首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The hydrothermal metamorphism of a sequence of Pliocene-aged seamount extrusive and volcanoclastic rocks on La Palma includes a relatively complete low-P-T facies series encompassing the zeolite, prehnite-pumpellyite, and greenschist facies. The observed mineral zonations imply metamorphic gradients of 200–300° C km-1. The transition from smectite to chlorite in the La Palma seamount series is characterized by discontinuous steps between discrete smectite, corrensite and chlorite, which occur ubiquitously as vesicles and, to a much lesser extent, vein in-fillings. Trioctahedral smectites [(Mg/(Fe + Mg) = 0.4–0.75] occur with palagonite and Na-Ca zeolites such as analcime and a thompsonite/natrolite solid solution. Corrensite [(Mg/(Fe + Mg) = 0.5–0.65] first appears at stratigraphic depths closely corresponding to the disappearance of analcime and first appearance of pumpellyite. Discrete chlorite [(Mg/(Fe + Mg) = 0.4–0.6] becomes the dominant layer silicate mineral coincident with the appearance of epidote and andraditic garnet. Within the stratigraphic section there is some overlap in the distribution of the three discrete layer silicate phases, although random interstratifications of these phases have not been observed. Although smectite occurs as both low- and high-charge forms, the La Palma corrensite is a compositionally restricted, 1:1 mixture of low-charge, trioctahedral smectite and chlorite. Electron microprobe analyses of coarse-grained corrensite yield structural formulae close to ideal values based on 50 negative charge recalculations. Calcium (average 0.20 cations/formula unit) is the dominant interlayer cation, with lesser Mg, K and Na. The absence of randomly interlayered chlorite/smectite in the La Palma seamount series may reflect high, time-integrated fluid fluxes through the seamount sequence. This is consistent with the ubiquity of high-variance metamorphic mineral assemblages and the general absence of relict igneous minerals in these samples.  相似文献   

2.
Abstract In well NJ-15 of the Nesjavellir geothermal field, Iceland, the transition of discrete smectite into discrete chlorite has been studied from drill cuttings recovered at depths of less than 1714 m and over a continuous range of temperatures between 60 and 300° C. At temperatures below 180° C, the clay fractions contain mixtures of di- and trioctahedral smectites, whose layer charge increases with depth. Between 200 and 240° C, discrete smectites have transformed into smectite-rich, randomly interstratified chlorite and smecite ( R 0 C/S). Because the abundance of chlorite interlayers in this C/S is generally <20%, its presence can be detected only by electron microprobe techniques and not by X-ray diffraction. Between 245 and 265° C, both regularly ( R 1) and randomly interstratified C/S are the predominant layer silicates. Discrete chlorite first appears at approximately 270° C and coexists with minor amounts of R 0 C/S at higher temperatures.
R 0 and R 1 C/S form a nearly complete compositional series between trioctahedral saponite and discrete chlorite end-members. The interlayer cation and Si content of smectites and C/S decrease with increasing temperature. The Mg/(Mg + Fe) content of smectite, C/S, and chlorite is unrelated to temperature. The percentage of chlorite in C/S, as determined by electron microprobe analyses, increases continuously with increasing temperature, except for occurrences of smectite-rich C/S in fresh basaltic dykes which have not thermally equilibrated with the higher grade country rocks.  相似文献   

