首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 672 毫秒
1.
中国土壤湿度的时空变化特征   总被引:3,自引:1,他引:2  
张蕾  吕厚荃  王良宇  杨冰韵 《地理学报》2016,71(9):1494-1508
基于中国155个农业气象观测站1981-2010年逐旬土壤湿度资料,分析了全国和12个气候区域0~50 cm逐层的土壤湿度时空分布规律,采用趋势分析和Cramér-von Mises(CVM)方法探究了土壤湿度的变化趋势及突变性。结果表明:西南、江淮、东北、江南、江汉、黄淮和华南地区各层土壤湿度均高于全国平均值,内蒙古地区最低;随着深度增加,西南地区土壤湿度增加最明显,仅青藏高原地区土壤湿度减小。不同区域0~50 cm各层土壤湿度年变化和季节变化差异明显,并具有阶段性特征,大部地区深层土壤湿度高于浅层;总体上,新疆、华南、华北、青藏高原、东北、黄淮地区1981-2010年土壤湿度减小趋势显著,其中新疆地区减小最为明显。除江淮地区外,各区域土壤湿度均存在较为明显的年际差异,突变时段主要集中在20世纪80年代后期至90年代初期、90年代后期两个时间段。  相似文献   

2.
近50年中国北方土壤湿度的区域演变特征   总被引:36,自引:1,他引:36  
利用中国100E以东139站1951~1999年逐月反演的土壤湿度资料(0cm~100cm,共11层),重点分析了中国东北、华北和西北东部三个地区的土壤湿度在年际一年代际时间尺度上的演变特征.研究表明:不同层次上土壤湿度的变化特征有很好的一致性.华北地区在20世纪60年代末到70年代末为显著偏湿的阶段,之后发生突变直到90年代末土壤湿度持续降低并以90年代中后期为甚.东北区在70年代前后为一显著的干旱时段,此后土壤湿度有所恢复,但90年代以来该区的土壤湿度仍然较低.值得注意的是,华北夏季土壤湿度自80年代以来并未有明显的下降.另外,北方地区土壤在秋季普遍存在干化趋势,其中以东北地区最为显著.本文还分析了土壤湿度演变趋势的地理分布特征.  相似文献   

3.
半干旱地区流动沙地土壤湿度变异及其对降水的依赖   总被引:23,自引:4,他引:19  
何志斌  赵文智 《中国沙漠》2002,22(4):359-362
应用半干旱区科尔沁沙地1983- 1990年5~ 10月份土壤湿度定点观测资料,对流动沙地土壤湿度的时空变异及其与降水关系进行了研究。结果表明:半干旱区科尔沁沙地,在0~ 300cm的垂直剖面上,以20cm作为一个层次,流动沙地土壤湿度多年平均值变化于3.25%~ 3.47%,层次间无显著差异。在时间序列土壤湿度存在年内和年际变异,5月份的土壤湿度与6~ 10月份存在显著差异,但6~ 10月份之间土壤湿度差异不显著。年际间降水量变化于243.3~ 567.1mm (变异系数9505%)之间,流动沙地土壤湿度变化于3.10%~ 3.69% (变异系数18.68%)之间。0~ 40cm土壤湿度与前月降水量不显著相关,但40~ 300cm土壤湿度与前月降水量显著相关,当月降水量与各层土壤湿度均显著相关。  相似文献   

4.
近50年气候驱动下东北地区玉米生产潜力时空演变分析   总被引:3,自引:0,他引:3  
利用GAEZ模型,综合考虑气象、土壤、地形等因素,估算1961-2010年东北玉米生产潜力,分析50年来气候变化导致的东北玉米生产潜力时空格局演变特征。研究发现:① 1961-2010年,东北玉米平均生产潜力波动较大,整体上以每10年80 kg/hm2的线性倾向率增加;② 由于气候变化,20世纪末、21世纪初玉米生产潜力变化较为频繁;③ 玉米生产潜力总值黑龙江省始终处于最高,近50年间增长幅度黑龙江省>吉林省>辽宁省;④ 近50年来,黑龙江省玉米生产潜力的波动较为剧烈,吉林省和辽宁省相对稳定;⑤ 近50年东北玉米适宜种植区有所增加,主要集中在黑龙江省西北地区,高生产潜力区域增加明显,呈现北移趋势。研究可为东北地区高效利用气候和土地资源,优化玉米生产布局提供依据。  相似文献   

