首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-dimensional method of analysis is presented for the seismic response of structures constructed on pile foundations. An analysis is formulated in the time domain and the effects of material nonlinearity of soil on the seismic response are investigated. A subsystem model consisting of a structure subsystem and a pile-foundation subsystem is used. Seismic response of the system is found using a successive-coupling incremental solution scheme. Both subsystems are assumed to be coupled at each time step. Material nonlinearity is accounted for by incorporating an advanced plasticity-based soil model, HiSS, in the finite element formulation. Both single piles and pile groups are considered and the effects of kinematic and inertial interaction on seismic response are investigated while considering harmonic and transient excitations. It is seen that nonlinearity significantly affects seismic response of pile foundations as well as that of structures. Effects of nonlinearity on response are dependent on the frequency of excitation with nonlinearity causing an increase in response at low frequencies of excitation.  相似文献   

2.
桩基础抗震性能的简易评价方法   总被引:1,自引:0,他引:1  
桩基础的抗震性能可从承载力和变形两方面来评价.承载力可考虑地震时作用于结构上的荷载组合,多采用拟静力法进行分析,不同因素变异的影响可用概率分析或可靠度方法予以考虑.变形分析多为按承载力设计之后的校核,其中地震力和土体参数以及地质条件等因素影响可分别加以评估.本文着重阐明基于一维波动方程和概率分析的桩基抗震性能实用分析方法,并以桥梁桩基础为例进行讨论,其中考虑的关键因素为设计地震加速度、测站记录、基桩尺寸及其配筋率.研究表明,当土层液化可忽略时最大弯矩会发生在桩顶,故增加桩顶延性可有效提升桩基础的抗震性能.  相似文献   

3.
The effects of soil‐structure interaction on the seismic response of multi‐span bridges are investigated by means of a modelling strategy based on the domain decomposition technique. First, the analysis methodology is presented: kinematic interaction analysis is performed in the frequency domain by means of a procedure accounting for radiation damping, soil–pile and pile‐to‐pile interaction; the seismic response of the superstructure is evaluated in the time domain by means of user‐friendly finite element programs introducing suitable lumped parameter models take into account the frequency‐dependent impedances of the soil–foundation system. Second, a real multi‐span railway bridge longitudinally restrained at one abutment is analyzed. The input motion is represented by two sets of real accelerograms: one consistent with the Italian seismic code and the other constituted by five records characterized by different frequency contents. The seismic response of the compliant‐base model is compared with that obtained from a fixed‐base model. Pile stress resultants due to kinematic and inertial interactions are also evaluated. The application demonstrates the importance of performing a comprehensive analysis of the soil–foundation–structure system in the design process, in order to capture the effects of soil‐structure interaction in each structural element that may be beneficial or detrimental. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A continuum model for the interaction analysis of a fully coupled soil–pile–structure system under seismic excitation is presented in this paper. Only horizontal shaking induced by harmonic SH waves is considered so that the soil–pile–structure system is under anti‐plane deformation. The soil mass, pile and superstructure were all considered as elastic with hysteretic damping, while geometrically both pile and structures were simplified as a beam model. Buildings of various heights in Hong Kong designed to resist wind load were analysed using the present model. It was discovered that the acceleration of the piled‐structures at ground level can, in general, be larger than that of a free‐field shaking of the soil site, depending on the excitation frequency. For typical piled‐structures in Hong Kong, the amplification factor of shaking at the ground level does not show simple trends with the number of storeys of the superstructure, the thickness and the stiffness of soil, and the stiffness of the superstructure if number of storeys is fixed. The effect of pile stiffness on the amplification factor of shaking is, however, insignificant. Thus, simply increasing the pile size or the superstructure stiffness does not necessarily improve the seismic resistance of the soil–pile–structure system; on the contrary, it may lead to excessive amplification of shaking for the whole system. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
当前桩基础的抗震设计仅采取构造措施来保证其抗震性能,有可能会过高或过低地估计桩基础的抗震性能。针对某桥梁桩基础的抗震设计,建立全桥的三维有限元模型,计算在桩-土-结构共同工作情况下桩基础的地震响应,通过输入不同地震波来进行对比分析,并对结果进行复核,得出:(1)桩身内力响应与所输入地震动的频谱特性有关,桩身沿横桥方向的内力最大;(2)对于该场地的桥梁桩基础,桩-土-结构共同工作的有限元分析结果与m法结果差别不大;(3)当承台埋深为0时,桩身内力基本都偏大,要对承台侧土体做相应的加固处理。  相似文献   

