首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zusammenfassung Im Verlauf der anaeroben Fermentation des Kl?rschlammes kommt es zu ?nderungen der chemischen Eigenschaften. Die organischen Stoffe werden in wasserl?sliche Verbindungen mit niedrigerem Molekülgewicht, diese dann weiter in Mineralkomponenten CH4, CO2, NH3 und H2S zersetzt. In der vorliegenden Arbeit sind diese ?nderungen quantitativ ausgewertet, und die Kinetik ihres Verlaufes wurde verfolgt. Die erzielten Ergebnisse sind in Tabellen und Abbildungen zusammengefasst.
Summary The anaerobic methane fermentation of sewage sludge caused changes of its chemical properties. Organic matter is decomposed into water soluble compounds of minor molecular weight, and subjected to further decomposition into mineral components CH4, CO2, NH3 and H2S. This paper deals with these changes in a quantitative evaluation, the kinetics of their course being followed as well. The attained results are summarized into tables and graphs.
  相似文献   

2.
Gas variations of many mud volcanoes and hot springs distributed along the tectonic sutures in southwestern Taiwan are considered to be sensitive to the earthquake activity. Therefore, a multi-parameter automatic gas station was built on the bank of one of the largest mud-pools at an active fault zone of southwestern Taiwan, for continuous monitoring of CO2, CH4, N2 and H2O, the major constituents of its bubbling gases. During the year round monitoring from October 2001 to October 2002, the gas composition, especially, CH4 and CO2, of the mud pool showed significant variations. Taking the CO2/CH4 ratio as the main indicator, anomalous variations can be recognized from a few days to a few weeks before earthquakes and correlated well with those with a local magnitude >4.0 and local intensities >2. It is concluded that the gas composition in the area is sensitive to the local crustal stress/strain and is worthy to conduct real-time monitoring for the seismo-geochemical precursors.  相似文献   

3.
Several kinds of geochemical anomaly before strong earthquakes have been observed in China since 1966. They include changes in groundwater radon levels, ion content of water (Ca+2, Mg+2, Cl, SO 4 –2 , F), dissolved gases (H2, CO2), and gases escaping from the aeration zone through abandoned dry wells (Ar, N2, CO2). The radon anomalies may be grouped as long-term and short-term anomalies. Most of the geochemical anomalies observed are characterized by a pattern of increase. The largest amplitude recorded was 37 times the base level. Preliminary study indicates that the types of seismogeochemical anomaly observed prior to strong earthquakes depend on tectonic, geologic, lithologic, and hydrogeological conditions at the monitoring station. Results obtained from modelling experiments on the mechanisms of some anomalies are given.  相似文献   