5.
基于蒙特卡洛生存分析探究东北森林物候的影响因素   总被引:1,自引:0,他引:1  
植被是生态环境变化的指示器,分析植被物候的影响因素不仅有助于气候变化分析,提高区域气候模式的模拟精度,而且对于准确评估植被生长趋势、生产力以及全球碳收支均具有重要意义。基于遥感的植物物候监测已取得了长足的发展和进步,但当前利用大范围、长时间序列的遥感数据分析植被物候影响因素的研究尚不多,采用线性回归模型对非线性的植被物候影响因素进行分析可能存在偏误。因此,本文提出一种基于蒙特卡洛模拟的生存分析方法,对东北森林物候的影响因素进行量化分析。首先利用东北森林地区1982-2009年间AVHRR GIMMS NDVI数据,应用双Logistic曲线拟合方法对植被春季返青期(SOS)、秋季落叶期(EOS)及植被生长期(GSL)进行提取;然后基于蒙特卡洛模拟和生存分析构建植被物候影响因素分析模型;最后运用所构建模型探讨了东北森林区春季返青期、秋季落叶期的可能影响因素。结果发现:温度、降水和风力对中国东北森林关键物候期有一定影响,其中温度是春季返青期和秋季落叶期的最主要驱动因素,长期平均温度比短期内的温度突变对物候影响更显著,落叶期前的风速增加有可能使落叶时间提前;除了环境因素,春季返青早的年间秋季落叶倾向于更晚。研究表明,结合蒙特卡洛方法的生存分析可以较好地对物候期的影响因素进行定量分析,可为物候现象的归因分析提供一种新的方法。  相似文献   

6.
利用1980—2019年欧洲中期天气预报中心提供的ERA5月平均再分析数据和全球降水气候中心(GPCC)提供的逐月降水数据,分析中亚前期5月土壤湿度异常对后期6月局地降水变化的影响。结果表明:(1)中亚春季逐月土壤湿度总体表现为北部和中部高、西南和东南低的空间分布特征;3—4月土壤湿度年际变化的大值区主要位于中亚西南部;中亚北部土壤湿度在3月呈显著增加趋势,4—5月显著减少;中亚西南部3月土壤湿度显著减少。(2)中亚中部地区5月土壤湿度异常与当地6月的降水变化呈显著正相关,通过95%信度检验。5月土壤湿度正异常可以持续到6月,导致6月局地蒸发量增加,大气可降水量增多;同时地表向上潜热通量增加、感热通量减少、波恩比减小,进而导致大气边界层降低、低层大气湿熵增加、对流不稳定能量增大,有利于降水天气的发生。(3)前冬Ni?o3.4指数与中亚中部地区次年5月土壤湿度和6月降水异常都呈显著正相关,5月土壤湿度是厄尔尼诺-南方涛动(ENSO)影响次年6月中亚中部地区降水异常的重要媒介,但土壤湿度可独立于ENSO影响6月降水。  相似文献   

7.
藏北高原土壤的温湿特征   总被引:15,自引:1,他引:14  
通过藏北高原两个站点(D110和安多)土壤温湿特性的分析,表明浅层土壤温度的变化幅度明显的比深层的要大,而且浅层土壤温度受地表随机天气过程的影响较大。浅层(20cm)土壤在未冻结前湿度的变化幅度不但受形成降水的地表随机天气过程的影响,而且受其下层土壤湿度状况的影响。下层土壤湿度越小,浅层(20cm)土壤湿度的变化幅度越大。土壤湿度和土壤温度之间存在着明显的相互关系,土壤的湿度状况能够影响土壤温度变化的幅度和土壤温度变化的趋势。  相似文献   