6.
汶川地震震害调查表明使用预应力锚索的桩板墙变形协调性好,抗震性能高,但目前在预应力锚索桩板墙的抗震设计理论研究方面仍比较落后。鉴于此,利用FLAC3D对预应力锚索桩板墙的地震响应特征进行研究,包括桩身土压力分布、桩身变位及锚索内锚段应力的动力响应特性等,并通过改变地震动参数进行多种工况的分析,系统研究地震动参数对桩-土-锚动力耦合相互作用规律的影响。研究成果可加强对预应力锚索桩板墙抗震表现的认识,也为深化抗震机理研究提供可靠的依据。  相似文献   

7.
This paper presents the development, implementation, and application of a probabilistic framework for the pseudo-static analysis of pile foundations in liquefied and lateral spreading soils. The framework allows for rigorous consideration and propagation of the large uncertainties regarding quantification of seismic loads and soil–pile interaction relationships, which exist in the pseudo-static method. Building upon previous relationships proposed by others, the key features of the presented framework are outlined. In particular, the uncertainty estimation of the induced lateral soil displacements; superstructure inertia loads; and stiffness and strength of the liquefied soils are discussed in detail. The results of applying the pseudo-static method to a case study bridge structure are compared to that obtained using a rigorous seismic effective stress analysis within a similar framework. It is illustrated that the consideration of uncertainties in the pseudo-static framework provides enhanced communication of the foundation's seismic performance to end-users, and that the pseudo-static method provides seismic performance prediction consistent with that obtained using advanced seismic effective-stress analyses.  相似文献   

8.
爆破地震作用下桩-土-结构相互作用的数值模拟   总被引:1,自引:0,他引:1  
土-结构动力相互作用是地震工程和结构抗震的重要研究内容,但目前对爆破地震作用下土-结构动力相互作用的研究较少。运用大型有限元软件ANSYS/LS-DYNA,建立了桩-土-结构相互作用体系的三维有限元模型,由桩尖输入实测爆破地震波,取得了良好的计算效果。计算结果表明:考虑桩-土-结构相互作用后,群桩基础中每个桩的位移、加速度和剪应力幅值均呈桩顶大、桩尖小的倒三角分布,桩与承台的接合部比较容易受到损坏;桩-土-结构相互作用体系在爆破地震波冲击后,还会发生几次振动,但是这些振动产生的影响要小于爆破地震产生的影响,这与实测结果相符合;爆破地震波冲击下,群桩基础中,角桩顶部表面的桩土接触压力较大,但在爆破地震波冲击后,中心桩顶部表面的桩土接触压力较大,且具有一定的周期性,直至衰减为零。  相似文献   

9.
The paper presents a numerical model for the analysis of the soil–structure kinematic interaction of single piles and pile groups embedded in layered soil deposits during seismic actions. A finite element model is considered for the pile group and the soil is assumed to be a Winkler‐type medium. The pile–soil–pile interaction and the radiation problem are accounted for by means of elastodynamic Green's functions. Condensation of the problem permits a consistent and straightforward derivation of both the impedance functions and the foundation input motion, which are necessary to perform the inertial soil–structure interaction analyses. The model proposed allows calculating the internal forces induced by soil–pile and pile‐to‐pile interactions. Comparisons with data available in literature are made to study the convergence and validate the model. An application to a realistic pile foundation is given to demonstrate the potential of the model to catch the dynamic behaviour of the soil–foundation system and the stress resultants in each pile. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The dynamic response of a seismic soil–pile–structure interaction (SSPSI) system is investigated in this paper by conducting nonlinear 3D finite element numerical simulations. Nonlinear behaviors such as non-reflecting boundary condition and soil–pile–structure interaction modeled by the penalty method have been taken into account. An equivalent linear model developed from the ground response analysis and the modified Drucker–Prager model are separately used for soil ground. A comparison of the two models shows that the equivalent linear soil model results in an underestimated acceleration response of the structure under this ground shaking and the soil behavior should be considered as a fully-nonlinear constitutive model in the design process of the SSPSI system. It was also observed that the dynamic response of the system is greatly affected by the nonlinearity of soil–pile interface and is not sensitive to the dilation angle of the soil. Furthermore, the effect of the presence of pile foundations on SSPSI response is also analyzed and discussed.  相似文献   

