modify the compositions of some olivine, clinopyroxene, and spinel grains. The reaction products indicate that the host trachyte melt was hydrous. Clinopyroxene in one dunite sample and olivine in most dunite samples have undergone partial melting, apparently in response to addition of water to the xenolith. These xenoliths do not contain CO2 fluid inclusions, so common in xenoliths from other localities on Hualalai, which suggests that CO2 was introduced from alkalic basalt magma between the time CO2-inclusion-free xenoliths erupted at 106±6 ka and the time CO2-inclusion-rich xenoliths erupted within the last 15 ka.  相似文献   

14.
罗雕  侯通  潘荣昊 《岩石学报》2020,36(7):2116-2126
本文报道了攀枝花钒钛磁铁矿含矿岩体边缘岩相带中的苦橄玢岩和岩体中淡色辉长岩的锆石微量元素特征。结果表明二者所含锆石都具有明显的Ce正异常和Eu负异常,以及轻稀土元素亏损和重稀土元素富集的特征,其Th/U比值为0.35~3.23,都属于典型的岩浆锆石。本次研究利用最新实验标定的锆石氧逸度计对苦橄玢岩和淡色辉长岩的氧逸度进行了估算。估算结果表明苦橄玢岩和淡色辉长岩均具较高的氧逸度,分别为QFM+0.3~QFM+2.5和QFM+0.7~QFM+3(QFM为石英-铁橄榄石-磁铁矿缓冲剂)。苦橄玢岩作为来自深部岩浆房侵入到攀枝花主岩体的富橄榄石"晶粥体",其高氧逸度的特征反映出攀枝花岩体的原生岩浆以及地幔源区是相对氧化的,而导致这一结果的原因很可能与古老俯冲事件导致的地幔交代作用有关。通过地幔柱-岩石圈相互作用,在较高氧逸度下发生部分熔融形成了铁质苦橄岩及其堆晶作用产物苦橄玢岩。此外,淡色辉长岩的氧逸度也显示出较高的特征,这说明这种氧化的特征很可能是贯穿了整个成岩过程的,对钒钛磁铁矿成矿,特别是导致铁钛氧化物早期结晶起到了不可忽视的作用。  相似文献   

15.
攀枝花岩体下部和中部岩相带各旋回中磁铁辉长岩和辉长岩的岩相结构特征表明,钛铁氧化物和斜长石、橄榄石的结晶发生在相近的温度区间内,这为我们利用斜长石和橄榄石的成分探讨磁铁矿形成时温度、氧逸度和岩浆成分的变化提供了可能.电子探针分析结果表明,下部和中部岩相带中斜长石An牌号自下向上有规律地逐渐降低,而在每一个旋回内部,橄榄石的F(o)值总是由磁铁辉长岩向辉长岩表现出强烈降低的趋势.这些特征说明攀枝花岩体经历了多次富铁钛的岩浆的补充.斜长石An牌号小幅度的规律性降低说明岩浆氧逸度和Fe3/Fe2+比值变化对斜长石成分影响很小,因此,我们可以根据斜长石成分估计钛铁氧化物结晶过程中温度变化.然而,同一旋回中橄榄石Fo值变化较大说明橄榄石成分在很大程度上取决于岩浆中的Fe3+/Fe2+和Fe2 +/Mg含量,因此,可以根据橄榄石成分分析磁铁辉长岩与辉长岩形成过程中氧逸度和Fe3+/Fe2比值的相对变化.计算得到下部和中部岩相带中斜长石的结晶温度介于1079~1121℃之间,认为钛铁氧化物的结晶也大致发生在此温度区间;根据同一旋回中磁铁辉长岩与邻近辉长岩中橄榄石Fo值的差异,发现每次新补充的岩浆分离结晶过程中氧逸度总是逐渐降低,这与前人对封闭体系岩浆结晶分异过程中氧逸度变化规律的认识一致.  相似文献   

