首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
从末次冰盛期冰川规模探讨当时的气候环境   总被引:4,自引:2,他引:4  
根据乌鲁木齐河源区末次冰盛期形成的保存完好的古冰川遗迹和现代气候条件下冰川特平衡与气候的关系。用冰川动力学方法估算出冰川达到末次冰盛期规模时的气候条件。依据末次冰盛期冰川面积,结合冰川平衡线高度和冰川体积综合分析,乌鲁木齐河源区末次冰盛期的夏季气温应比现代低4.8℃左右,降水约只有现代的30%,但目前其它古气候方法的研究结果表明,末次冰盛期的夏季气温比现代低5.6℃左右,两者相差0.8℃,其原因可  相似文献   

2.
根据乌鲁木齐河源区末次冰盛期形成的保存完好的古冰川遗迹和现代气候条件下冰川物质平衡与气候的关系,用冰川动力学方法估算出冰川达到末次冰盛期规模时的气候条件。依据末次冰盛期冰川面积,结合冰川平衡线高度和冰川体积综合分析,乌鲁木齐河源区末次冰盛期的夏季气温应比现代低4.8℃左右,降水约只有现代的30%。但目前其它古气候方法的研究结果表明,末次冰盛期的夏季气温比现代低5.6℃左右,两者相差0.8℃,其原因可能主要是冰川动力学方法未考虑构造抬升对气温的影响,据此推测,乌鲁木齐河源区末次冰盛期至今的构造上升量约为130m。  相似文献   

3.
长白山现代理论雪线和古雪线高度   总被引:9,自引:2,他引:7       下载免费PDF全文
根据冰川地貌和地形特征、岩性、冰川沉积物的风化程度以及OSL测年结果,认为长白山地区发育两期冰川作用,即末次冰盛期和晚冰期,测年结果分别为20.0±2.1ka和11.3±1.2ka。根据平衡线(ELA)处6~8月多年平均气温(T)和年降水量(P)的关系,计算长白山现代理论雪线高度为3380±100m。通过积累区面积比率AAR(accumulation-arearatio)、冰川末端到山顶高度TSAM(the terminal to summit altitudinal),冰川末端至分水岭平均高度Hofer(the terminal to average elevation of the catchment area)、末端至冰斗后壁比率THAR(toe-to headwall altitude ratios)、冰斗底部高程CF(cirque-floor altitudes method)、侧碛堤最大高度法MELM(maximum elevation of lateral moraines)等方法计算该区末次冰盛期雪线高度为2250~2383m,平均值2320±20m。考虑到末次冰盛期后地壳上升20m,当时雪线的实际高度为2300±20m,冰盛期的雪线降低值为1080±100m。晚冰期北坡和西坡的雪线高度分别为2490m和2440m,平均值2465m,考虑新构造运动后的雪线实际高度2454m,降低值926±100m。长白山新构造运动(LGM上升约20m,晚冰期上升约11m)在末次冰盛期以来对冰川发育的影响不明显。  相似文献   

4.
中国西部末次冰期以来冰川、环境及其变化   总被引:5,自引:2,他引:5  
晚更新世以来,由于青藏高原及其周围山地的上升,中国西部的气候愈来愈干冷,冰川发育受到抑制。末次冰期最盛时,雪线比今日低300—1500m,古冰缘下限比今日低300—1400m,高山带的气温比今日低3—7℃,高原外围地区低8—10℃。青藏高原从13000aB.P.开始气候变暖,6000aB.P.高温期时冰川强烈退缩或消失,4000—3000aB.P.气候又再次变冷进入全新世新冰期和现代小冰期。目前气候又开始变暖,大部冰川又转入后退时期。  相似文献   

5.
陈安安  陈伟  吴红波  张伟  吴玉伟 《冰川冻土》2014,36(5):1069-1078
以祁连山七一冰川为例, 基于Landsat TM/ETM+数据建立了通过单波段(近红外波段)阈值法提取雪线的方法, 并结合观测数据进行了验证. 将此方法应用到2000-2013年木孜塔格冰鳞川冰川粒雪线高度变化的估算中, 结合茫崖气象站暖季气温(9、7、8月份的平均气温)和6-8月降水量数据, 探索粒雪线高度与气温、降水量之间的关系. 结果表明: 单波段阈值法可较为准确地估计冰川的雪线位置, 2000-2013年冰鳞川冰川粒雪线高度呈波动变化, 在2006年达到最大值(海拔5 678 m). 气温升高是冰鳞川冰川粒雪线高度变化的主导因素, 气温上升1 ℃可导致粒雪线高度升高约83 m.  相似文献   

