首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
港口目标识别是海事船舶监管的重中之重,船舶自动识别系统(Automatic Identification System,AIS)所获取的船舶活动信息,可为港口目标识别提供高时相和高精度的船舶航行数据。为了探究AIS数据在港口目标识别中的应用,提出一种基于多源数据和船舶停留轨迹语义建模的港口目标识别方法。通过数据挖掘和语义信息增强构建船舶停留轨迹语义模型,识别船舶港口停留轨迹;建立基于随机森林的船舶停留方式分类模型,分类船舶泊位停留轨迹和船舶锚地停留轨迹,并利用空间逐级合并方法提取港口泊位和港口锚地;综合船舶泊位停留轨迹、道路、海岸线、水深、土地利用与土地覆盖等数据,顾及情景-领域知识实现港口目标识别。基于2017年96 790艘船舶的超8300万条AIS轨迹记录,应用本文方法识别南海研究区的港口目标。实验结果表明,本文方法对于船舶轨迹停留行为总体分类精度为0.9477, Kappa系数为0.8948。提取出南海研究区447个港口区域,与Google Earth影像叠加验证结果表明,提取结果均位于真实的港口影像内,相较于Natural Earth数据集中包含的南海区域24个港口点位,提取结果的完整性大大增强。因此,基于多源数据和船舶停留语义建模的港口目标识别方法对于港口目标识别具有较高的准确性和完整性。此外,该方法提取的港口区域可为基于遥感影像的港口目标识别提供靶区,从而提高大区域甚至全球范围内港口目标动态识别的效率。  相似文献   

2.
船舶行为特征挖掘与预测是水上智能交通系统的重要研究内容,也是交通运输工程领域的关键科学问题。为系统研究基于船舶自动识别系统(Automatic Identification System, AIS)数据的船舶行为特征挖掘与预测的研究现状与发展趋势,本文首先针对Web of Science(WOS)和中国知网(China National Knowledge Infrastructure, CNKI)收录的文献,用知识图谱分析软件VOSviewer对文献关键词进行处理,从文献计量学的角度生成高频关键词的聚类图谱和趋势演化。然后对基于AIS数据的水上交通要素挖掘、船舶行为聚类和船舶行为预测3个主题的研究内容、方法、存在问题进行了系统分析和展望,研究结果表明:① 在基于AIS的水上交通要素挖掘方面,主要集中在对AIS数据中表征船舶行为空间特征和交通流的时间特征单独挖掘分析,缺乏对AIS数据的时间、空间以及环境因素特征的关联挖掘,对于如何进行交通要素的关联融合挖掘研究还有待深入探索;② 在船舶行为聚类方面,研究主要是运用无监督聚类方法研究船舶航迹点和航迹段聚类,得到船舶航行行为模式的时空分布和船舶操纵意图辨识模型,然而融合多维特征的船舶轨迹的相似性计算方法、聚类参数的自适应选取以及船舶行为的语义特征建模有待进一步研究;③ 在船舶行为预测方面,主要集中在基于动力学方程、传统智能算法和深度循环神经网络的船舶行为预测研究,考虑船舶行为的随机性、多样性和耦合性的特点,运用混合神经网络模型以及神经网络与向量机、注意力机制相结合的模型实现多维的船舶航行行为特征的实时预测将是新的研究方向。最后提出了基于语义模型的船舶行为特征挖掘、基于深度卷积神经网络的船舶行为的预测和基于知识图谱的船舶行为特征挖掘和预测结果可视化等有待进一步研究的方向。  相似文献   

3.
 船舶轨迹的自动观测记录已进入了大数据时代,其呈爆炸式增长的趋势给传统的轨迹数据管理方式带来了巨大挑战。本文针对通用船舶自动识别系统(AIS)岸基网络中船舶轨迹数据上传频率高,数据量大,覆盖范围广的特点,首先,分析了当前常见船舶轨迹数据存储方法存在的缺陷,概括了船舶轨迹数据的特征并对其进行抽象建模,然后,在时空立方体模型的基础上,提出了从抽样时刻、步进时段到每日航次的三层组织框架的建模思想,设计了Geodatabase的网格化三级时空立方体模型,实现了海洋运输船舶轨迹观测记录的Geodatabase管理方法。通过我国AIS岸基网络(温州-汕头)单日观测数据的实例验证,表明该模型存储及时空查询性能良好,且具有轨迹数据存储、查询和空间分析一体化管理的独特优势。  相似文献   

