首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dependence of the energy released during earthquake on ambient shear stress   总被引:1,自引:0,他引:1  
Starting with dislocation model, using the result of the fracture mechanics: the slip displacement at the crack tip is proportional to the length of the crack and the applied ambient shear stressτ 0 2 , we consider the dislocation in the earthquake to be the slip displacement at the crack tip and have obtained the analysis expresses of displacement and velocity pulse for the circular crack and have calculated the seismic wave energy radiated by earthquake. The seismic wave energyEM 0 τ 0 2 f(v) r , i. e.E is proportional to the seismic momentM 0 and the square of the ambient shear stressτ 0 2 and increases with the rupture velocityv r . In frequency domain, integrating the square of source velocity spectrum derived from our the scaling law model, we have also obtained the seismic wave energyE released by earthquake and earthquake radiated effficiencyη.EM 0 τ 0 2 also. If takingτ 0 = 10.0 MPa, E=4.79M 0. This result is consistent with the estimate by Vassiliou and Kanamori (1982). Theη=5.26%. The distribution of the seismic wave energy is that most of the energy contains in the frequency range between the first corner frequencyf c1 and thirdf c3, amount to 92.3% the energy in the rangef<f c1 is about 3.85% and 3.85% whenf>f c3. Thef c3 is about 8Hz forM ⩾ 6, thus most of radiated energy is below 2Hz. This phenomenon had been verified by Vassiliou Kanamori. Previous results show the energy radiated by earthquake to be strongly dependent on ambient shear stress. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 146–152, 1993. This work was supported by the Deutsche Forschungsgemeinschaft, Bonn, F. R. Germany. The support is grateful acknowledged. The authors are also grateful to Professor Klussmann and Mr. Hasthoff for their lots of help.  相似文献   

2.
Starting from the classical empirical magnitude-energy relationships, in this article, the derivation of the modern scales for moment magnitude M w and energy magnitude M e is outlined and critically discussed. The formulas for M w and M e calculation are presented in a way that reveals, besides the contributions of the physically defined measurement parameters seismic moment M 0 and radiated seismic energy E S, the role of the constants in the classical Gutenberg–Richter magnitude–energy relationship. Further, it is shown that M w and M e are linked via the parameter Θ = log(E S/M 0), and the formula for M e can be written as M e = M w + (Θ + 4.7)/1.5. This relationship directly links M e with M w via their common scaling to classical magnitudes and, at the same time, highlights the reason why M w and M e can significantly differ. In fact, Θ is assumed to be constant when calculating M w. However, variations over three to four orders of magnitude in stress drop Δσ (as well as related variations in rupture velocity V R and seismic wave radiation efficiency η R) are responsible for the large variability of actual Θ values of earthquakes. As a result, for the same earthquake, M e may sometimes differ by more than one magnitude unit from M w. Such a difference is highly relevant when assessing the actual damage potential associated with a given earthquake, because it expresses rather different static and dynamic source properties. While M w is most appropriate for estimating the earthquake size (i.e., the product of rupture area times average displacement) and thus the potential tsunami hazard posed by strong and great earthquakes in marine environs, M e is more suitable than M w for assessing the potential hazard of damage due to strong ground shaking, i.e., the earthquake strength. Therefore, whenever possible, these two magnitudes should be both independently determined and jointly considered. Usually, only M w is taken as a unified magnitude in many seismological applications (ShakeMap, seismic hazard studies, etc.) since procedures to calculate it are well developed and accepted to be stable with small uncertainty. For many reasons, procedures for E S and M e calculation are affected by a larger uncertainty and are currently not yet available for all global earthquakes. Thus, despite the physical importance of E S in characterizing the seismic source, the use of M e has been limited so far to the detriment of quicker and more complete rough estimates of both earthquake size and strength and their causal relationships. Further studies are needed to improve E S estimations in order to allow M e to be extensively used as an important complement to M w in common seismological practice and its applications.  相似文献   