4.
Clarification of the molecular mechanism underlying the interaction of coal with CH4, CO2, and H2O molecules is the basis for an in-depth understanding of the states of fluid in coal and fluid-induced coal swelling/contraction. In terms of instrumental analysis, molecular simulation technology based on molecular mechanics/dynamics and quantum chemistry is a powerful tool for revealing the relationship between the structure and properties of a substance and understanding the interaction mechanisms of physical-chemical systems. In this study, the giant canonical ensemble Monte Carlo (GCMC) and molecular dynamics (MD) methods were applied to investigate the adsorption behavior of a Yanzhou coal model (C222H185N3O17S5). We explored the adsorption amounts of CH4, CO2, and H2O onto Yanzhou coal, the adsorption conformation, and the impact of oxygen-containing functional groups. Furthermore, we revealed the different adsorption mechanisms of the three substances using isosteric heat of adsorption and energy change data. (1) The adsorption isotherms of the mono-component CH4, CO2, and H2O were consistent with the Langmuir model, and their adsorption amounts showed an order of CH4<CO2<H2O. In addition, high temperatures were non-conducive to adsorption. When the three components of CH4/CO2/H2O were mixed (at a molar ratio of 1:1:1) for adsorption, only the adsorption curve of H2O was consistent with the Langmuir model. (2) The mean values of the isosteric heat of adsorption of CH4, CO2, and H2O were 22.54, 36.90, and 37.82 kJ/mol, respectively; that is, H2O>CO2>CH4. In addition, at higher temperatures, the isosteric heat of adsorption decreased; pressure had no significant effect on the heat of adsorption. (3) CH4 molecules displayed an aggregated distribution in the pores, whereas CO2 molecules were cross arranged in pairs. Regarding H2O molecules, under the influence of hydrogen bonds, the O atom pointed to surrounding H2O molecules or the H atoms of coal molecules in a regular pattern. The intermolecular distances of the three substances were 0.421, 0.553, and 0.290 nm, respectively. The radial distribution function (RDF) analysis showed that H2O molecules were arranged in the most compact fashion, forming a tight molecular layer. (4) H2O molecules showed a significantly stratified distribution around oxygen-containing functional groups on the coal surface, and the bonding strength showed a descending order of hydroxyl> carboxyl>carbonyl. In contrast, CO2 and CH4 showed only slightly stratified distributions. (5) After the adsorption of CH4, CO2, and H2O, the total energy, the energy of valence electrons, and the non-bonding interaction of the system in the Yanzhou coal model all decreased. The results regarding the decrease in the total energy of the system indicated an order of H2O>CO2>CH4 in terms of the adsorption priority of the Yanzhou coal model. The results regarding the decrease in the energy of valence electrons showed that under certain geological conditions, a pressure-induced “coal strain” could lead to a structural rearrangement during the interaction of coal with fluid to form a more stable conformation, which might be the molecular mechanism of coal swelling resulting from the interaction between fluid and coal. An analysis of the contribution of Van der Waals forces, electrostatic interactions and hydrogen bonds to the decrease in non-bonding interactions revealed the mechanism underlying the interactions between coal molecules and the three substances. The interaction between coal molecules and CH4 consisted of typical physical adsorption, whereas that between coal molecules and CO2 consisted mainly of physical adsorption combined with weak chemical adsorption. The interaction between coal molecules and H2O is physical and chemical.  相似文献   

5.
After the earthquakes of September 26, 1997, that hit the Umbria-Marcheboundary (Apennine, Central Italy), with a maximum 6.0 Mw, aprogram of geochemical surveying together with a collection ofhydrogeological changes episodes was extended throughout theepicentre-area, taking the yearly period of the seismic sequence as a whole.After a first areal screening, the Bagni di Triponzo thermal spring wasselected for a discrete temporal monitoring (weekly and monthly basis),being the unique thermal spring throughout the epicentre area. This sitedeserves peculiar interest in deepening the knowledge about deep fluidscirculation changing during seismicity.Laboratory and on-field analyses included major, minor and trace elementsas well as dissolved gases (He, Ar, CH4, CO2, H2S,222Rn, NH4, As, Li, Fe, B, etc...) and selected isotopic ratios(C, H, O, He, Sr, Cl), meaningful from tectonic point of view.The chemistry and isotopic chemistry of the spring were fully outlined anddiscussed, pointing out the main process involving the thermal aquifer: thewater-rock interaction inside the Evaporite Triassic Basement (ETB),possibly involving also the Paleozoic Crystalline Basement. On theother hand, sudden and apparent geochemical and hydrogeologicalvariations during the seismic sequence ruled out an evolution in thewater-rock interaction processes. They occurred both at depth, i.e.,induced by fluid remobilization within the crust explained by the Coseismic Strain Model and by the Fault Valve Activity Model, and in the shallow part of the reservoir (i.e., meteoric watercontamination). A statistical multivariable analysis (Factor Analysis) wasaccomplished to better constrain the correlation between the paroxysmalphases of the seismic sequence and the observed trends and spike-likeanomalies. The groundwater variations was inferred to occur mainly insidethe ETB, from depth (1–2 km) up to surface, particularly in associationof the Sellano earthquake (14/10/1997) and of the seismic re-activationof the sequence at the end of March 1998 (Gualdo Tadino-Rigali andVerchiano areas). The lack of deeper input from below the ETB (slightsignature of PCB), as the lack of He mantle signature, during the seismicperiod as a whole, accounted for seismogenic fault segments rooted onlyin the crust. The results also provide useful information about theearthquake-related response mechanisms occurring at this site, thatrepresent the basic task for planning and managing the impendinghydro-geochemical network aimed at defining the relationships betweenseismic cycle, fluids and reliable earthquake forerunners.  相似文献   