6.
中国西部末次冰期以来冰川、环境及其变化   总被引:6,自引:0,他引:6  
郑本兴 《第四纪研究》1990,10(2):101-110
晚更新世以来,由于青藏高原及其周围山地的上升,中国西部的气候愈来愈干冷,冰川发育受到抑制。末次冰期最盛时,雪线比今日低300—1500m,古冰缘下限比今日低300—1400m,高山带的气温比今日低3—7℃,高原外围地区低8—10℃。青藏高原从13000aB.P.开始气候变暖,6000aB.P.高温期时冰川强烈退缩或消失,4000—3000aB.P.气候又再次变冷进入全新世新冰期和现代小冰期。目前气候又开始变暖,大部冰川又转入后退时期。  相似文献   

7.
张越  许向科  孙雅晴 《冰川冻土》2022,44(4):1248-1259
末次冰盛期(LGM)时全球大范围降温,青藏高原冰川大规模扩张,重建LGM时期古冰川规模对认识高原冰川水资源演化及古气候条件有重要的科学意义。根据青藏高原东南巴松措流域及派山谷两地的冰川地貌及其10Be暴露年代数据,本文应用冰川纵剖面模型定量重建了两地冰川在LGM时期的范围、冰储量和平衡线高度(ELA)等参数,并通过冰川气候模型恢复了LGM时的气候条件。结果表明:巴松措流域LGM时期的冰川面积约为982.3 km2,是现代冰川面积的4.5倍,冰储量约为274.4 km3;派山谷无现代冰川分布,LGM时期的冰川面积达5.76 km2,冰储量约为0.51 km3;LGM时期两冰川的平衡线高度分别为4 460~4 547 m和3 569~3 694 m,与现代冰川相比分别降低了535 m和1 034~1 184 m。在降水减少60%的情况下,考虑LGM以来的构造剥蚀对平衡线高度变化的影响,LGM时期巴松措流域和派山谷冰川的夏季平均气温分别比现在低约2.96~4.89 ℃和5.09~6.99 ℃。  相似文献   

8.
3.2 ka BP以来念青唐古拉山东部则普冰川波动与环境变化   总被引:4,自引:1,他引:3  
基于野外考察和 14C 年代测定, 确定了3.2 ka BP以来念青唐古拉山东部则普冰川的冰进序列.新冰期冰进可明显分为3次: 即大拿[ 14C ( 3 242 ±101)a BP]、大拿顶[ 14C ( 1 920 ±110)~ (1 540 ±85)a BP]和白同[ 14C ( 1 056 ±115)a BP]冰进.新冰期盛时, 则普冰川比现代长6.9 km, 面积大17.10 km2, 雪线降低约157 m, 温度降低1.0~1.9 ℃. 小冰期可分出2次: 即15世纪或16世纪[ 14C (580±130)a BP]和19世纪[ 14C (197±80)a BP, (190±80)a BP]冰进. 小冰期盛时, 则普冰川比现代长2.0 km, 面积大11.16 km2, 雪线降低约100 m, 温度降低0.65~1.23 ℃. 现代则普冰川, 冰面表碛特别发育, 其厚度亦很大, 冰舌末端退缩难以辨认. 但冰川减薄很强烈, 边缘两侧形成2~3道现代侧碛, 并高出现代冰面20~30 m. 对埋藏腐殖质土壤层和木炭碎屑经 14C 年代测定, 结果表明在(720±210)~( 2 010 ±120)a BP间, 波堆藏布流域存在砍伐森林、开垦田地和放牧的人类活动.  相似文献   