3.
Chlorite is a common sheet silicate that occurs in various lithologies over a wide grade range involving diagenesis and low‐grade metamorphism. Thus, the reaction progress of chlorite offers a unique opportunity for direct correlation of zonal classification of metasedimentary rocks based on illite crystallinity with metabasite mineral facies. To provide such correlation, chlorite crystallinity indices, apparent mean crystallite sizes and lattice strains, crystallite size distributions and compositions of chlorite from coexisting metapelites and metabasites were determined by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), analytical electron microscopy (AEM) and electron microprobe (EMP) methods. Samples were from Palaeozoic and Mesozoic formations of the Bükkium (innermost Western Carpathians, Hungary) that underwent Alpine (Cretaceous) orogenic metamorphism. Metapelites range in grade from late diagenesis to epizone, whereas metabasites vary from prehnite–pumpellyite through pumpellyite–actinolite to greenschist facies. Despite significant differences in composition, mineral assemblages and textures, reaction progress, as measured in part by chlorite crystallinity, in metapelites paralleled that in metabasites. Chlorite crystallinity and mean crystallite size increase and the proportion of mixed layers in chlorite decreases, whereas the calculated lattice strain does not change significantly with increasing metamorphic grade. Similar trends, but (especially at higher grades) significant differences, were found in mean crystallite size values using various methods for XRD line profile analyses. The increase in crystallite size with increasing grade was demonstrated also by direct TEM measurements on ion‐milled whole‐rock samples, but with a larger scatter of data at higher grades. In spite of the different kinds of mixed layering in chlorite (Mg‐rich smectitic, mostly random, local corrensite‐like units in metabasites, and Fe‐rich berthierine and dioctahedral smectite in metapelites), XRD‐calculated and TEM‐measured parameters were found to be reliable tools for measuring reaction progress and metamorphic grade of the same degree in both lithotypes.  相似文献   

4.
Phyllosilicates occurring as replacements of olivine, clinopyroxene and interstitial materials and as veins or fracture-fillings in hydrothermally altered basalts from DSDP Hole 504B, Leg 83 have been studied using transmission and analytical electron microscopy. The parageneses of phyllosilicates generally change systematically with depth and with the degree of alteration, which in turn is related to permeability of basalts. Saponite and some mixed-layer chlorite/smectite are the dominant phyllosilicates at the top of the transition zone. Chlorite, corrensite, and mixed-layer chlorite/corrensite occur mainly in the lower transition zone and upper levels of the sheeted dike zone. Chlorite, talc, and mixed-layer talc/chlorite are the major phyllosilicates in the sheeted dike zone, although replacement of talc or ohvine by saponite is observed. The phyllosilicates consist of parallel or subparallel discrete packets of coherent layers with packet thicknesses generally ranging from< 100 Å to a few hundred Å. The packets of saponite layers are much smaller or less well defined than those of chlorite, corrensite and talc, indicating poorer crystal-linity of saponite. by contrast, chlorite and talc from the lower transition zone and the sheeted dike zone occur in packets up to thousands of Å thick. The Si/(Si+Al) ratio of these trioctahedral phyllosilicates increases and Fe/(Fe+Mg) decreases in the order chlorite, corrensite, saponite, and talc. These relations reflect optimal solid solution consistent with minimum misfit of articulated octahedral and tetrahedral sheets. Variations in composition of hydrothermal fluids and precursor minerals, especially in Si/(Si+Al) and Fe/(Fe+Mg) ratios, are thus important factors in controlling the parageneses of phyllosilicates. The phyllosilicates are generally well crystallized discrete phases, rather than mixed-layered phases, where they have been affected by relatively high fluid/rock ratios as in high-permeability basalts, in veins, or areas adjacent to veins. Intense alteration in basalts with high permeability (indicating high fluid/rock ratios) is characterized by pervasive albitization and zeolitization. Minimal alteration in the basalts without significant albitization and zeolitization is characterized by the occurrence of saponite±mixed-layer chlorite/smectite in the low-temperature alteration zone, and mixed-layer chlorite/corrensite or mixed-layer talc/chlorite in the high-temperature alteration zone. Textural non-equilibrium for phyllosilicates is represented by mixed layering and poorly defined packets of partially incoherent layers. The approach to textural equilibrium was controlled largely by the availability of fluid or permeability.Contribution No. 488 from the Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan  相似文献   