8.
1960-2009年横断山区潜在蒸发量时空变化   总被引:8,自引:2,他引:6  
以横断山区20 个气象站1960-2009 年逐日气象数据为基础,应用1998 年FAO 修正的Penman-Monteith 模型分析了横断山区潜在蒸发量的变化,在ArcGIS 环境下通过样条插值法分析了潜在蒸发量变化的时空分异,并对影响潜在蒸发量变化的气象因素进行了讨论,结果表明:年潜在蒸发量自20 世纪60 年代中期以来呈波动减小趋势,20 世纪80 年代中期之后减小趋势更加明显,2000-2009 年呈增加趋势。潜在蒸发量的年际变化倾向率为-0.17 mm a-1,从空间分布来看,北部、中部、南部都呈减少趋势,倾向率由北向南逐渐减小。从季节来看,秋季和冬季潜在蒸发量呈增加趋势,春季和夏季呈减小趋势,春季减小趋势大于夏季,秋季增加趋势大于冬季。气温上升、风速和日照时数的降低是横断山区潜在蒸发量减少的主导因素,风速和日照时数的下降导致春季和夏季潜在蒸发量减小,气温上升导致秋季和冬季潜在蒸发量增加。  相似文献   

9.
1992-2015年中国沙漠面积变化的遥感监测与气候影响分析   总被引:1,自引:1,他引:0  
目前,关于中国全域年际分辨率长时间序列沙漠面积变化及影响机制的研究较少。利用1995-2015年全国土地利用数据对1992-2015年地表覆被数据中的裸地进行校正,并采用2000年和2002年腾格里沙漠遥感影像解译结果对校正后的沙漠面积的精度进行验证,同时分析不同大气环流区沙漠面积变化的气候变化影响机制。结果表明:1992-2015年中国沙漠面积减少了86 704 km2,东部季风区沙漠面积减少最明显,其次是青藏高寒区,西北干旱区减少最小,减少面积分别是46 109、23 470、17 125 km2。其中,东部季风区沙漠面积减少占比最为明显,达到18.13%。土壤湿度是影响西北干旱区和青藏高寒区沙漠面积年际变化的关键因素,降水、相对湿度和土壤湿度对东部季风区沙漠面积变化有直接影响,林业生态建设工程、退耕还林还草等措施也有一定关系。近20年来中国北方风力减小和人类保护可能是东部季风区沙漠面积减少的主要因素。  相似文献   

10.
中国东北近50年干旱发展及对全球气候变暖的响应   总被引:35,自引:1,他引:34  
谢安  孙永罡  白人海 《地理学报》2003,58(Z1):75-82
应用实测的降水、气温和土壤湿度资料,分析我国东北区(含黑龙江、吉林、辽宁三省和内蒙古自治区的东部)近50年干旱化的发展趋势.结果表明,用月平均气温和降水量的距平和均方差所构造的"大气干旱指数"以及土壤湿度都显示,近50年来整个东北区是向干旱发展的,1990年代中期以来这种干旱化趋势尤为明显;而东北西部亚干旱地区的干旱化相对更严重(特别是内蒙古东部的北半部).在亚干旱地区的气温和降水两个要素中,气温的升高对干旱化的作用可能更重要.在东北区的南部,近50年来的降水是略有增加,但仍有向干旱发展的趋势.这显然与全球气候变暖的大背景有关.为探讨东北区干旱的发展对全球气候变暖的响应,利用Jones等的1951~2000年全球平均气温资料和东北区25个站的大气干旱指数进行线性回归分析.结果表明,在全球平均温度上升1℃的情况下,中国东北区的干旱化程度要增加5~20%,最大的达到22%.这种形势应该引起我们的关注.  相似文献   