6.
Gases trapped in lavas of three main flows of the Ardoukôba eruption (8 to 15 November, 1978) have been analysed by mass spectrometry. These analyses concern both plagioclase phenocrysts and microcrystalline mesostasis. Fluids are released between 500°C and 1200°C, and consist of H2O, CO2, CO, N2, SO2, HCl, H2, CH4 with traces of hydrocarbons and H2S. The total content is less than 0.3–0.4 wt. % of samples with about 0.1–0.15 wt % of H2O. No significant variation among the three flows is observed. Plagioclase phenocrysts are less abundant in fluids than the mesostasis (~2/3). The gases trapped in these phenocrysts are richer in CO and organic compounds, whereas mesostasis contain more H2O, CO2 and SO2. CO is likely produced by reduction of CO2 and H2O with carbon during either analyses or eruption itself, or is of primary origin. In the latter case, gas composition suggests an entrapment temperature of about 1200°C ± 75°C. Kinetic study of the water and carbon dioxide release allows to calculate the diffusion characteristics of these fluids. Water and carbon dioxide behave rather similarly. Plagioclase gives a single activation energy value (8 Kcal/mole), while mesostasis gives two values (8 Kcal/mole, 15 Kcal/mole). Diffusion coefficients at 20°C are estimated to fall in the range 10?13 · 10?12 cm2 · sec?1.  相似文献   

7.
The marine sector surrounding Panarea Island (Aeolian Islands, South Italy) is affected by widespread submarine emissions of CO2 -rich gases and thermal water discharges which have been known since the Roman Age. On November 3rd, 2002 an anomalous degassing event affected the area, probably in response to a submarine explosion. The concentrations of minor reactive gases (CO, CH4 and H2) of samples collected in November and December, 2002 show drastic compositional changes when compared to previous samples collected from the same area in the 1980s. In particular the samples collected after the November 3rd phenomenon display relative increases in H2 and CO and a strong decrease in the CH4 contents, while other gas species show no significant change. The interaction of the original gas with seawater explains the variable contents of CO2, H2S, N2, Ar and He which characterize the different samples, but cannot explain the large variations of CO, CH4 and H2 which are instead compatible with changes in the redox, temperature and pressure conditions of the system. Two models, both implying an increasing input of magmatic fluids are compatible with the observed variations of minor reactive species. In the first one, the input of magmatic fluids drives the hydrothermal system towards atypical (more oxidizing) redox conditions, slowly pressurizing the system up to a critical state. In the second one, the hydrothermal system is flashed by the rising high-T volcanic fluid, suddenly released by a magmatic body at depth. The two models have different implications for volcanic surveillance and risk assessment: In the first case, the November 3rd event may represent both the culmination of a relatively slow process which caused the overpressurization of the hydrothermal system and the beginning of a new phase of quiescence. The possible evolution of the second model is unforeseeable because it is mainly related to the thermal, baric and compositional state of the deep magmatic system that is poorly known.  相似文献   

8.
Two soil CO2 efflux surveys were carried out in September 1999 and June 2002 to study the spatial distribution of diffuse CO2 degassing and estimate the total CO2 output from Showa-Shinzan volcanic dome, Japan. Seventy-six and 81 measurements of CO2 efflux were performed in 1999 and 2002, respectively, covering most of Showa-Shinzan volcano. Soil CO2 efflux data showed a wide range of values up to 552 g m-2 d-1. Carbon isotope signatures of the soil CO2 ranged from -0.9‰ to -30.9‰, suggesting a mixing between different carbon reservoirs. Most of the study area showed CO2 efflux background values during the 1999 and 2002 surveys (B = 8.2 and 4.4 g m-2 d-1, respectively). The spatial distribution of CO2 efflux anomalies for both surveys showed a good correlation with the soil temperature, indicating a similar origin for the extensive soil degassing generated by condensation processes and fluids discharged by the fumarolic system of Showa-Shinzan. The total diffuse CO2 output of Showa-Shinzan was estimated to be about 14.0–15.6 t d-1 of CO2 for an area of 0.53 km2.  相似文献   