3.
The area south and east of the Baltic Sea has very minor seismic activity. However, occasional events occur as illustrated by four events in recent years, which are analysed in this study: near Wittenburg, Germany, on May 19, 2000, M w = 3.1, near Rostock, Germany, on July 21, 2001, M w = 3.4 and in the Kaliningrad area, Russia, two events on September 21, 2004 with M w = 4.6 and 4.7. Locations, magnitudes (M L and M w) and focal mechanisms were determined for the two events in Germany. Synthetic modeling resulted in a well-confined focal depth for the Kaliningrad events. The inversion of macroseismic observations provided simultaneous solutions of the location, focal depth and epicentral intensity. The maximum horizontal compressive stress orientations obtained from focal mechanism solutions, approximately N–S for the two German events and NNW–SSE for the Kaliningrad events, show a good agreement with the regionally oriented crustal stress field.  相似文献   

4.
A new modified magnitude scale M S (20R) is elaborated. It permits us to extend the teleseismic magnitude scale M S (20) to the regional epicenter distances. The data set used in this study contains digital records at 12 seismic stations of 392 earthquakes that occured in the northwest Pacific Ocean in the period of 1993–2008. The new scale is based on amplitudes of surface waves of a narrow range of the periods (16–25 s) close to the period of 20 s, for distances of 80–3000 km. The digital Butterworth filter is used for processing. On the basis of the found regional features concerning distance dependence for seismic wave attenuation, all the stations of the region have been subdivided into two groups, namely, “continental” and “island-arc.” For each group of stations, its own calibration function is proposed. Individual station corrections are used to compensate for the local features.  相似文献   

5.
We use 576 earthquakes of magnitude, M w, 3.3 to 6.8 that occurred within the region 33° N–42.5° N, 19° E–30° E in the time period 1969 to 2007 to investigate the stability of the relation between moment magnitude, M w, and local magnitude, M L, for earthquakes in Greece and the surrounding regions. We compare M w to M L as reported in the monthly bulletins of the National Observatory of Athens (NOA) and to M L as reported in the bulletins of the Seismological Station of the Aristotle University of Thessaloniki. All earthquakes have been analyzed through regional or teleseismic waveform inversion, to obtain M w, and have measured maximum trace amplitudes on the Wood–Anderson seismograph in Athens, which has been in operation since 1964. We show that the Athens Wood–Anderson seismograph performance has changed through time, affecting the computed by NOA M L by at least 0.1 magnitude units. Specifically, since the beginning of 1996, its east–west component has been recording systematically much larger amplitudes compared to the north–south component. From the comparison between M w and M L reported by Thessaloniki, we also show that the performance of the sensors has changed several times through time, affecting the calculated M L’s. We propose scaling relations to convert the M L values reported from the two centers to M w. The procedures followed here can be applied to other regions as well to examine the stability of magnitude calculations through time.  相似文献   

6.
Directivity effects are a characteristic of seismic source finiteness and are a consequence of the rupture spread in preferential directions. These effects are manifested through seismic spectral deviations as a function of the observation location. The directivity by Doppler effect method permits estimation of the directions and rupture velocities, beginning from the duration of common pulses, which are identified in waveforms or relative source time functions. The general model of directivity that supports the method presented here is a Doppler analysis based on a kinematic source model of rupture (Haskell, Bull Seismol Soc Am 54:1811–1841, 1964) and a structural medium with spherical symmetry. To evaluate its performance, we subjected the method to a series of tests with synthetic data obtained from ten typical seismic ruptures. The experimental conditions studied correspond with scenarios of simple and complex, unilaterally and bilaterally extended ruptures with different mechanisms and datasets with different levels of azimuthal coverage. The obtained results generally agree with the expected values. We also present four real case studies, applying the method to the following earthquakes: Arequipa, Peru (M w = 8.4, June 23, 2001); Denali, AK, USA (M w = 7.8; November 3, 2002); Zemmouri–Boumerdes, Algeria (M w = 6.8, May 21, 2003); and Sumatra, Indonesia (M w = 9.3, December 26, 2004). The results obtained from the dataset of the four earthquakes agreed, in general, with the values presented by other authors using different methods and data.  相似文献   