11.
古尔班通古特沙漠积雪覆盖、沙尘天气特征及其相互关系   总被引:2,自引:0,他引:2  
利用TERRA/MODIS MOD10A2雪盖产品数据和地面观测积雪日数、冻土深度和沙尘天气日数等数据,从不同时间尺度分析古尔班通古特沙漠地表积雪覆盖与沙尘天气的特征及其相互关系。结果表明:①沙尘天气主要发生在4—10月,春季(4—5月)沙尘天气最多,夏秋季逐渐减少。从年际变化看,20世纪80年代前,沙尘天气发生日数呈逐年增加趋势,而积雪日数增减波动较大,二者间关系不明显,80年代后,沙尘天气逐年减少,积雪日数呈波动增加趋势。②冬春季积雪覆盖率、≥1 cm积雪日数、≥5 cm积雪日数、≥10 cm积雪日数与翌年春季沙尘天气发生均呈显著负相关关系,冬春季≥1 cm积雪日数每超过常年平均积雪日数1 d,翌年春季沙尘天气日数则减少4.3 d,而平均冻土深度与沙尘天气呈显著正相关关系。③积雪覆盖使沙漠地表形成冷源性下垫面和近地层逆温层结,增加了大气稳定度,同时春季积雪消融增加了土壤湿度,为荒漠植被生长提供充足的水分,使表层土壤为强风提供沙尘的可能性降低,从而对沙尘天气的发生起到阻碍、消弱作用。  相似文献   

12.
利用2003~2010年吉林省春季土壤含水率数据及相关数据,采用常规统计方法、地统计学方法和基于地理信息系统的空间分析方法,讨论吉林省春季土壤水分分布特征,并对其影响因素进行初步分析。结果表明,吉林省春季0~30 cm土壤平均含水率总体上呈由西向东逐渐增加的趋势,空间差异性显著,其中10 cm深度土壤含水率空间差异最大;土壤层之间的距离越近,土壤含水率的相关性越好,东部10 cm深度与其他层次土壤含水率的相关性好于中西部,中部相比东部和西部而言,各层次之间土壤含水率相关性最差。研究还发现,田间持水量和降水量是影响吉林省土壤含水率分布的主要因素,受土壤、气候等自然要素的空间异质性影响,田间持水量对中部和东部的土壤含水率影响更大,而降水对中部和西部的土壤含水率影响更大。  相似文献   

13.
From May 7 to August 13, 1985, soil moisture was measured at 12 study sites located along a 200-km east-west trending transect in west-central Oklahoma. Soil moisture was sampled at three depths at each site: 15 cm, 61 cm, and 91 cm. Study site location and the time (week) of data collection were analyzed through correlation and regression analysis in order to assess their impact on soil moisture variability measured at the three sampled depths. Along the transect for the study period, soil moisture increased with depth; soil moisture also increased with depth from west to east along the transect during the sample period. The correlation between the location of the sample site and soil moisture was weak at the 15 cm depth (0.48), but was stronger at greater depths (0.78 at 61 cm; 0.65 at 91 cm). The location of the study site along the transect explained 25% of the variation in soil moisture at a 15 cm depth; 62% at a 61 cm depth; and 51% at a 91 cm depth. The time (week variable) of data collection at each sample site was less useful in explaining the variability in soil moisture than site location. Time explains 15, 23, and 16% of the variability observed in soil moisture along the transect for the depths of 15, 61, and 91 cm, respectively. A combination of time and location variables, however, explained 46% of the variability in soil moisture for all three depths. The same time and location variables explained 55%, 76%, and 52% of the variability observed in soil moisture for the three individual depths: 15, 61, and 91 cm, respectively. Unusual precipitation events affected the transect throughout the study period and diminished the impact of location as a significant explanatory variable for describing variability in soil moisture.  相似文献   