9.
A systematic geochemical surveillance on the fumaroles of Solfatara and the boiling pools of Pisciarelli was carried out by discontinuous monitoring of the chemical composition of the emitted fluids during the Phlegraean Fields bradyseismic crisis which has begun in 1982. The fluids are considered to be produced by the ebullition of shallow aquifers receiving a convective gaseous inflow from the underlying magma chamber.Increased water vapor concentrations at a constant temperature of about 155 °C throughout the investigated period, along with the occurrence of ground deformations and seismic phenomena, are interpreted as resulting from an increased heat supply to the boiling water bodies.Dissolution processes and reactions with the confining rocks can alter the chemical composition of fluids escaping from magma to a large extent. Therefore it does not appear correct to consider the absolute values of any chemical constituent for geochemical surveillance without taking this modifying factor into account. Acid gases will be preferably absorbed by the above mentioned aquifers, while other species like H2, N2, O2, CH4, will instead increase their relative concentrations. Because of this, water vapour concentrations and the ratios H2S/CO2 and H2/CH4 in surface thermal manifestations appear to reflect better the varying extent of the observed phenomenon.On the basis of these parameters, and of both the upheaval rate and the intensity of seismic events, maximum values in the convective input of magmatic origin are estimated to have occurred at the beginning of the crisis and in September–October 1983.As long as water bodies at shallow depth are able to buffer the convective flow both thermally and chemically, no important volcanic activity can develop. When the absorbing capacity of these aquifers is exhausted, the increasing temperature and the changing characteristics of fluids towards a magmatic composition will indicate a higher probability of eruptive phenomena.CNR —Centro di studio per la mineralogia e la geochimica dei sedimenti.  相似文献   

10.
Estimates of greenhouse gas evasion from rivers have been refined over the past decades to constrain their role in global carbon cycle processes. However, despite 55% of the human population living in urban areas, urban rivers have had limited attention. We monitored carbon dynamics in an urbanized river (River Kelvin, 331 km2, UK) to explore the drivers of dissolved carbon lateral and vertical export. Over a 2-year sampling period, riverine methane (CH4) and carbon dioxide (CO2) concentrations were consistently oversaturated with respect to atmospheric equilibria, leading to continual degassing to the atmosphere. Carbon stable isotopic compositions (δ13C) indicated that terrestrially derived carbon comprised most of the riverine CH4 and dissolved CO2 (CO2*) load while dissolved inorganic carbon (DIC) from groundwater was the main form of riverine DIC. The dynamics of CH4, CO2*, and DIC in the river were primarily hydrology-controlled, that is, [CH4] and [CO2*] both increased with elevated discharge, total [DIC] decreased with elevated discharge while the proportion of biologically derived DIC increased with increasing discharge. The concentration of dissolved organic carbon (DOC) showed a weak relationship with river hydrology in summer and autumn and was likely influenced by the combined sewer overflows. Carbon emission to the atmosphere is estimated to be 3.10 ± 0.61 kg C·m−2·yr−1 normalized to water surface area, with more than 99% emitted as CO2. Annual carbon loss to the coastal estuary is approximately 4.69 ± 0.70 Gg C yr−1, with annual DIC export approximately double that of DOC. Per unit area, the River Kelvin was a smaller carbon source to the atmosphere than natural rivers/streams but shows elevated fluxes of DIC and DOC under comparable conditions. This research illustrates the role urban systems may have on riverine carbon dynamics and demonstrates the potential tight link between urbanization and riverine carbon export.  相似文献   