7.
We derive S-wave attenuation characteristics, earthquake source parameters and site amplification functions at seismic stations used for earthquake early warning in the Irpinia–Basilicata region, using non-parametric spectral inversion of seismograms from 49 local events with M L = 1.5–3.1. We obtain relatively low Q values (Q 0 = 28 at a frequency of 1 Hz) in conjunction with a strong frequency-dependence (close to linear). The source spectra can be satisfactorily modeled using the omega-square model, with stress drops ranging between 0.01–2 MPa, and in the narrow magnitude range available for analysis, the source spectra seem to scale self-similarly. The local magnitude M L shows a linear correlation with moment magnitude M W, however with a systematic underestimation by about 0.5-magnitude units. The results obtained in this work provide important insights into the ground-motion characteristics that are required for appropriate seismic hazard assessment and are of practical relevance for a suite of applications, such as the calibration of ground-motion prediction equations or the correction for site amplification in earthquake early warning and rapid calculation of shake-maps for seismic emergency management.  相似文献   

8.
We analyze temporal variations of seismic velocity along the Karadere-Düzce branch of the north Anatolian fault using seismograms generated by repeating earthquake clusters in the aftershock zones of the 1999 Mw7.4 İzmit and Mw7.1 Düzce earthquakes. The analysis employs 36 sets of highly repeating earthquakes, each containing 4–18 events. The events in each cluster are relocated by detailed multi-step analysis and are likely to rupture approximately the same fault patch at different times. The decay rates of the repeating events in individual clusters are compatible with the Omori's law for the decay rate of regional aftershocks. A sliding window waveform cross-correlation technique is used to measure travel time differences and evolving decorrelation in waveforms generated by each set of the repeating events. We find clear step-like delays in the direct S and early S-coda waves (sharp seismic velocity reduction) immediately after the Düzce main shock, followed by gradual logarithmic-type recoveries. A gradual increase of seismic velocities is also observed before the Düzce main shock, probably reflecting post-seismic recovery from the earlier İzmit main shock. The temporal behavior is similar at each station for clusters at various source locations, indicating that the temporal changes of material properties occur in the top most portion of the crust. The effects are most prominent at stations situated in the immediate vicinity of the recently ruptured fault zones, and generally decrease with normal distance from the fault. A strong correlation between the co-seismic delays and intensities of the strong ground motion generated by the Düzce main shock implies that the radiated seismic waves produced the velocity reductions in the shallow material.  相似文献   

9.
The various useful source-parameter relations between seismic moment and common use magnitude lg(M 0) andM s,M L,m b; between magnitudesMs andM L,M s andm b,M L andm b; and between magnitudeM s and lg(L) (fault length), lg (W) (fault width), lg(S) (fault area), lg(D) (average dislocation);M L and lg(f c) (corner frequency) have been derived from the scaling law which is based on an “average” two-dimensional faulting model of a rectangular fault. A set of source-parameters can be estimated from only one magnitude by using these relations. The average rupture velocity of the faultV r=2.65 km/s, the total time of ruptureT(s)=0.35L (km) and the average dislocation slip rateD=11.4 m/s are also obtained. There are four strong points to measure earthquake size with the seismic moment magnitudeM w.
  1. The seismic moment magnitude shows the strain and rupture size. It is the best scale for the measurement of earthquake size.
  2. It is a quantity of absolute mechanics, and has clear physical meaning. Any size of earthquake can be measured. There is no saturation. It can be used to quantify both shallow and deep earthquakes on the basis of the waves radiated.
  3. It can link up the previous magnitude scales.
  4. It is a uniform scale of measurement of earthquake size. It is suitable for statistics covering a broad range of magnitudes. So the seismic moment magnitude is a promising magnitude and worth popularization.
  相似文献   