14.
利用塔克拉玛干沙漠大气环境观测试验站西站10 m梯度探测系统气象和辐射观测数据,分析了塔中积雪下垫面地表反照率、土壤温度、土壤湿度的变化特征及其相互关系。结果表明:塔中积雪覆盖期间地表反照率0.18~0.97,日均值为0.60;有积雪覆盖的地表反照率日变化更偏向反"J"型,呈现出上午大于傍晚的形态,平均早晚较差为0.13;积雪使0~40 cm深度土壤温度下降,积雪消融后土壤湿度增大使各层土壤温度趋于接近,并使0、10、20 cm深度的土壤温度日变幅呈减小趋势,减小幅度分别为41%、39%、39%;积雪地表反照率与地表温度表现出负相关关系,反照率越高地表温度越低,二者相关系数为-0.71;积雪地表反照率与5 cm深度土壤湿度负相关,高地表反照率对应低土壤湿度,低地表反照率对应高土壤湿度,二者相关系数为-0.74。  相似文献   

15.
甘肃旱作农业区降水对土壤水分的影响   总被引:4,自引:0,他引:4  
利用甘肃旱作区35个气象站1961-2007年日降水量和13个农业气象观测站从建站到2007年逐年4-10月旬土壤重量含水率资料,分析了旱作区土壤湿度与降水量的关系。采用REOF把甘肃旱作区年降水量划分为4个气候子区域:陇东、陇中西部、陇中东部和陇南。结果表明:①在0~100 cm各层土壤中,耕作层0~30 cm土壤湿度与降水量的关系最好。②旱作区降水量和耕作层土壤湿度存在着一致的年际振荡趋势。各地土壤增湿时间与旬降水达到20 mm的时间基本一致。③耕作层土壤湿度与降水量有极显著的正相关关系,土壤湿度对降水量的敏感性随深度逐渐降低,陇中土壤湿度对降水的敏感性大于陇东南。④不同级别的降水对土壤湿度有不同的影响。不同级别降水之间,土壤湿度的差异极其显著。降水级别从“较强-强”,土壤湿度增幅最大。建立了土壤湿度与不同级别降水的关系式。  相似文献   

16.
不同演替阶段油蒿群落土壤水分特征分析   总被引:3,自引:0,他引:3  
油蒿群落是毛乌素沙地最主要的群落类型之一,在维持当地生态系统稳定中起着重要作用。土壤水分是影响油蒿群落演替的重要环境因子,为深入分析不同油蒿演替阶段土壤水分特征,使用EC-5土壤水分传感器连续监测整个生长季内先锋物种阶段(流动沙地)、稀疏阶段(半固定沙地)和建成阶段(固定沙地)油蒿群落土壤水分动态。结果表明,3种样地土壤水分均存在时间和空间上差异,流动沙地各层土壤含水量均显著高于半固定沙地和固定沙地;土壤含水量受降水影响较大, 降水量是影响土壤水分补给深度的重要因素,小于10 mm的降水主要被表层土壤吸收,10~20 mm的降水对土壤水分的补给深度超过30 cm、不及60 cm, 30~40 mm的降水补给深度大于60 cm、不及100 cm;30 cm及其上层土壤水分波动剧烈,60 cm处土壤水分主要受大于30 mm降水事件影响,波动较小,100 cm和160 cm处土壤水分几乎不受降水的影响,土壤含水量较稳定;降水补给深度及植被根系需水的层次差异是导致3种样地土壤水分时间和空间上异质性的重要因素;土壤温度主要受大气温度影响,与土壤水分相关性不显著,且随土壤深度的增加而降低。  相似文献   

17.
黑河流域荒漠区土壤水分对降水脉动响应   总被引:16,自引:5,他引:11  
 利用气象站资料,对黑河流域荒漠区降水特征及其土壤水分对降水脉动响应进行了系统研究。结果表明,荒漠区降水属于降水脉动事件,降水前后土壤水分特征存在显著差异,且随土层增加差异逐渐变小。土壤水分在降水量、土壤深度和降水前后的差异极显著,交互效应也极显著(P<0.0001),表明荒漠区土壤水分对降水脉动具有显著的响应现象。土壤水分的降水脉动响应表现为降水后土壤含水量激增,在蒸散作用下缓慢减小。降水前后土壤含水量的时间序列变异规律均能较好地拟合成变异函数的理论模型。降水前后土壤含水量随机变异均小于结构性变异,反映出荒漠区土壤水分在时间尺度上具有较强的自相关性格局。降水使土壤水分空间结构差异呈现下降趋势,在时间序列上异质性降低。  相似文献   