4.
随着全球经济一体化的深入推进,海上交通拥堵和船舶事故频发。为了对海上船舶活动进行监管和分析,传统的方法主要利用船舶定位数据进行数据挖掘,未结合其他海上多源数据进行船舶时空活动过程和行为模式分析,缺少深层次的知识挖掘。为此,本文综合利用多源数据,在提取轨迹的语义信息基础上,构建船舶活动知识图谱,为低知识密度的轨迹时空点序列向高阶语义知识转化提供一种有效途径。具体地,首先通过解析船舶活动的特征和组成要素,基于“过程-事件-行为”的核心思想,设计船舶活动知识图谱本体层;然后利用Stop/Move模型提取轨迹语义信息,利用DMCNN模型抽取船舶突发事件,完成实例层填充;最后通过构建原型系统,对上述模型和方法进行验证。结果表明,本文所构建的船舶活动知识图谱,可以支持对船舶常规活动和突发事件进行知识表示,并可以实现时空活动查询和回溯,进而达到语义增强效果,具有一定的应用价值。  相似文献   

5.
港口是物流供应链中的核心环节,港口服务效率会决定整个物流供应链的效率。本文提出了一种基于海量船舶AIS(Automatic Identification System)轨迹数据的港口服务效率计算框架,利用集装箱船舶AIS轨迹、港口地理信息等海事大数据,采用滑动窗口算法等数据挖掘方法判断船舶在港内的状态,估算出反映港口服务效率的AWT/AST指标,从时间维度对港口服务效率评价,为港口管理运营部门和航运公司决策提供参考。并以上海港、宁波港、深圳港、釜山港为例,采用2018年全年全球5600余艘集装箱船舶的AIS轨迹数据,量化评价4个亚洲集装箱港口的服务效率。结果显示:① 船舶抵港泊位作业时间近似正太分布,正太分布均值在14~18 h之间,船舶泊位作业时间集中在10~30 h;② 船舶泊位作业时间与船舶船型大小成正相关,船型越大则泊位作业时间越长;③ 32%的船舶抵达上海港会发生等待时间,体现上海港集装箱码头整体处于供不应求的状态。宁波港整体服务效率较高,船舶发生等待事件较少。作为区域性枢纽港,釜山港近洋区域性运输频繁使得釜山港抵港船舶频率较高。④ 洋山四期码头为自动化码头,其港口装卸工艺与其他码头不同,但其码头作业效率并未高很多。  相似文献   

6.
对轨迹数据进行分析和处理能够揭示移动对象的运动规律并挖掘出与其相关的隐含信息,移动对象的不规律或异常运动产生了异常轨迹数据,异常数据的出现往往意味着有特殊情况发生,隐含着更有意义的信息,快速、准确地检测异常轨迹能够服务于交通分析及事故检测等具体应用领域。针对传统轨迹异常检测方法没有充分考虑轨迹局部异常的问题,该文提出一种基于停留区域识别的子轨迹异常检测方法:(1)设计了一种基于密度的停留点检测算法检测轨迹集的停留点,通过寻找核心点以建立初始簇,使用核心点邻域内的点扩展当前簇,并根据簇内的时间间隔是否满足时间条件,从而检测出停留点;(2)根据停留点集合识别停留区域,将任意2个停留区域作为一对起点和终点区域后对轨迹进行分段;(3)根据分段后子轨迹的起点区域和终点区域对子轨迹集进行分组;(4)针对每个分组内的子轨迹,设计子轨迹异常检测算法检测异常空间子轨迹和异常时空子轨迹。在真实轨迹数据集上与传统异常检测方法进行对比,实验结果表明本文所提方法能有效地检测出异常子轨迹,并且运行时间明显低于TRAOD方法,检测准确率比TRAOD方法最高提升了23.9%;F1分数值相较于AT...  相似文献   

7.
提升海上态势感知能力是构建智慧海洋的重要环节。针对目前海上目标研究单源传感器存在感知盲区,多源传感器数据关联易受杂波干扰、在密集区表现不佳等问题,本文基于合成孔径雷达(SAR)和船舶自动识别系统(AIS)数据,提出一种抗干扰性强的角度最近邻数据关联方法,充分利用SAR与AIS船舶目标的空间角度关系,提高船舶目标在密集区域点迹关联的准确性。首先,对AIS数据进行时空滤波,实现数据粗关联,构建关联分析的数据候选集;然后,从时空数据的空间关系角度出发,在灰狼优化和匈牙利算法的启发下,利用点迹对特征向量矩阵进行运算,实现对多源空间数据的优化关联;最后结合数据几何关系对结果进行置信度评估。本文选取5幅SAR影像与AIS数据进行实验,并基于SAR影像数据及船舶轨迹点分布密度设计仿真实验,结果表明,本文所提出的角度最近邻数据关联方法,在密集分布情况下,关联精度为传统NN、GNN算法的3.62和4.61倍,运行时间为1.69 s,相较于NN算法仅增长1.36 s,仅占GNN运行时间的0.49%,在运行时间增长不大的情况下具有更强的抗干扰能力,在密集区域仍能取得较好的关联效果。  相似文献   