5.
The smectite-to-chlorite conversion is investigated through long-duration experiments (up to 9 years) conducted at 300 °C. The starting products were the Wyoming bentonite MX80 (79 % smectite), metallic iron and magnetite in contact with a Na–Ca chloride solution. The predominant minerals in the run products were an iron-rich chlorite (chamosite like) and interstratified clays interpreted to be chlorite/smectite and/or corrensite/smectite, accompanied by euhedral crystals of quartz, albite and zeolite. The formation of pure corrensite was not observed in the long-duration experiments. The conversion of smectite into chlorite over time appears to take place in several steps and through several successive mechanisms: a solid-state transformation, significant dissolution of the smectite and direct precipitation from the solution, which is over-saturated with respect to chlorite, allowing the formation of a chamosite-like mineral. The reaction mechanisms are confirmed by X-ray patterns and data obtained on the experimental solutions (pH, contents of Si, Mg, Na and Ca). Because of the availability of some nutrients in the solution, total dissolution of the starting smectite does not lead to 100 % crystallization of chlorite but to a mixture of two dominant clays: chamosite and interstratified chlorite/smectite and/or corrensite/smectite poor in smectite. The role of Fe/(Fe + Mg) in the experimental medium is highlighted by chemical data obtained on newly formed clay particles alongside previously published data. The newly formed iron-rich chlorite has the same composition as that predicted by the geothermometer for diagenetic to low-grade metamorphic conditions, and the quartz + Fe-chlorite + albite experimental assemblage in the 9-year experiment is close to that fixed by water–rock equilibrium.  相似文献   

6.
Transmission and scanning electron microscopy were utilized to investigate the nature and mechanisms of alteration of abundant detrital biotite of volcanic origin and progressive modification of phyllosilicate aggregates in a prograde sequence of pelitic rocks (illite crystallinity index = 0.19–0.58λ2θ) from the Gaspé Peninsula in Quebec.
Detrital biotite has been diagenetically altered to form corrensite and chlorite through two mechanisms; (1) layer-by-layer replacement gave rise to interstratification of packets of layers and complex mixed layering via several kinds of layer transitions between biotite and chlorite, corrensite or smectite; (2) dissolution-transport-precipitation resulted in the formation of relatively coarse-grained aggregates of randomly orientated, corrensite-rich flakes and fine-grained corrensite intergrown with chlorite and illite in the matrix.
The data show that stacks consisting of alternating packets of trioctahedral and dioctahedral phyllosilicates originated during early diagenesis when lenticular fissures in strained altering biotite were filled by dioctahedral clays. Subsequent prograde evolution of dioctahedral clays occurred through deformation, dissolution and crystallization, and overgrowth. Illite evolved to muscovite, with K in part provided through biotite alteration, and corrensite/chlorite to homogeneous chlorite. The alteration of detrital biotite is closely related to the formation of titanite and magnetite in diagenetic rocks, and pyrite, calcite and anatase or rutile in the higher grade rocks.
The observations demonstrate that detrital biotite of volcanic origin may be the principal precursor of chlorite in chlorite-rich metapelites originating in marginal basins. The mineral parageneses suggest that the transitions from corrensite to chlorite and illite to muscovite may be a function of local chemistry and time.  相似文献   

7.
Iheya‐North‐Knoll is one of the small knolls covered with thick sediments in the Okinawa Trough back‐arc basin. At the east slope of Iheya‐North‐Knoll, nine hydrothermal vents with sulfide mounds are present. The Integrated Ocean Drilling Program (IODP) Expedition 331 studied Iheya‐North‐Knoll in September 2010. The expedition provided us with the opportunity to study clay minerals in deep sediments in Iheya‐North‐Knoll. To reveal characteristics of clay minerals in the deep sediments, samples from the drilling cores at three sites close to the most active hydrothermal vent were analyzed by X‐ray diffraction, scanning electron microscope and transmission electron microscope. The sediments are classified into Layer 0 (shallow), Layer 1 (deep), Layer 2 (deeper) and Layer 3 (deepest) on the basis of the assemblage of clay minerals. Layer 0 contains no clay minerals. Layer 1 contains smectite, kaolinite and illite/smectite mixed‐layer mineral. Layer 2 contains chlorite, corrensite and chlorite/smectite mixed‐layer mineral. Layer 3 is grouped into three sub‐layers, 3A, 3B and 3C; Sub‐layer 3A contains chlorite and illite/smectite mixed‐layer mineral, sub‐layer 3B contains chlorite/smectite and illite/smectite mixed‐layer minerals, and sub‐layer 3C contains chlorite and illite. Large amounts of di‐octahedral clay minerals such as smectite, kaolinite, illite and illite/smectite mixed‐layer mineral are found in Iheya‐North‐Knoll, which is rarely observed in hydrothermal fields in mid‐ocean ridges. Tri‐octahedral clay minerals such as chlorite, corrensite and chlorite/smectite mixed‐layer mineral in Iheya‐North‐Knoll have low Fe/(Fe + Mg) ratios compared with those in mid‐ocean ridges. In conclusion, the characteristics of clay minerals in Iheya‐North‐Knoll differ from those in mid‐ocean ridges; di‐octahedral clay minerals and Fe‐poor tri‐octahedral clay minerals occur in Iheya‐North‐Knoll but not in mid‐ocean ridges.  相似文献   