16.
Fine grained gabbroic chilled margins and crosscutting dikes are associated in space and time with three ca. 1400 Ma anorthositic plutons in the Flowers River area, southeastern Nain igneous complex. Both the anorthositic and gabbroic rocks have distinctive compositions compared to rocks of similar age and lithology elsewhere in northcentral Labrador. The anorthositic rocks contain olivine and augite rather than orthopyroxene, and Fe-Ti oxides, apatite and orthoclase are unusually abundant. Cumulus plagioclase is abnormally enriched in incompatible elements. Most of the gabbroic rocks are uniform in composition, although the effects of contamination and fractionation are evident in some places. They define a transitional to alkalic ferrogabbro magma that is strongly enriched in K, P and incompatible trace elements. The chemical characteristics of the ferrogabbro magma imply derivation from enriched mantle or involvement of a significant crustal component. A parent-daughter relationship between the ferrogabbro magma and anorthositic rocks is suggested by their compositional similarities and the fact that the gabbroic chilled margins and plagioclase-rich pluton interiors appear to be completely gradational in composition and texture.Geological Survey of Canada Contribution No. 54686.  相似文献   

17.
Mikbi intrusion(MI) is a part of the Neoproterozoic Nubian Shield located along the NE-SW trending major fracture zones prevailing southern Eastern Desert of Egypt. In this study, we present for the first time detailed mineralogical and bulk-rock geochemical data to infer some constraints on the parental magma genesis and to understand the tectonic processes contributed to MI formation. Lithologically, it is composed of fresh peridotite, clinopyroxenite, hornblendite, anorthosite, gabbronorite, pyroxene amphibole gabbro, amphibole gabbro and diorite. All rocks have low Th/La ratios(mostly <0.2) and lack positive Zr and Th anomalies excluding significant crustal contamination. They show very low concentrations of Nb, Ta, Zr and Hf together with sub-chondritic ratios of Nb/Ta(2-15) and Zr/Hf(19-35),suggesting that their mantle source was depleted by earlier melting extraction event. The oxygen fugacity(logfO_2) estimated from diorite biotite is around the nickel-nickel oxide buffer(NNO) indicating crystallization from a relatively oxidized magma. Amphiboles in the studied mafic-ultramafic rocks indicate relative oxygen fugacity(i.e. ΔNNO; nickel-nickel oxide) of 0.28-3 and were in equilibrium mostly with 3.77-8.24 wt.% H_2 Omelt(i.e. water content in the melt), consistent with the typical values of subduction-related magmas. Moreover, pressure estimates(0.53-6.79 kbar) indicate polybaric crystallization and suggest that the magma chamber(s) was located at relatively shallow crustal levels. The enrichment in LILE(e.g., Cs, Ba, K and Sr) and the depletion in HFSE(e.g., Th and Nb) relative to primitive mantle are consistent with island arc signature. The olivine, pyroxene and amphibole compositions also reflect arc affinity. These inferences suggest that their primary magma was derived from partial melting of a mantle source that formerly metasomatized in a subduction zone setting. Clinopyroxene and bulkrock data are consistent with orogenic tholeiitic affinity. Consequently, the mineral and bulk-rock chemistry strongly indicate crystallization from hydrous tholeiitic magma. Moreover, their trace element patterns are subparallel indicating that the various rock types possibly result from differentiation of the same primary magma. These petrological, mineralogical and geochemical characteristics show that the MI is a typical Alaskan-type complex.  相似文献   

18.
The rocks of Macquarie Island are part of the mid-Tertiary oceanic lithosphere from a major ocean basin. They were probably created at the Indian—Australian—Pacific spreading ridge.The basalts and dolerites are usually porphyritic, carry plagioclase (An87-80) as a dominant phenocryst phase with less abundant olivine (Fo89-85), chrome spinel and rare clinopyroxene (Ca45Mg50Fe5|Ca38Mg50Fe12) phenocrysts. Normatively the rocks range from ne- to Q-bearing, with most falling near the critical plane of normative silica undersaturation. Dykes tend to be more Fe-rich than lavas, and to include the more di-poor rocks. The rocks also range compositionally from typical ocean floor basalts through to varieties relatively enriched in some incompatible trace elements, particularly Nb (20–60 ppm), that otherwise retain ocean-floor basalt phenocryst assemblages, major-element compositions and Ti, Ni, Cr and Zr contents. This enrichment, also characteristic of ocean-floor basalts from the “abnormal” ridge segments near 45° N and 36° N (FAMOUS area) on the Mid-Atlantic Ridge, causes the rocks to plot away from the ocean-floor basalt fields on popular trace-element diagrams intended to identify tectonic affinities of basalts.The upper parts of the Macquarie Island oceanic lithosphere section can be thought of as a vertical slice through a magma column, differentiating at shallow levels. The layered and massive gabbros that underlie the basalts and dolerites are composed essentially of olivine, plagioclase and clinopyroxene. Olivine and plagioclase are cumulate phases in the layered rocks, clinopyroxene is postcumulus. Mineral compositions of the gabbros, particularly those of the layered rocks, are closely resembled by phenocryst compositions in the basalts and dolerites. Plagiogranites and trondheimites are unknown from the island, and norites very rare. Thus, Macquarie Island basalts, dolerites and gabbros form a distinctive igneous association that ought to make Macquarie Island-type ophiolite complexes from major ocean basins an easily recognized ophiolite type in continental orogenic terranes, even when dismembered.  相似文献   