9.
可可西里马兰山冰川的近期变化   总被引:5,自引:11,他引:5  
位于可可西里地区的马兰山冰帽,冰川覆盖了整个山体,冰川面积达195km^2,属极大陆型冰川,雪线海拔在5340-5540m之间,大多数冰川末端存在小冰期的碛垄,一般可分辨出3道,自小冰期以来,随着气候的变化,马兰山冰帽表现出波动退缩趋势。小冰期时,冰舌末端南坡比现在低20m,北坡低20-40m,由冰川退缩引起的冰川面积的减小相当于现代冰川面积的4.6%,略小于整个羌塘高原地区小冰期以来冰川面积减小的幅度(8%)。近百年来,冰川的退缩量为45-60m左右,而从1970年以来的30a中,马兰山冰川的退缩量为30-50m,平均年退缩量为1-1.7m。虽然小于高原边缘和其它地区冰川退缩幅度,但是退缩速率正在逐渐增大,这将对高原内陆脆弱的生态系统和生态环境产生较大的影响。  相似文献   

10.
青藏高原各拉丹冬地区冰川变化的遥感监测   总被引:49,自引:20,他引:49  
以位于青藏高原长江源头的各拉丹冬地区冰川为例, 利用2000年的TM数字遥感影像资料、 1969年的航空相片遥感资料、地形图及数字地形模型, 通过遥感图像处理和分析提取研究区小冰期最盛期(LIA)、 1969年和2000年的冰川范围, 并在地理信息系统技术支持下分析该地区冰川的进退情况. 研究结果表明, 该地区1969年冰川面积比小冰期最盛期的冰川面积减少了5.2%, 2000年的冰川面积比1969年的冰川面积减少了1.7%. 从1969年到2000年最大冰川退缩速度为-41.5 m*a-1, 最大冰川前进速度为+21.9 m*a-1. 本区的冰川基本处于稳定状态, 冰川退缩的速度不是太大, 并有前进的冰川存在.  相似文献   

11.
普若岗日冰原及其小冰期以来的冰川变化   总被引:39,自引:26,他引:13  
普若岗日是藏北高原最大的由数个冰帽型冰川组合成的大冰原.冰川覆盖面积422.58km2,冰储量为52.5153km3.冰川雪线海拔5620~5860m.冰原呈辐射状向周围微切割的宽浅山谷溢出50多条长短不等的冰舌,最大的可伸至山麓地带,形成宽尾状冰舌.在一些下伸较低的冰舌段,形成有许多冰塔林,以雄伟壮观的连座冰塔林和雏形冰塔林为主.在东南部一些冰舌段雏形冰塔林的上部,分布着奇特的新月型雪冰丘和链状排列有序的雪冰丘.小冰期以来,普若岗日的冰川呈退缩趋势.环绕冰舌分布的冰碛序列,在北部和东南部普遍可区分出3道.对比研究认为,分别属于小冰期3次寒冷期冰进的遗迹.而西部小冰期冰川作用的范围较小.按小冰期最盛时的规模量测当时的冰川面积,和现在相比该时段内冰川面积减少了24.20km2,当时冰川面积比现在大57%.由此引起的冰川资源的减少为3.6583km3,相当于36.583×108m3的水量.在普若岗日西侧,小冰期后期至20世纪70年代,冰川退缩了20m;70年代至90年代末,冰川退缩了40~50m;平均1.5~1.9m·a-1;1999年9月至2000年10月,退缩4~5m.明显反映出逐渐加剧的变化趋势.和其它地区相比较,普若岗日冰原变化比较小,表现出比较稳定的状。  相似文献   

12.
唐古拉山地区第四纪冰川作用与冰川特征   总被引:4,自引:2,他引:2  
自中更新世以来,唐古拉山地区发生过3次更新世冰川作用(即昆仑冰期、倒数第二次冰期和末次错冰期)和2次全新世晚期冰进(即新冰期和小冰期冰进).昆仑冰期(最大冰期)发生在中更新世早期(0.80~0.60MaBP),不仅是本区最早的一次冰期,而且也是冰川规模最大的一次冰期,当时的冰川规模比现代冰川大16~18倍;倒数第二次冰期发生在中更新世晚期(0.30~0.135MaBP),比现代冰川大13~15倍;末次冰期发生在晚更新世晚期,应分为末次冰期早冰阶(75.0~58.0kaBP)和晚冰阶(32.0~15.0kaBP,23.0kaBP时达到极盛),但在唐古拉山地区截止目前还未找到早冰阶的冰川遗迹,因此,只对末次冰期的晚冰阶(LMG)进行了探讨.LMG时,冰川规模比现代冰川大10倍;新冰期发生在全新世高温期后,冰碛物的14C测年为(3540±160)aBP,冰川规模略大于现代冰川;小冰期发生在15~1世纪,冰川规模已接近于现代冰川.由于青藏高原的上升,对高原腹部地区引起的干旱化过程和水分严重不足,使唐古拉山地区的冰川自昆仑冰期以来,冰川规模一次比一次明显的减小.  相似文献   