8.
Detrital glaucony in the Palaeogene glauconitic sandstones in Siri Canyon, Danish North Sea, has been analysed from 15 exploration wells by X‐ray diffraction, electron microprobe and scanning electron microscopy. These sandstones consist of mixed‐layer illite/smectite and have a large variability in chemical composition and structure. In the most shallow wells (ca 1700 m), the glaucony is rich in Fe and consists of mixed‐layer illite/smectite with random‐interstratification (R = 0). In the depth interval from 1700 to 2000 m, the composition changes as Si is incorporated. The structure changes to ordered R = 1. Further increase in burial leads to the loss of Fe. Ordered R = 3 mixed‐layer illite/smectite is recognized from burial depths of 2200 m. The proportion of illite in illite/smectite mixed layers increases only slightly with depth and temperature. Although the structural changes generally are associated with chemical changes, they can also take place isochemically when the detrital glaucony is tightly embedded in earlier cement, which prevented chemical exchange. The glaucony transformation in the Siri Canyon sandstones partly reflects a supply of Si and partly significant loss of Fe. Thus, the glaucony transformation relates to the general diagenesis of the host sandstone. These sandstones are cemented by microquartz at an early stage, followed by precipitation of Fe‐rich grain‐coating berthierine or chlorite.  相似文献   

9.
Abstract Five basalt samples from the Point Sal ophiolite, California, were examined using HRTEM and AEM in order to compare observations with interpretations of XRD patterns and microprobe analyses. XRD data from ethylene-glycol-saturated samples indicate the following percentages of chlorite in mixed-layer chlorite–smectite identified for each specimen: (i) L2036 ± 50%, (ii) L2035 ± 70 and 20%, (iii) 1A-13 ± 70%, (iv) 1B-42 ± 70%, and (v) 1B-55 = 100%. Detailed electron microprobe analyses show that 'chlorite'analyses with high Si, K, Na and Ca contents are the result of interlayering with smectite-like layers. The Fe/(Fe + Mg) ratios of mixed-layer phyllosilicates from Point Sal samples are influenced by the bulk rock composition, not by the percentage of chlorite nor the structure of the phyllosilicate.
Measurements of lattice-fringe images indicate that both smectite and chlorite layers are present in the Point Sal samples in abundances similar to those predicted with XRD techniques and that regular alternation of chlorite and smectite occurs at the unit-cell scale. Both 10- and 14-Å layers were recorded with HRTEM and interpreted to be smectite and chlorite, respectively. Regular alternation of chlorite and smectite (24-Å periodicity) occurs in upper lava samples L2036 and 1A-13, and lower lava sample 1B-42 for as many as seven alternations per crystallite with local layer mistakes. Sample L2035 shows disordered alternation of chlorite and smectite, with juxtaposition of smectite-like layers, suggesting that randomly interlayered chlorite (<0.5)–smectite exists. Images of lower lava sample 1B-55 show predominantly 14-Å layers. Units of 24 Å tend to cluster in what may otherwise appear to be disordered mixtures, suggesting the existence of a corrensite end-member having thermodynamic significance.  相似文献   