11.
The present work reports the results of 15 studies of diffuse CO2 degassing performed at Teide Volcano crater (Canary Island, Spain) and the chemical and isotopic compositions of fluids discharged from a fumarolic field located at the top of the volcano as measured between 1991 and 2010. A higher contribution of magmatic gases accompanied by enhanced total diffuse CO2 emissions were observed in relation with a seismic crisis that occurred in Tenerife Island between 2001 and 2005, with the main peak of seismic activity between April and June 2004. A significant pulse in total diffuse CO2 emission was observed at the crater of Teide (up to 26.3?t day?1) in 2001. In December 2003, the chemical composition of the Teide fumarole changed significantly, including the appearance of SO2, an increase in the HCl and CO concentrations and in the C2H6/C2H4 and C3H8/C3H6 ratios, and a decrease in the H2S, CH4, and C6H6 concentrations and in the gas/steam ratio. A few months after a drastic decrease in seismic activity, the SO2, HCl, and CO concentrations and the C2H6/C2H4 and C3H8/C3H6 ratios strongly decreased, whereas the CH4 and C6H6 concentrations and the gas/steam ratios increased. According to the trends shown by both the geochemical parameters and the seismic signals late in the observation period, the risk of a rejuvenation of volcanic activity at Teide is considered to be low. The associated temporal changes in seismic activity and magmatic degassing indicate that geophysical and fluid geochemistry signals in this system are related. Future monitoring programs aimed at mitigating volcanic hazard on Tenerife Island should involve coupled geophysical and geochemical studies.  相似文献   

12.
The gaseous products of new Tolbachik volcanoes were studied during 1975 to 1977 throughout all eruptive stages and during the post eruptive activity. In investigations the northern break-out gases emitted during the eruption from the moving and consolidated lava flows there have been detected H2O (the main component), H2, HF, HCl, SO2 and H2S, CO2, CO, NH3, CH4 and other hydrocarbons, NH4Cl predominated in compositions of condensates and subtimates on lava flows and the most characteristic microcomponents were Zn, Cu, Pb, Sn, Ag and others. Sampling of gases and condensates at the southern break-out was conducted immediately from the flowing melt. In gases there have been detected H2O (98 mol. %). HCl and H2 (0.9 mol. % each) as well as HF, SO2, H2S, CO2 and in small quantities O2 and N2, Gases reached the equilibrium state atT andP sampling and were characteristic of gas composition of the southern break-out magma. HCl, HF and H2SO4 were predominant during condensate and sublimate mineralization. The major raicrocomponents were represented by Pt, Sb, As, Zn, Cu, Pb, Ni, Co and others. Comparison of compositions of gases and of products of their reactions at the northern and at the southern break-outs allows us to assume the presence of the deeper magma source at the northern break-out and of shallow magma source at the southern break-out.  相似文献   

13.
In the context of geological carbon sequestration (GCS), carbon dioxide (CO2) is often injected into deep formations saturated with a brine that may contain dissolved light hydrocarbons, such as methane (CH4). In this multicomponent multiphase displacement process, CO2 competes with CH4 in terms of dissolution, and CH4 tends to exsolve from the aqueous into a gaseous phase. Because CH4 has a lower viscosity than injected CO2, CH4 is swept up into a ‘bank’ of CH4‐rich gas ahead of the CO2 displacement front. On the one hand, this may provide a useful tracer signal of an approaching CO2 front. On the other hand, the emergence of gaseous CH4 is undesirable because it poses a leakage risk of a far more potent greenhouse gas than CO2 if the cap rock is compromised. Open fractures or faults and wells could result in CH4 contamination of overlying groundwater aquifers as well as surface emissions. We investigate this process through detailed numerical simulations for a large‐scale GCS pilot project (near Cranfield, Mississippi) for which a rich set of field data is available. An accurate cubic‐plus‐association equation‐of‐state is used to describe the non‐linear phase behavior of multiphase brine‐CH4‐CO2 mixtures, and breakthrough curves in two observation wells are used to constrain transport processes. Both field data and simulations indeed show the development of an extensive plume of CH4‐rich (up to 90 mol%) gas as a consequence of CO2 injection, with important implications for the risk assessment of future GCS projects.  相似文献   

14.
在浙江省珊溪水库地区布设5条断层土壤气Rn和H2测线,并选取15个溶解水氡采样测点。测量结果显示,其中有3条土壤气测线上的Rn浓度均值超过70 Bq/L,土壤H2测值最高达1 377 ppm,水样中溶解氡浓度最高值为68.3 Bq/L。通过珊溪水库地区历史地震活动和地质构造情况分析,发现该地区土壤Rn、H2和溶解水氡的高值分布区均与双溪—焦溪垟断裂F11-3分支的空间位置密切相关,该断裂分支是珊溪水库地区小震活动的发震断裂。另外通过研究发现,历史震群活动距今时间以及震群活动的频度和强度是影响珊溪水库地区土壤气Rn和H2地球化学特征的重要因素。  相似文献   