8.
针对大型船舶长航道乘潮进港窗口期时长不充足问题,本文提出了基于船舶自动识别系统(Automatic Identification System,AIS)数据、港口潮汐数据、官方电子海图数据和航道地理位置数据等多源海事数据的大型船舶长航道精细化分段乘潮模型。首先,基于AIS数据采用K中心点算法对大型船舶乘潮航行行为特征进行挖掘,识别出大型船舶乘潮航迹关键点,计算大型船舶乘潮航行行为变化关键船位点。接着,结合长航道地理环境特征和大型船舶航行行为特征对长航道进行精细化分段,在此基础上基于港口潮汐数据构建大型船舶精细化分段乘潮窗口期计算模型。其次,设计乘潮历时自适应排列算法求解大型船舶乘潮最长窗口期;然后,以黄骅港综合港区航道为例验证了本文所提出的精细化分段乘潮模型。最后,基于电子海图数据利用地理信息系统平台实现大型船舶精细化分段乘潮三维动态推演,进一步验证大型船舶精细化分段乘潮航行的安全性。结果表明,该模型能够有效增加大型船舶乘潮进港窗口期时长,提高大型船舶乘潮进港效率,可为港航管理部门制定大型船舶进港计划提供理论指导。  相似文献   

9.
停泊船空间分布规律挖掘,在海事监管、港口管理和航运公司船队管理方面有着重要意义。现有研究主要针对船舶停泊点进行空间聚类以识别码头和锚地,缺乏对码头、锚地内船舶停泊特征分析,及码头和锚地外的异常停船的检测。因此,利用海量船舶自动识别系统(AIS)数据探索船舶停泊规律显得很有必要,且具备可行性。根据海况设定停泊速度阈值和停泊位置变化量阈值,建立停船判定模型。按港区、船型筛选,获取2016年1至11月外高桥港区集装箱船停泊记录。根据类中心点密度和聚类数量,设定邻域半径(ε)和邻域密度(MinPts),采用密度聚类(DBSCAN)算法对船舶停泊点进行密度聚类,并将聚类结果与外高桥港区码头、锚地分布图进行比较,生成可疑停船列表。对比船舶历史轨迹,明确可疑停船列表中船舶真实停泊记录,筛选出异常停船。研究发现,2016年1至11月外高桥港区船舶异常停泊点位于圆圆沙锚地至吴淞口锚地间的南港水道和江亚南沙锚地附近的南港水道航段。船舶停泊前、后位置变化幅度小,而速度变化幅度大,推测船舶突发故障是其异常停泊的原因。海事主管部门(MSA)可根据船舶水上移动通信业务识别码(MMSI)快速锁定航运公司,加强岸上船舶安全管理。船舶停泊位置和时间能够记录船舶发生故障地点及其持续时间,为船队管理提供重要依据。  相似文献   

10.
考虑到受限水域船舶类型、船舶长度以及速度对船舶领域的影响,本文基于船舶自动识别系统(Automatic Identification Systen,AIS)数据,建立受限水域内船舶动态领域模型。通过求取每一时刻目标船到本船的距离和相对方位,获得单船船位分布图,然后对本船和目标船按船舶类型、船舶长度和船速进行分类,对同一类型单船船位分布图进行叠加,获得特定类型的船位分布图,采用数理统计方法确定船舶领域的边界,最终建立受限水域船舶动态领域模型。选用舟山港螺头水道AIS数据对该方法进行验证,共挖掘出19种不同类型的船舶动态领域模型。分析结果表明:货船对货船的船舶领域最小,油船对油船的船舶领域最大;船舶领域的长度随着船长,船速的增加而增加,且在长轴方向上增加的幅度要大于短轴方向;船舶领域长度与船舶长度的比值并非为定值,而是随着船长,船速的增加而递减,船速越大,递减的幅度越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号