10.
Many chloritic minerals in low-grade metamorphic or hydrothermally altered mafic rocks exhibit abnormal optical properties, expand slightly upon glycolation (expandable chlorite) and/or have excess AlVI relative to AlIV, as well as significant Ca, K and Na contents. Chloritic minerals with these properties fill vesicles and interstitial void space in low-grade metabasalt from northern Taiwan and have been studied with a combination of TEM/AEM, EMPA, XRD, and optical microscopy. The chloritic minerals include corrensite, which is an ordered 1:1 mixed-layer chlorite/smectite, and expandable chlorite, which is shown to be a mixed-layer chlorite/corrensite. Corrensite and some mixed-layer chlorite/corrensite occur as rims of vesicles and other cavities, while later-formed mixed-layer chlorite/corrensite occupies the vesicle cores. The TEM observations show that the mixed-layer chlorite/corrensite has ca. 20%, and the corrensite has ca. 50% expandable smectite-like layers, consistent with XRD observations and with their abnormal optical properties. The AEM analyses show that high Si and Ca contents, high AlVI/AlIV and low FeVI/(Fe+Mg)VI ratios of chlorites are correlated with interstratification of corrensite (or smectite-like) layers in chlorite. The AEM analyses obtained from 200–500 Å thick packets of nearly pure corrensite or chlorite layers always show that corrensite has low AlIV/SiIV and low FeVI/(Fe+Mg)VI, while chlorite has high AlIV/SiIV and high FeVI/(Fe+Mg)VI. This implies that the trioctahedral smectite-like component of corrensite has significantly lower AlIV/SiIV and FeVI/(Fe+Mg)VI. The ratios of FeVI/(Fe+Mg)VI and AlIV/SiIV thus decrease in the order chlorite, corrensite, smectite. The proportions of corrensite (or smectite-like) layers relative to chlorite layers in low-grade rocks are inferred to be controlled principally by Fe/Mg ratio in the fluid or the bulk rock and by temperature. Compositional variations of chlorites in low-grade rocks, which appear to correlate with temperature or metamorphic grade, more likely reflect variable proportions of mixed-layered components. The assemblages of trioctahedral phyllosilicates tend to occur as intergrown discrete phases, such as chlorite-corrensite, corrensite-smectite, or chlorite-corrensite-smectite. A model for the corrensite crystal structure suggests that corrensite should be treated as a unique phase rather than as a 1:1 ordered mixed-layer chlorite/smectite.  相似文献   

11.
Abstract

The characteristics and distribution of clay minerals and their effects on reservoir quality in the Huagang sandstones in the Xihu Sag, East China Sea Basin were studied by using X-ray diffraction, casting thin-sections, scanning electron microscopy, electron microprobe analysis, fluid inclusion analysis, constant-rate mercury injection and nuclear magnetic resonance. Clay minerals consist of kaolinite, chlorite, illite and illite–smectite mixed layer (I/S); kaolinite forms from dissolved feldspars, chlorite occurs as clay coatings that are transformed from clay precursors owing to the flocculation of suspended detrital clays or the crystallisation of pore fluids, and illite forms from the illitisation of detrital smectite, authigenic kaolinite and K-feldspars. Clay distribution is controlled by sedimentary environments, burial history and lithologies. Typical reservoirs in the western sub-sag are thin and developed in braided river facies at relatively shallow burial depths with clays dominated by kaolinite. However, typical reservoirs in the central inversion tectonic zone are thicker and developed in a braided delta front facies at deeper burial depths with clays mainly consisting of chlorite, illite and I/S. High-quality reservoirs are characterised by coarse granularity, high quartz content and low clay content with widespread development of chlorite coatings that inhibit quartz cements at low temperatures. At higher temperatures, the high-quality reservoirs develop more pores providing growth space for quartz cements and result in the coexistence of chlorite coatings and quartz cements. The high-quality reservoirs are controlled by their lithological characteristics rather than chlorite coatings. Illite and I/S clays create severe damage to reservoirs by reducing the size and connectivity of pore-throats.  相似文献   