11.
A Study of Piles during Earthquakes: Issues of Design and Analysis   总被引:1,自引:0,他引:1  
The seismic response of pile foundations is a very complex process involving inertial interaction between structure and pile foundation, kinematic interaction between piles and soils, seismically induced pore-water pressures (PWP) and the non-linear response of soils to strong earthquake motions. In contrast, very simple pseudo-static methods are used in engineering practice to determine response parameters for design. These methods neglect several of the factors cited above that can strongly affect pile response. Also soil–pile interaction is modelled using either linear or non-linear springs in a Winkler computational model for pile response. The reliability of this constitutive model has been questioned. In the case of pile groups, the Winkler model for analysis of a single pile is adjusted in various ways by empirical factors to yield a computational model for group response. Can the results of such a simplified analysis be adequate for design in all situations?The lecture will present a critical evaluation of general engineering practice for estimating the response of pile foundations in liquefiable and non-liquefiable soils during earthquakes. The evaluation is part of a major research study on the seismic design of pile foundations sponsored by a Japanese construction company with interests in performance based design and the seismic response of piles in reclaimed land. The evaluation of practice is based on results from field tests, centrifuge tests on model piles and comprehensive non-linear dynamic analyses of pile foundations consisting of both single piles and pile groups. Studies of particular aspects of pile–soil interaction were made. Piles in layered liquefiable soils were analysed in detail as case histories show that these conditions increase the seismic demand on pile foundations. These studies demonstrate the importance of kinematic interaction, usually neglected in simple pseudo-static methods. Recent developments in designing piles to resist lateral spreading of the ground after liquefaction are presented. A comprehensive study of the evaluation of pile cap stiffness coefficients was undertaken and a reliable method of selecting the single value stiffnesses demanded by mainstream commercial structural software was developed. Some other important findings from the study are: the relative effects of inertial and kinematic interactions between foundation and soil on acceleration and displacement spectra of the super-structure; a method for estimating whether inertial interaction is likely to be important or not in a given situation and so when a structure may be treated as a fixed based structure for estimating inertial loads; the occurrence of large kinematic moments when a liquefied layer or naturally occurring soft layer is sandwiched between two hard layers; and the role of rotational stiffness in controlling pile head displacements, especially in liquefiable soils. The lecture concludes with some recommendations for practice that recognize that design, especially preliminary design, will always be based on simplified procedures.  相似文献   

12.
This study investigated the seismic performance and soil‐structure interaction of a scoured bridge models with pile foundation by shaking table tests using a biaxial laminar shear box. The bridge pier model with pile foundation comprised a lumped mass representing the superstructure, a steel pier, and a footing supported by a single aluminum pile within dry silica sand. End of the pile was fixed at the bottom of the shear box to simulate the scenario that the pile was embedded in a firm stratum of rock. The bridge pier model was subjected to one‐directional shakes, including white noise and earthquake records. The performance of the bridge pier model with pile foundation was discussed for different scoured conditions. It is found that the moment demand of pile increases with the increase of scoured depth whereas the moment demand of the bridge pier decreases, and this transition may induce the bridge failure mechanism transform from pier to pile. The seismic demand on scoured pile foundations may be underestimated and misinterpreted to a certain degree. When evaluating the system damping ratio with SSI, the system response may not be significantly changed even if the soil viscous damping contribution is varied. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
考虑冲刷作用效应桥梁桩基地震易损性分析   总被引:3,自引:0,他引:3       下载免费PDF全文
冲刷造成桩周土体的剥蚀将会削弱土体对桩基的侧向支撑能力,冲刷效应会对桥梁桩基的地震易损性产生影响,因此有必要对冲刷和地震共同作用下桥梁桩基的易损性进行研究。利用SAP2000软件建立三维桥梁有限元模型,通过非线性时程分析得到桥梁桩基地震响应峰值。采用概率性地震需求分析方法,建立不同冲刷深度下桥梁桩基地震易损性模型,在地震易损性函数假设为对数正态分布函数的基础上,通过回归分析得到概率模型中的参数,进而得到不同冲刷深度下桥梁桩基在不同破坏状态所对应的地震易损性曲线,并分析冲刷深度对桩基破坏概率的影响。研究结果表明:随着冲刷深度的增加,桥梁桩基在地震作用下的破坏概率显著增加。  相似文献   

14.
基于相同土层结构地基条件下,分别采用低承台群桩-独柱墩与高承台群桩-独柱墩结构,完成了两次可液化场地群桩-土-桥梁结构地震反应振动台试验,据此研究了承台型式对桥梁桩-柱墩地震反应的影响。研究表明,与高承台桩相比,可液化场地中低承台桩的抗震性能更优;地震中砂层尚未液化或液化不充分时,低承台更多表现出减弱桩尤其桩上段的加速度反应的作用,相反高承台更多起到放大桩的加速度作用,而高承台桩与低承台桩的峰值应变自下而上更多表现出逐渐增大趋势;即使砂层完全液化时,低承台桩的峰值应变自下而上仍以渐增为主;与低承台桩相比,高承台桩更有助于放大墩顶加速度、位移反应,对结构体系整体稳定性产生了不良影响;虽然低承台桩未出现严重破坏,但砂层中部桩的应变却很大,液化砂土-桩运动相互作用对桩的抗震性能影响不容忽视。  相似文献   