10.
Large data sets covering large areas and time spans and composed of many different independent sources raise the question of the obtained degree of harmonization. The present study is an analysis of the harmonization with respect to the moment magnitude M w within the earthquake catalogue for central, northern, and northwestern Europe (CENEC). The CENEC earthquake catalogue (Grünthal et al., J Seismol, 2009) contains parameters for over 8,000 events in the time period 1000–2004 with magnitude M w ≥ 3.5. Only about 2% of the data used for CENEC have original M w magnitudes derived directly from digital data. Some of the local catalogues and data files providing data give M w, but calculated by the respective agency from other magnitude measures or intensity. About 60% of the local data give strength measures other than M w, and these have to be transformed by us using available formulae or new regressions based on original M w data. Although all events are thus unified to M w magnitude, inhomogeneity in the M w obtained from over 40 local catalogues and data files and 50 special studies is inevitable. Two different approaches have been followed to investigate the compatibility of the different M w sets throughout CENEC. The first harmonization check is performed using M w from moment tensor solutions from SMTS and Pondrelli et al. (Phys Earth Planet Inter 130:71–101, 2002; Phys Earth Planet Inter 164:90–112, 2007). The method to derive the SMTS is described, e.g., by Braunmiller et al. (Tectonophysics 356:5–22, 2002) and Bernardi et al. (Geophys J Int 157:703–716, 2004), and the data are available in greater extent since 1997. One check is made against the M w given in national catalogues and another against the M w derived by applying different empirical relations developed for CENEC. The second harmonization check concerns the vast majority of data in CENEC related to earthquakes prior to 1997 or where no moment tensor based M w exists. In this case, an empirical relation for the M w dependence on epicentral intensity (I 0) and focal depth (h) was derived for 41 master events, i.e., earthquakes, located all over central Europe, with high-quality data. To include also the data lacking h, the corresponding depth-independent relation for these 41 events was also derived. These equations are compared with the different sets of data from which CENEC has been composed, and the goodness of fit is demonstrated for each set. The vast majority of the events are very well or reasonably consistent with the respective relation so that the data can be said to be harmonized with respect to M w, but there are exceptions, which are discussed in detail.  相似文献   

11.
We describe a fully automated seismic event detection and location system, providing for real-time estimates of the epicentral parameters of both local and distant earthquakes. The system uses 12 telemetered short-period stations, with a regional aperture of 350 km, as well as two 3-component broad-band stations. Detection and location of teleseismic events is achieved independently and concurrently on the short-period and long-period channels. The long-period data is then used to obtain an estimate of the seismic momentM 0 of the earthquake through the mantle magnitudeM m, as introduced byOkal andTalandier (1989). In turn, this estimate ofM 0 is used to infer the expected tsunami amplitude at Papeete, within 15 minutes of the recording of Rayleigh waves. The performance of the method is discussed in terms of the accuracy of the epicentral parameters and seismic moment obtained in real time, as compared to the values later published by the reporting agencies. Our estimates are usually within 3 degrees of the reported epicenter, and the standard deviation on the seismic moment only 0.19 unit of magnitude for a population of 154 teleseismic events.  相似文献   

12.
Measurements are taken of the mantle magnitudeM m , developed and introduced in previous papers, in the case of the 1960 Chilean and 1964 Alaskan earthquakes, by far the largest events ever recorded instrumentally. We show that theM m algorithm recovers the seismic moment of these gigantic earthquakes with an accuracy (typically 0.2 to 0.3 units of magnitude, or a factor of 1.5 to 2 on the seismic moment) comparable to that achieved on modern, digital, datasets. In particular, this study proves that the mantle magnitudeM m does not saturate for large events, as do standard magnitude scales, but rather keeps growing with seismic moment, even for the very largest earthquakes. We further prove that the algorithm can be applied in unfavorable experimental conditions, such as instruments with poor response at mantle periods, seismograms clipped due to limited recording dynamics, or even on microbarograph records of air coupled Rayleigh waves.In addition, we show that it is feasible to use acoustic-gravity air waves generated by those very largest earthquakes, to obtain an estimate of the seismic moment of the event along the general philosophy of the magnitude concept: a single-station measurement ignoring the details of the earthquake's focal mechanism and exact depth.  相似文献   