12.
Detailed textural and chemical data for mineral assemblages on a regional scale are presented for the metaandesitic Eocene-Oligocene Taveyanne greywacke of the Glarus Alps, Eastern Switzerland. Presented data indicate an increase of metamorphic grade from zeolite facies to prehnite-pumpellyite and pumpellyite-actinolite facies. Low-grade outcrops contain laumontite, minor corrensite and pumpellyite (assemblage type 1), whereas outcrops of higher metamorphic grade contain prehnite and two populations of pumpellyite (type 2), prehnite—pumpellyite-(Al)—white mica (type 3), a single outcrop shows pumpellyite-actinolite facies (type 4). From the zeolite to prehnite-pumpellyite/pumpellyite-actinolite facies there are indications for an increase of the chemical equilibrium domain size for the critical paragenesis from a single detrital grain ≤1 mm) in type 1, to a few millimetres in type 2, and to a whole thin section in type 3. Metamorphic P - T conditions were determined by a combination of chlorite thermometry, fluid inclusion and vitrinite reflectance data. Peak temperatures range from 170-190 C for zeolite facies to 270-310 C for prehnite-pumpellyite and pumpellyite-actinolite facies. For the higher temperature range, pressures of 2-3 kbar are derived indicating a geothermal gradient of 24-32 C km-1. The well-constrained temperature estimations derived for the assemblages provide a useful test of the different empirical calibrations of chlorite thermometers recently proposed. The best correspondence to the temperatures determined here is for the Cathelineau calibration. In addition, in the lower grade samples differences in textures and calculated temperatures provide a mean to distinguish between detrital and newly formed chlorites.  相似文献   

13.
Talc, kerolite–smectite, smectite, chlorite–smectite and chlorite samples from sediments, chimneys and massive sulfides from six seafloor hydrothermal areas have been analyzed for mineralogy, chemistry and oxygen isotopes. Samples are from both peridotite- and basalt-hosted hydrothermal systems, and basaltic systems include sediment-free and sediment-covered sites. Mg-phyllosilicates at seafloor hydrothermal sites have previously been described as talc, stevensite or saponite. In contrast, new data show tri-octahedral Mg-phyllosilicates ranging from pure talc and Fe-rich talc, through kerolite-rich kerolite–smectite to smectite-rich kerolite–smectite and tri-octahedral smectite. The most common occurrence is mixed-layer kerolite–smectite, which shows an almost complete interstratification series with 5 to 85% smectitic layers. The smectite interstratified with kerolite is mostly tri-octahedral. The degree of crystal perfection of the clay sequence decreases generally from talc to kerolite–smectite with lower crystalline perfection as the proportion of smectite layers in kerolite–smectite increases.Our studies do not support any dependence of the precipitated minerals on the type/subtype of hydrothermal system. Oxygen isotope geothermometry demonstrates that talc and kerolite–smectite precipitated in chimneys, massive sulfide mounds, at the sediment surface and in open cracks in the sediment near seafloor are high-temperature (> 250 °C) phases that are most probably the result of focused fluid discharge. The other end-member of this tri-octahedral Mg-phyllosilicate sequence, smectite, is a moderate-temperature (200–250 °C) phase forming deep within the sediment (~ 0.8 m). Chlorite and chlorite–smectite, which constitute the alteration sediment matrix around the hydrothermal mounds, are lower-temperature (150–200 °C) phases produced by diffuse fluid discharge through the sediment around the hydrothermal conduits. In addition to temperature, other two controls on the precipitation of this sequence are the silica activity and Mg/Al ratio (i.e. the degree of mixing of seawater with hydrothermal fluid). Higher silica activity favors the formation of talc relative to tri-octahedral smectite. Vent structures and sedimentary cover preclude complete mixing of hydrothermal fluid and ambient seawater, resulting in lower Mg/Al ratios in the interior parts of the chimneys and deeper in the sediment which leads to the precipitation of phyllosilicates with lower Mg contents. Talc and kerolite–smectite have very low trace- and rare earth element contents. Some exhibit a negative or flat Eu anomaly, which suggests Eu depletion in the original hydrothermal fluid. Such Eu depletion could be caused by precipitation of anhydrite or barite (sinks for Eu2+) deeper in the system. REE abundances and distribution patterns indicate that chlorite and chlorite–smectite are hydrothermal alteration products of the background turbiditic sediment.  相似文献   