15.
Step heating experiments on ultra-high pressure (UHP) mcks from the Dabie Mountain shows a majority of CO2 in fluid inclusion (excluding H2O); CO is also a significant component, with a small content of N2 and CH4. Carbon isotopic composition of CO2 in fluid of metamorphic climax stage (-25%0- -30%0) is different from that of mantle carbon, indicating that UHP rocks did not experience obvious transformation by mantle fluids despite their subduction depth. CO2 was derived from carbon matter in the pmtoliths of UHP rocks in a relatively confined system, showing that the UHP rocks subsided quickly and uplifted quickly from the mantle. Current organization: Research Institute of Petroleum Exploration and Development, Beijing 100083, China.  相似文献   

16.
This paper focuses on the chemical and isotopic features of dissolved gases (CH4 and CO2) from four meromictic lakes hosted in volcanic systems of Central–Southern Italy: Lake Albano (Alban Hills), Lake Averno (Phlegrean Fields), and Monticchio Grande and Piccolo lakes (Mt. Vulture). Deep waters in these lakes are characterized by the presence of a significant reservoir of extra-atmospheric dissolved gases mainly consisting of CH4 and CO2. The δ13C-CH4 and δD-CH4 values of dissolved gas samples from the maximum depths of the investigated lakes (from ?66.8 to ?55.6?‰ V-PDB and from ?279 to ?195?‰ V-SMOW, respectively) suggest that CH4 is mainly produced by microbial activity. The δ13C-CO2 values of Lake Grande, Lake Piccolo, and Lake Albano (ranging from ?5.8 to ?0.4?‰ V-PDB) indicate a significant CO2 contribution from sublacustrine vents originating from (1) mantle degassing and (2) thermometamorphic reactions involving limestone, i.e., the same CO2 source feeding the regional thermal and cold CO2-rich fluid emissions. In contrast, the relatively low δ13C-CO2 values (from ?13.4 to ?8.2?‰ V-PDB) of Lake Averno indicate a prevalent organic CO2. Chemical and isotopic compositions of dissolved CO2 and CH4 at different depths are mainly depending on (1) CO2 inputs from external sources (hydrothermal and/or anthropogenic); (2) CO2–CH4 isotopic exchange; and (3) methanogenic and methanotrophic activity. In the epilimnion, vertical water mixing, free oxygen availability, and photosynthesis cause the dramatic decrease of both CO2 and CH4 concentrations. In the hypolimnion, where the δ13C-CO2 values progressively increase with depth and the δ13C-CH4 values show an opposite trend, biogenic CO2 production from CH4 using different electron donor species, such as sulfate, tend to counteract the methanogenesis process whose efficiency achieves its climax at the water–bottom sediment interface. Theoretical values, calculated on the basis of δ13C-CO2 values, and measured δ13CTDIC values are not consistent, indicating that CO2 and the main carbon-bearing ion species (HCO3 ?) are not in isotopic equilibrium, likely due to the fast kinetics of biochemical processes involving both CO2 and CH4. This study demonstrates that the vertical patterns of the CO2/CH4 ratio and of δ13C-CO2 and δ13C-CH4 are to be regarded as promising tools to detect perturbations, related to different causes, such as changes in the CO2 input from sublacustrine springs, that may affect aerobic and anaerobic layers of meromictic volcanic lakes.  相似文献   

17.
Volcanic gases from Showashinzan are qualitatively the same as those liberated from igneous rocks when they are heated in vacuum. Their main components are H2O, CO2, and H2. Then follow HCl, HF, N2, SO2, H2S, S, CH4, CO, Ar, Si, B, Mg, Na, K, Ca, Al, Fe, P, Br, NH3, As, Zn, Sr, Ba, Cu, Pb, Sn, Sb, Bi, Ge, Ag, Cr, Ni, Mo, Rn, Ra, etc. They come through fumaroles of high temperature (~750°C.). Metallic compounds deposit as sublimates around the outlet of fumaroles. They are fractionated there according to their thermodynamic properties. When the temperature of gases falls, heavy metal elements deposit before reaching the surface of the earth. Ra is among them. Owing to the contribution of Ra thus depositted, Rn content of vapor is larger in low temperature fumaroles than in high temperature ones. Chemical compounds of H, C, N, O, and S vary their composition according to the condition of temperature and pressure. Sulfur exists as SO2 more than H2S. As the temperature of gases falls, SO2 and H2 decrease and H2S increases. Mutual relation among them is ruled by the chemical equilibrium: SO2+3H2=H2S+2H2O. The structure of Showashinzan is not simple. Some deviations from the general rule are explained in connection with ground water.  相似文献   