19.
The Bondla mafic-ultramafic complex is a layered intrusion that consists predominantly of peridotites and gabbronorites. A chromitite-pyroxenite-troctolite horizon serves as a marker to subdivide the intrusion into two zones. The Lower Zone displays gravity stratified layers of chromite that alternate with those of olivine, which up-section are followed by olivine+pyroxene-chromite cumulates. The Upper Zone comprises gabbroic rocks that exhibit uniform layering. On the basis of modal and cryptic variation exhibited by the minerals this zone can be subdivided in to several lithohorizons starting from the troctolites at the base to gabbronorites and leucogabbros at the top. The junction between the two zones is marked by the distinct reversal in cryptic variation exhibited by the chromites and pyroxenes. The peridotite chromites contain higher Al2O3 and lower Cr2O3 than those from the chromitite above. Similarly clinopyroxenes from pyroxenite and troctolites are more magnesian that those from the peridotites stratigraphically below them. The complex in general is characterized by a gabbroic mineral assemblage in which both Ca-rich and Capoor pyroxenes coexist and displays a Fe-enrichment trend providing evidence of evolution from a contaminated tholeiitic magma. The rocks are characterized by low-TiO2; Ni, Cr and V, show negative correlation with Zr whereas the large ion lithophile elements (LILE) are positively correlated and the Nb/La ratio varies from 0.4–0.6. These characteristics are consistent with a low-TiO2 sub-alkaline tholeiitic magma that may have been modified by fractional crystallization and successive injections of more primitive melts in the magma chamber. The complex evolved in a periodically replenished magma chamber that consisted of two separate but interconnected sub-chambers.  相似文献   

20.
Mafic rocks at Lake Nipigon provide a record of rift-related continental basaltic magmatism during the Keweenawan event at 1109 Ma. The mafic rocks consist of an early, volumetrically minor suite of picritic intrusions varying in composition from olivine gabbro to peridotite and a later suite of tholeiitic diabase dikes, sheets and sills. The diabase occurs primarily as two 150 to 200 m thick sills with a textural stratigraphy indicating that the sills represent single cooling units. Compositional variation in the sills indicates that they crystallized from several magma pulses.The diabases are similar in chemistry to olivine tholeiite flood basalts of the adjacent Keweenawan rift, particularly with respect to low TiO2, K2O and P2O5. The picrites have higher TiO2, K2O and P2O5 than the diabases and are similar to, but more primitive than, high Fe-Ti basalts which erupted early in the Keweenawan volcanic sequence.All of the rocks crystallized from fractionated liquids. The picrites are cumulate rocks derived at shallow crustal depths from a magma controlled predominantly by olivine fractionation. Picritic chills are in equilibrium with olivine phenocrysts of composition Fo80 and are interpreted to represent the least evolved liquids observed. The parental magma of the picrites was probably Fe rich relative to the parental magma of the diabase. The diabase sills crystallized from an evolved basaltic liquid controlled by cotectic crystallization of plagioclase and lesser olivine and pyroxene.The emplacement of dense olivine phyric picritic magmas early in the sequence, followed by later voluminous compositionally evolved magmas of lower density suggests the development of a crustal density filter effect as the igneous event reached a peak. Delamination of the crust-mantle interface may have resulted in the transition from olivine controlled primitive magma to fractionated magma through the development of crustal underplating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号