13.
This paper has introduced the method of self-similarity analysis of time series into the analysis and study of earthquake sequence, and then researched its application in earthquake prediction. As parameter of earthquake time series, we can take the cumulated sum of the numbers of equivalent earthquakesQN*, the numbers of equivalent earthquakeN*, maximum magnitudeM max, average magnitudeQ=ΣN*, and the difference ΔN* between the numbersN* in two adjacent time intervals. The given method may be applied to analysis of long-period seismic sequences in different regions as well as to anlysis of seismic sequence in the aftershock region of strong earthquake. For making quantitative analysis the coefficient of self-similarity of earthquake sequence in order of timeμs was introduced. The results of self-similarity analysis were obtained for the earthquake sequences in North China, West South China, the Capital region of China, and for the East Yamashi region of Japan. They show that in period or half year to several years beforeM⩾7.0 andM⩾6.0 earthquakes occurred in these regions separately, the self-similarity coefficientμs calculated by using the above-mentioned parameters had remarkably anamalous decrease variations. The duration time ofμs anomaly depends on the earthquake magnitude and may be different from different regions. Therefore, the self-similarity coefficient in order of timeμs can be considered as a long-medium term precursory index. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 455–462, 1993.  相似文献   

14.
During the last six years, National Geophysical Research Institute, Hyderabad has established a semi-permanent seismological network of 5–8 broadband seismographs and 10–20 accelerographs in the Kachchh seismic zone, Gujarat with a prime objective to monitor the continued aftershock activity of the 2001 Mw 7.7 Bhuj mainshock. The reliable and accurate broadband data for the 8 October Mw 7.6 2005 Kashmir earthquake and its aftershocks from this network as well as Hyderabad Geoscope station enabled us to estimate the group velocity dispersion characteristics and one-dimensional regional shear velocity structure of the Peninsular India. Firstly, we measure Rayleigh-and Love-wave group velocity dispersion curves in the period range of 8 to 35 sec and invert these curves to estimate the crustal and upper mantle structure below the western part of Peninsular India. Our best model suggests a two-layered crust: The upper crust is 13.8 km thick with a shear velocity (Vs) of 3.2 km/s; the corresponding values for the lower crust are 24.9 km and 3.7 km/sec. The shear velocity for the upper mantle is found to be 4.65 km/sec. Based on this structure, we perform a moment tensor (MT) inversion of the bandpass (0.05–0.02 Hz) filtered seismograms of the Kashmir earthquake. The best fit is obtained for a source located at a depth of 30 km, with a seismic moment, Mo, of 1.6 × 1027 dyne-cm, and a focal mechanism with strike 19.5°, dip 42°, and rake 167°. The long-period magnitude (MA ~ Mw) of this earthquake is estimated to be 7.31. An analysis of well-developed sPn and sSn regional crustal phases from the bandpassed (0.02–0.25 Hz) seismograms of this earthquake at four stations in Kachchh suggests a focal depth of 30.8 km.  相似文献   

15.
We analyze the strong motion accelerograms of the moderate (M w = 6.1), March 31, 2006, Darb-e-Astane earthquake of western Iran and also those of one of its prominently recorded, large (M w = 5.1) foreshock and (M w = 4.9) aftershock. (1) Using derived SH-wave spectral data, we first objectively estimate the parameters W o\mathit{\Omega} _{\rm o} (long period spectral level), f c (corner frequency) and Q(f) (frequency dependent, average shear wave quality factor), appropriate for the best-fit Brune ω  − 2 spectrum of each of these three events. We then perform a non-linear least square analysis of the SH-wave spectral data to provide approximate near-field estimates of the strike, dip, and rake of the causative faults and also the seismic moment, moment magnitude, source size, and average stress drop of these three events. (2) In the next step, we use these approximate values and an empirical Green’s function approach, in an iterative manner, to optimally model the strong ground motion and rupture characteristics of the main event in terms of peak ground acceleration/velocity/displacement and duration of ground shaking and thereby provide improved, more reliable estimates of the causative fault parameters of the main event and its asperities. Our near-field estimates for both the main moderate event and the two smaller events are in good conformity with the corresponding far-field estimates reported by other studies.  相似文献   