18.
The aging of the hydrothermal plume over the Endeavour segment of the Juan de Fuca Ridge was estimated by measuring the222Rn3He ratio in the plume as it dispersed. Despite uncertainties in the source function of hydrothermal input, it wa determined that the relative sequence of removal from the plume isH2 > Δc >222Rn>CH4 Mn, whereΔc is a measure of particle concentration and the mean life of222Rn is 5.5 days. H2 is removed from the plume within hours of input while Mn is not removed within the two-week timescale of the radon-helium clock.Entrainment of bottom water within the buoyant plume may introduce additional chemical signatures into the spreading effluent layer over that which would be introduced by hydrothermal discharge alone. This is particularly significant for those chemical species which are not greatly enriched in the vent fluids relative to bottom water concentration and which display a nutrient-like profile in the deep ocean. Thus we found that significant fractions of the Si and226Ra anomalies in the plume were not of hydrothermal origin but were derived from entrained bottom water which has a higher concentration of these elements than ambient water at plume height.  相似文献   

19.
Soil H2 and CO2 surveys were carried out along seven active faults and around the aftershock region of the 2000 Tottori-ken Seibu earthquake in Japan. Diffuse CO2 effluxes were also measured along one fault and around the 2000 aftershock region. The results show highly variable H2 concentration in space and time and it seems that the maximum H2 concentration at each active fault correlates with fault activity as exemplified by the time of the latest big earthquakes. Even though observed H2 concentrations in four faults were markedly lower than those collected previously in the latter half of the 1970s, it is evident that the higher H2 concentrations in this study are due to the addition of the fault gases. Comparing the chemical composition of trapped gases (H2: 5–20% and CO2/H2: 0.5–12) in fractured rocks of drill cores bored at the Nojima fault, a soil gas sample with the highest H2 concentration showed large amounts of the trapped fault gas, diluted with atmospheric component. The profile experiment across a fracture zone at the Yamasaki fault showed higher H2 concentrations and lower CO2/H2 ratios as was observed in soil gas from the fracture zone. A few days after the 2000 Tottori-kei Seibu earthquake, no CO2 effluxes related to the occurrence of earthquakes were observed at the aftershock region. However, only above the epicenter zone, relatively high H2 concentrations in soil gases were observed.  相似文献   

20.
In this study, crude multi‐walled carbon nanotubes (MWCNT) was functionalized by a two‐step process; first using strong mixed acids (H2SO4/HNO3) and then treatment with 1,3‐phenylenediamine (mPDA). The equilibrium adsorption of CO2 on pristine MWCNT and amine functionalized MWCNT (MWCNT‐NH2) were investigated. Experiments were preformed via application of volumetric method in a dual sorption vessel at temperature range of 298–318 K and pressures up to 40 bars. The results obtained indicated that the equilibrium uptake of CO2 increased after functionalizing of MWCNT. The increase in CO2 capture by MWCNT‐NH2 was attributed to the existence of great affinity between CO2 molecules and amine sites on this adsorbent at low pressures. The experimental data were analyzed by means of Freundlich and Langmuir adsorption isotherm models. The data obtained revealed a fast kinetics for the adsorption of CO2 in which most of adsorption occurred at initial period of adsorption experiments. This renders MWCNT as a suitable adsorbent for practical applications. Values of isosteric heat of adsorption were evaluated based on Clausius–Clapeyron equation. The results demonstrated that both chemisorption and physisorption played important role in CO2 adsorption on MWCNT‐NH2, whereas the physisorption process was dominant for CO2 adsorption on MWCNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号