13.
念青唐古拉山羊八井附近古仁河口冰川的变化   总被引:6,自引:5,他引:1  
利用GPS测量冰川不同时期的相关位置,结合地形图和航空照片的分析,在2004-2006年连续监测了念青唐古拉山羊八井古仁河口冰川的变化.结果表明:自小冰期以来,古仁河口冰川表现出较强的退缩状态,小冰期最盛期冰川末端海拔比现在降低100 m;小冰期后期到1970年,冰川末端退缩幅度约为7.0 m.a-1,1970-2004年平均退缩幅度为8.3 m.a-1.观测得到2004-2005年的平均退缩量约9.5 m.a-1,2005-2006年的平均退缩量为17.0 m.a-1.古仁河口冰川变化的现状,显示出冰川退缩幅度呈增大趋势.这预示着在全球气候变暖影响下,羊八井地区的冰川消融在逐渐增大,冰川水资源锐减,由此引起冰川面积的缩小.  相似文献   

14.
山地冰川平衡线高度作为气候变化代用指标的讨论   总被引:2,自引:1,他引:1  
鞠远江  刘耕年  魏遐 《冰川冻土》2007,29(4):613-616
对以平衡线高度作为气候变化代用指标的理论依据进行了讨论,依据天山乌鲁木齐河源1号冰川的大量观测资料,建立和完善现代冰川平衡线高度与气候统计关系,从传统方法以区域范围内气候因子为参数改造为以冰川范围内气候因子为参数,通过检验认为改造后的公式比较合理.将公式外推到小冰期第二次冰进时的1号冰川,并运用侧碛垄最大高度法确定了小冰期第二次冰进时冰川的平衡线高度,给出了该次冰进时气候条件的半定量推算结果.证明利用山地冰川平衡线高度作为气候变化的代用指标,并且对气候状况进行半定量推断是可行的.  相似文献   

15.
唐古拉山东段布加岗日地区小冰期以来的冰川变化研究   总被引:17,自引:12,他引:5  
王宁练  丁良福 《冰川冻土》2002,24(3):234-244
对唐古拉山东段布加岗日地区小冰期以来的冰川变化资料进行了分析,结果表明,该地区小冰期最盛时(即15世纪)冰川总面积和总储量分别为241.46km2和19.6282km3,目前其面积和储量分别已减少了23.7%和15.1%,并且自小冰期以来有184条长度大约为0.6km的小冰川已消失.该地区各冰川面积和储量的绝对变化量随着冰川规模的增大而增大,而其相对变化百分数却是随着冰川规模的增大而减小.不同方位冰川小冰期以来的平均面积萎缩量、平均末端退缩量和平均末端高程上升量均表明,南坡冰川变化的绝对量比北坡的大.这说明在同一气候变化背景下,该地区南坡冰川对于气候变化的响应比北坡冰川敏感.小冰期以来该地区冰川雪线上升了约90m,这大致相当于气温上升约0.6℃.  相似文献   

16.
浦庆余 《第四纪研究》1991,11(3):245-259
末次冰期我国西部的冰川长度比现代冰川长2—5倍,雪线低300—1080m;东部多年冻土区南界在33°20′—33°40′N,青藏高原多年冻土区东北部的下界在海拔2200—2600m 处;黄、东海海平面下降130—155m;经向环流加强,北方冷空气增强。末次冰期以后冰川阶段性退缩,多年冻土区阶段性缩小,海平面间歇性上升;8000—6000aB.P.为高温期,出现2—5m 高海面,5600—5000aB.P.气温短暂下降,海平面突然回落,冰川有所前进;3000aB.P.的新冰期和15—19世纪的小冰期,气候、冰川和海平面都有显著变化。哺乳动物的绝灭和迁徙是自然和人为双重影响的结果。这些变化都是全球变化的表现。  相似文献   