14.
Thermal and hydrothermal effects of Triassic–Liassic basalt flow deposition on sedimentary series of the Argana Basin are responsible for major modifications in detrital clays, until 20 m in depth. It expressed by transformation of detrital smectite to corrensite and moreover to chlorite, and by increasing illite crystallinity. On the 2 m of sediments located immediately under the flow, magnesium-rich hydrothermal fluids have caused precipitation of new mineral phases. To cite this article: L. Daoudi, J.-L. Pot de Vin, C. R. Geoscience 334 (2002) 463–468.  相似文献   

15.
中国含油气盆地粘土矿物的某些矿物学特征   总被引:6,自引:0,他引:6  
赵杏媛  张有瑜 《现代地质》1994,8(3):264-272,T002
本文总结归纳了20多个含油气盆地粘土矿物的类型,讨论了8种较常见的、6种较少见的和3种极少见的粘土矿物的X射线衍射特征及其成分、形态和分布等方面的矿物学特征.  相似文献   

16.
In high temperature geothermal areas (T.200°C) in Iceland the alteration minerals formed show a regular zoning with increasing temperature i.e. smectite, chlorite, epidote and actinolite. To test the effect of varying composition of the hydrothermal circulation fluid drillhole chips from two contrasting areas were analyzed in detail. The Reykjanes area is fed with sea water while Krafla is fed with meteoric water and has a Cl concentration of 28 ppm. Both areas have tholeiitic basalts, lavas and hyaloclastites as original reservoir rocks.

Although both systems have the same sequence of alteration minerals the actual composition of the minerals differs between systems reflecting the different chemical composition of the circulating waters. In Reykjanes, with its brine fluid, the composition of the original rock appears not to affect the composition of the alteration minerals while the reverse appears to be the case in Krafla.  相似文献   


17.
蒙皂石—伊利石演化及有关问题的理论探讨   总被引:2,自引:1,他引:1  
廖立兵 《现代地质》1995,9(1):37-41
摘要:作者认为蒙皂石—伊利石的转化是多因素、多机制作用的结果.不同环境、不同机制形成的伊/蒙混层矿物,有序化出现时的伊利石层含量不同。伊/蒙混层由无序到有序是一个连续的渐变过程,存在过渡型混层矿物,多数伊/蒙混层矿物都是以某一类型为主的复杂集合体。作者指出分散蒙皂石是影响无序型伊/蒙混层矿物混层比计算精度的主要因素。  相似文献   

18.
Abstract TEM and XRD techniques were used to study crystal growth characteristics of the fabric-forming phyllosilicates which developed in response to low-grade metamorphism and tectonic imbrication in part of the Southern Uplands thrust terrane. Prograde regional metamorphism, ranging from late diagenesis through the anchizone to the epizone, was accompanied by the development of a slaty cleavage which is commonly bedding-parallel. TEM-measured mean thicknesses of white mica and chlorite crystallite populations increase with advancing grade and correlate with XRD-measured crystallinity indices. Analytical TEM data show that prograde changes in composition lead to a net loss of Si, Ca and minor Fe from the fabric-forming phyllosilicates. White micas are paragonite-poor phengites with a mean b lattice parameter of 9.037 Å, and indicate an intermediate pressure series of metamorphism with a field gradient of <25° C km-1. Chlorite compositions evolved from diabantite (with intergrown corrensite) to ripidolite over an estimated temperature range of 150–320° C. Field gradient and temperature estimates suggest that crystal growth and fabric development occurred at burial depths ranging from 6 km to at least 13 km in the thrust terrane. During late diagenesis, crystal growth of white mica and chlorite was predominantly a consequence of polytypic and phase transitions, and resulted in similar size distributions which resemble typical Ostwald ripening curves. Under anchizonal and epizonal conditions, white mica grew more rapidly than chlorite because of its greater ability to store strain energy and recover from subgrain development; as a result crystal thickness distributions are not typical of Ostwald ripening. In contrast, chlorite crystals which grew under these conditions developed subgrain boundaries at high strain rates which were only partially recovered at low strain rates; these retained dislocations reduce the crystallite thicknesses detected by TEM and XRD, compared with those of white mica. These differences in strain-induced crystal growth indicate that white mica (illite) and chlorite crystallinity indices are likely to show significant differences where low-grade metamorphism is closely associated with tectonic fabric development.  相似文献   