15.
Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project, a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is designed and completed. By applying Wenchuan seismic waves with different acceleration peaks, the stress and deformation characteristics of bridge pile foundation and anti-slide pile are analyzed, and the failure mode is discussed. Results show that the dynamic response of bridge pile and anti-slide pile are affected by the peak value of seismic acceleration of earthquake, with which the stress and deformation of the structure increase. The maximum dynamic earth pressure and the moment of anti-slide piles are located near the sliding surface, while that of bridge piles are located at the top of the pile. Based on the dynamic response of structure, local reinforcement needs to be carried out to meet the requirement of the seismic design. The PGA amplification factor of the surface is greater than the inside, and it decreases with the increase of the input seismic acceleration peak. When the slope failure occurs, the tension cracks are mainly produced in the shallow sliding zone and the coarse particles at the foot of the slope are accumulated.  相似文献   

16.
《震灾防御技术》2022,17(4):643-650
利用振动台模型试验和有限元数值模拟的方法对土质地基-群桩-钢框架结构体系动力相互作用的规律和特征进行研究,并讨论了基桩长径比对于体系动力相互作用特征的影响。试验地基土体模型为均匀粉质黏土,剪切波速约为213 m/s;群桩基础由9根长2.0 m、直径0.1 m的基桩3×3对称布置;上部结构模型简化为三层钢框架结构。本文研究结果表明:土-桩-钢框架结构体系的阻尼比相较固定基础情形有所增加,输入相同地震动时其地震反应小于固定基础情形;动力相互作用体系中运动相互作用的贡献与惯性相互作用相当,不应忽略;随着基桩长径比的增大,运动相互作用增大,钢框架结构的加速度反应增大。  相似文献   

17.
为研究地震荷载作用下桩基-土-核电结构的抗震性能及土结动力反应规律,对拟开展的地震模拟振动试验模型进行数值计算分析。核电工程结构上部质量大和刚度大,试验模型不同于一般的工程结构,为检验振动台试验模型设计、传感器布设方案,对试验模型进行了数值模拟。数值模拟以单端承桩为研究对象,计算了上部结构质量和刚度变化时,在脉冲荷载及基于RG1.60谱人工合成地震动作用下桩身的地震反应规律。数值模拟表明:在水平地震动作用下,桩身剪力和弯矩包络线呈"X"状分布,桩底和顶处剪力弯矩较大;上部结构质量越大,桩身的剪力与弯矩越大;上部结构的刚度越大,桩身的剪力与弯矩越小;随着上部结构质量的增大和刚度的减小,反弯点逐渐向桩顶移动。桩顶发生最大位移时所对应的桩身挠度随着上部结构质量的增加而增大并且随着上部结构刚度的增大而减小。土层分界面处,桩身内力发生突变。此外,在脉冲荷载输入下,桩身反弯点位置与输入荷载的周期有关。计算结果为振动台试验模型设计提供了理论依据。  相似文献   

18.
The seismic response of a pile foundation is usually analyzed by approximate methods in practice. These methods typically neglect one or more of the important factors that affect seismic response such as inertial interaction, kinematic interaction, seismic pore water pressures, soil nonlinearity, cross stiffness coupling and dynamic pile to pile interaction. A nonlinear 3-D analysis is used to show how all these factors affect pile response, to demonstrate some of the consequences of using various approximate methods and to provide a comprehensive overview of how pile foundations behave during earthquakes in liquefiable and non-liquefiable soils.  相似文献   

19.
常见边坡支护形式的地震稳定性对比分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为了对比分析抗滑桩、抗滑桩加预应力锚索、格构梁加预应力锚索这3种边坡支护形式的地震稳定性,建立了相应的数值模型进行计算分析。计算结果显示:3种支护形式在地震作用后,边坡变形及稳定性系数的衰减幅度基本一致,其中格构梁加预应力锚索的衰减程度略弱,从结构受力放大倍数来看,抗滑桩支护形式的结构受力放大程度明显高于其余2种支护形式。计算结果还显示预应力锚索不仅能够提高边坡的稳定性,而且能够抑制支护结构内力的放大,从而提高支护结构的安全性能。  相似文献   

20.
The elastodynamic response of coupled soil-pile-structure systems to seismic loading is studied using rigorous three-dimentional (3D) finite element models. The system under investigation comprises of a single pile supporting a single degree of freedom (SDOF) structure founded on a homogeneous viscoelastic soil layer over rigid rock. Parametric analyses are carried out in the frequency domain, focusing on the dynamic characteristics of the structure, as affected by typical foundation properties such as pile slenderness and soil-pile relative stiffness. Numerical results demonstrate the strong influence on effective natural SSI period of the foundation properties and the crucial importance of cross swaying-rocking stiffness of the pile. Furthermore, the notion of a pseudo-natural SSI frequency is introduced, as the frequency where pile-head motion is minimized with respect to free field surface motion. Dynamic pile bending is examined and the relative contributions of kinematic and inertial interaction, as affected by the frequency content of input motion, are elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号