18.
中国耕地土壤相对湿度时空分异   总被引:4,自引:1,他引:3  
以全国653个农业气象站1993-2013年耕地的土壤相对湿度数据为基础,运用地统计方法,分析中国耕地土壤相对湿度时空分异特征与规律。结果表明:自1993年以来全国耕地的土壤相对湿度呈现波动上升趋势。全国耕地的土壤相对湿度普遍大于60%,分布区域自4月中旬开始随夏季风推移不断向北向西扩大,自10月下旬开始向东、南方向缩小。耕地土壤相对湿度值随土壤深度的增加而增加。年际尺度上,耕地的土壤相对湿度在夏秋季上升速度最快,变化幅度随土层深度增加而变小。土壤相对湿度与降水量存在较强的正相关关系,与潜在蒸发量、气温普遍存在较强的负相关关系。土壤相对湿度与各气象要素的相关性随深度加深而减弱。春、夏、秋季气象因素对旱地土壤相对湿度影响较大,冬季气象因素对水田影响更大。  相似文献   

19.
土壤可溶性有机碳(DOC)是土壤有机碳库的活性组分,联接陆地和水生生态系统。DOC的降解影响碳循环、营养动力学机制和微生物的能源供给,因此改变生物地球化学过程。本研究对千烟洲森林试验站(QFES)土壤溶解性有机碳浓度垂直剖面和季节的变化及其控制因子,包括土壤性质和环境因素进行分析。2007年11月至2009年3月每两个月、2009年4月至2010年103每月,分别在土壤10、20、30cm深度和10、30、50cm深度,采用机械式真空取样装置共收集了土壤溶液样品。用总碳分析仪(TOC)测定DOC浓度,DOC浓度平均值范围为3.0-26.2mgL^-1。在土壤剖面10、20、30、50cm深度DOC浓度平均值(±标准差)分别为12.4±4.4、10.6±6.3、8.7±2.6及8.0±5.9mgL^-1。DOC季节平均浓度和春李DOC浓度平均值具有明显的随深度增加而降低的特征。而在夏季、秋季和冬季,DOC浓度在土壤剖面上的变化不具有明显的特征。春季、夏季、秋季和冬季DOC浓度平均值分别为10.2、10.5、10.8和8.3mg^L1,不同深度DOC浓度的季节变化没有一致的特征。分析表明,凋落物有机碳含量与DOC浓度之间无明显相关关系,SOC与DOC含量具有相同的土壤剖面变化特征,SOC与DOC之间具线性正相关关系(R^2=0.19,p〈0.01),表明SOC是DOC的主要来源之一。在湿地松、马尾松和杉木林,土壤溶液10cm深度和5cm土壤温度间具有指数正相关关系(R^2=0.12,p〈0.01)。在湿地松土壤剖面,DOC浓度与土壤湿度具负线性相关关系(R^=0.15,p〈0.001),在湿地松、马尾松和杉木林,土壤溶液10cm深度DOC浓度和5cm土壤湿度之间具有负指数相关关系(R^2=0.13,p〈0.001)。取样月降雨量与DOC季节平均浓度不相关。然而,对取样前不同时间降雨量与DOC季节平均浓度的分析表明,取样前降雨事件的时间对不同深度的DOC季节平均浓度有不同的影响。通过分析揭示了SOC和环境变量土壤温度、土壤湿度和降雨是DOC的控制因子。本研究以人工湿地松林碳循环中DOC动力机制为重点,为评价亚热带红壤区生态恢复的效果提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号