19.
The metamorphic conditions of the Upper Permian Yangjiagou Formation in eastern Changchun, China, were evaluated based on the mineral assemblage, illite crystallinity, illite polytypism,the b dimension of illite, and the chemical composition of chlorite. The pelitic rocks in the Yangjiagou Formation are characterized by illite + kaolinite + chlorite ± mixed-layer chlorite/smectite and detrital quartz + plagioclase. Illite in the formation has a crystallinity of 0.38-0.55 and comprises mixed 2 M_1 and1 M_d polytypes, indicating a metamorphic temperature of 200℃. Based on the chemical composition of chlorite and the chlorite geothermometer, we estimated diagenetic to very low-grade metamorphic conditions with temperatures of 185℃~204℃. The b dimension of illite varies from 8.992 A to 9.005 A.We used a mathematical algorithm to extend Guidotti and Sassi's(1986) diagram relating illite b dimension with temperature and pressure, and used this diagram, together with illite crystallinity and chlorite chemical composition, to semi-quantitatively estimate the formation pressure at1.2 kbar. These reveal that the Yangjiagou Formation has experienced very low-grade metamorphism.  相似文献   

20.
We present results of a detailed mineralogical and geochemical study of the progressive hydrothermal alteration of clastic sediments recovered at ODP Site 858 in an area of active hydrothermal venting at the sedimented, axial rift valley of Middle Valley (northern Juan de Fuca Ridge). These results allow a characterization of newly formed phyllosilicates and provide constraints on the mechanisms of clay formation and controls of mineral reactions on the chemical and isotopic composition of hydrothermal fluids. Hydrothermal alteration at Site 858 is characterized by a progressive change in phyllosilicate assemblages with depth. In the immediate vent area, at Hole 858B, detrital layers are intercalated with pure hydrothermal precipitates at the top of the section, with a predominance of hydrothermal phases at depth. Sequentially downhole in Hole 858B, the clay fraction of the pure hydrothermal layers changes from smectite to corrensite to swelling chlorite and finally to chlorite. In three pure hydrothermal layers in the deepest part of Hole 858B, the clay minerals coexist with neoformed quartz. Neoformed and detrital components are clearly distinguished on the basis of morphology, as seen by SEM and TEM, and by their chemical and stable isotope compositions. Corrensite is characterized by a 24?Å stacking sequence and high Si- and Mg-contents, with Fe/(Fe+Mg) ratio of ≈0.08. We propose that corrensite is a unique, possibly metastable, mineralogical phase and was precipitated directly from seawater-dominated hydrothermal fluids. Hydrothermal chlorite in Hole 858B has a stacking sequence of 14?Å with Fe/(Fe+Mg) ratios of ≈0.35. The chemistry and structure of swelling chlorite suggest that it is a corrensite/chlorite mixed-layer phase. The mineralogical zonation in Hole 858B is accompanied by a systematic decrease in δ18O, reflecting both the high thermal gradients that prevail at Site 858 and extensive sediment-fluid interaction. Precipitation of the Mg-phyllosilicates in the vent region directly controls the chemical and isotopic compositions of the pore fluids. This is particularly evident by decreases in Mg and enrichments in deuterium and salinity in the pore fluids at depths at which corrensite and chlorite are formed. Structural formulae calculated from TEM-EDX analyses were used to construct clay-H2O oxygen isotope fractionation curves based on oxygen bond models. Our results suggest isotopic disequilibrium conditions for corrensite-quartz and swelling chlorite-quartz precipitation, but yield an equilibrium temperature of 300°?C±30° for chlorite-quartz at 32?m below the surface. This estimate is consistent with independent estimates and indicates steep thermal gradients of 10–11°/m in the vent region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号