16.
Seismic risk of circum-pacific earthquakes I. Strain energy release   总被引:1,自引:0,他引:1  
Commonly used earthquake “whole process” frequency - magnitude and strain energy - magnitude laws are merged to obtain an analytic expression for an upper bound magnitude to regional earthquake occurrenceM 3, which is expressed primarily in terms of the annual maximum magnitudeM 1 and the magnitude equivalent of the annual average total strain energy releaseM 2. Values ofM 3 are also estimated graphically from cumulative strain energy release diagrams. Both methods are illustrated by application to the high seismicity of the circum-Pacific belt, using Duda’s (1965) data and regionalisation. Values ofM 3 obtained analytically, with their uncertainties, are in agreement with those obtained graphically. Empirical relations are then obtained betweenM 1,M 2, andM 3, which could be of general assistance in regional seismic risk considerations if they are found to be of a universal nature. For instance.M 3 andM 2 differ by one magnitude unit in subregions of the circum-Pacific.  相似文献   

17.
Near-field records of two strong aftershocks with magnitudeM S=6.7 andM S=6.3 in the Lancang-Gengma earthquakes sequence, Yunnan Province, November 1988, are used to calculate the response spectrum. The instruments, site conditions and the methods for computing are also illustrated in this paper. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 338–343, 1991. This project is supported by The Chinese Joint Seismological Science Foundation, SSB and the West Yunnan Earthquake Prediction Test Field, Yunnan Seismological Bureau.  相似文献   

18.
The earthquakes in Uttarkashi (October 20, 1991, M w 6.8) and Chamoli (March 8, 1999, M w 6.4) are among the recent well-documented earthquakes that occurred in the Garhwal region of India and that caused extensive damage as well as loss of life. Using strong-motion data of these two earthquakes, we estimate their source, path, and site parameters. The quality factor (Q β ) as a function of frequency is derived as Q β (f) = 140f 1.018. The site amplification functions are evaluated using the horizontal-to-vertical spectral ratio technique. The ground motions of the Uttarkashi and Chamoli earthquakes are simulated using the stochastic method of Boore (Bull Seismol Soc Am 73:1865–1894, 1983). The estimated source, path, and site parameters are used as input for the simulation. The simulated time histories are generated for a few stations and compared with the observed data. The simulated response spectra at 5% damping are in fair agreement with the observed response spectra for most of the stations over a wide range of frequencies. Residual trends closely match the observed and simulated response spectra. The synthetic data are in rough agreement with the ground-motion attenuation equation available for the Himalayas (Sharma, Bull Seismol Soc Am 98:1063–1069, 1998).  相似文献   

19.
The mantle magnitudeM m is used on a dataset of more than 180 wavetrains from 44 large shallow historical earthquakes to reassess their moments, which in many cases had been previously estimated only on the basis of the earthquake's rupture area. We provide 27 new or revised values ofM o, based on the spectral amplitudes of surface waves recorded at a number of stations, principally Uppsala and Pasadena. Among them, and most significantly, we document a large low-frequency component to the source of the 1923 Kanto earthquake: the low-frequency seismic moment is 2.9×1028 dyn-cm, in accord with geodetic observations. On the other hand, we revise downwards the seismic moment of the 1906 Ecuador event, which did not exceed 6×1028 dyn-cm.Finally, the study of the 1960 Chilean and 1964 Alaskan earthquakes whose exceptionally large moments are properly retrieved throughM m measurements, serves proof that this approach performs flawlessly even for the very greatest earthquakes, and is therefore successful in its goal to avoid the saturation effects plaguing any magnitude scale measured at a fixed period.  相似文献   

20.
We studied broadband digital records of the M W = 7.6 Olyutorskii earthquake of April 20, 2006 and its aftershocks at local and regional distances. We have made a detailed analysis of data on peak ground motion velocities and accelerations due to aftershocks based on records of two digital seismic stations, Tilichiki (TLC) and Kamenskoe (KAM). The first step in this analysis was to find the station correction for soil effects at TLC station using coda spectra. The correction was applied to the data to convert them to the reference bedrock beneath the Kamenskoe station. The second step involved multiple linear regression to derive average relationshis of peak amplitude to local magnitude ML and distance R for the Koryak Upland conditions. The data scatter about the average relationshis is comparatively low (0.22–0.25 log units). The acceleration amplitudes for M L = 5, R = 25 km are lower by factors of 2–3 compared with those for eastern Kamchatka, the western US, or Japan. A likely cause of this anomaly could be lower stress drops for the aftershocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号