17.
长白山古冰川、冰缘地貌的研究   总被引:5,自引:0,他引:5  
裘善文 《第四纪研究》1990,10(2):137-145,T002
白头山是中国东部发育末次冰期冰川的代表性地点之一。它发育在70000aB.P.形成的火山锥体上。遗留有古冰斗、冰川槽谷、终碛垄等遗迹,地形雪线高度为海拔2200m,属火山口(锥)冰川,时代为晚更新世晚期。该区是中国东北两大现代冰缘区之一,属中纬度垂直冰缘带,冰缘营力以寒冻风化为主,发育了十多种冰缘地貌类型。冰缘带的下限可确定在暗针叶林的下界,约与年平均气温0℃的等温线相一致。  相似文献   

18.
蒙贡—台加山的冰川及其变化特征   总被引:1,自引:0,他引:1  
谢自楚谢.  ЮП 《冰川冻土》1995,17(2):113-119
俄罗斯图瓦共和国境内的蒙贡-台加山是位于亚洲中心的一个独立的冰种作用中心,现代冰川共36条,总面积27.8KM^2,主要受西风环流及地方性环流的降水补给,具有亚大陆型冰川的特征,小冰期最盛期以来,冰川面积减少49.3%,近150年来,冰川面积和长度继续减少,末端及雪线高度升高,近30年来,冰川退缩速度加快,冰川物质平衡有10年左右的波动变化,目前处于负平衡状态,但1992-1993两条山谷冰川突然  相似文献   

19.
贡嘎山第四纪冰川遗迹及冰期划分   总被引:22,自引:1,他引:22  
在对贡嘎山现代冰川和古冰川考察研究的基础上,结合定位观测分析,对该区第四纪冰川遗迹进行了深入讨论,划分出三次冰期,即中更新世早期的倒数第三次冰期,中更新世晚期的倒数第二次冰期和晚更新世的末次冰期,以及全新世的新冰期和小冰期。提出在早更新世时,由于山体未达到当时冰川发育的雪线高度,所以未发育冰川;中更新世早期的冰期冰川为半覆盖式冰川类型,规模不大;中更新世晚期的冰期冰川是本区最大冰川作用时期,形成网状山麓冰川,东坡冰川曾达磨西台地;晚更新世冰期冰川以山谷冰川为主,以后规模逐次缩小。  相似文献   

20.
中国冰川变化对气候变化的响应程度研究   总被引:3,自引:2,他引:1  
理清冰川变化对气候变化的响应程度、揭示响应度的空间变化规律,是开展冰川变化预估及其对社会经济影响程度量化研究的基础。使用1958-2010年西部地区150个气象站点的夏季平均气温和年降水量资料、中国第一、二次冰川编目数据,通过夏季平均气温和年降水量变化趋势值定量反映气候变化,以冰川面积变化率表征冰川变化,借助GIS技术平台,采用参照对比方法,从宏观层面研究了中国西部冰川变化对气候变化的响应程度。依据等分分类法(Equal Interval),将响应程度分为极低度响应、低度响应、中度响应、高度响应、极高度响应5级。结果表明:中国冰川变化对气候变化的响应方式与程度不同,对夏季平均气温变化表现为正响应,而对年降水量变化主要表现为负响应,冰川分布区年降水量增加带来的冰川积累量增多不足以抵消因温度升高而增加的消融量,升温是中国西部冰川快速退缩的主导性因素。就整体而言,冰川变化对夏季平均气温变化的响应程度相对较低,但局部地区冰川变化对温度变化高度敏感,响应程度高与极高。不同类型冰川的变化对夏季平均气温变化的响应程度亦不同,海洋型冰川的变化以中高度响应为主,极大陆型冰川的变化主要呈现极低、低响应程度,而大陆型冰川变化的响应程度呈两级化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号