首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The literature on incised river valley sedimentology is dominated by studies of sediment‐rich systems in which the valley has been filled during and/or shortly after drowning. In contrast, the Holocene evolution of the Kosi Lagoon, South Africa (an incised coastal plain river valley) took place under very low sedimentation rates which have produced a distinctive stratigraphy and contemporary sedimentary environments. The findings are based on a synthesis of the results of studies of seismic stratigraphy, sediment distribution, morphodynamics and geomorphology. Barrier migration was prevented by a high pre‐Holocene dune barrier against which Holocene coastal deposits accumulated in an aggradational sequence. Holocene evolution of the back barrier involved: (i) drowning of the incised valley; (ii) wave‐induced modification of the back‐barrier shoreline leading to segmentation during the highstand; and (iii) marine sedimentation adjacent to the tidal inlet. Segmentation has divided the estuary into a series of geochemically and sedimentologically distinctive basins connected by channels in the estuarine barriers. The seismic stratigraphy of the back barrier essentially lacks a transgressive systems tract, shoreline modification and deposition having been accomplished during the highstand. The lack of historical geomorphological change suggests that the system has achieved morphological equilibrium with ambient energy conditions and low sediment supply. This study presents a classification for estuarine incised valley fills based on the balance between sea‐level rise and sedimentation in which Kosi represents a ‘give‐up’ estuary where much of the relict incised channel form is drowned and preserved. It exhibits a fundamentally different set of evolutionary processes and stratigraphic sequences to those of the better known incised valley systems in which sedimentation either keeps pace with sea‐level (‘keep‐up’ estuaries) or occurs after initial drowning (‘catch‐up’ estuaries).  相似文献   

2.
The Ouémé River estuary is located on the seasonally humid tropical coast of Benin, west Africa. A striking feature of this microtidal estuary is the presence of a large sand barrier bounding a 120 km2 circular central basin, Lake Nokoué, that is being infilled by heterogeneous fluvial deposits supplied by a relatively large catchment (50 000 km2). Borehole cores from the lower estuary show basal Pleistocene lowstand alluvial sediments overlain by Holocene transgressive–highstand lagoonal mud and by transgressive to probably early highstand tidal inlet and flood‐tidal delta sand deposited in association with non‐preserved transgressive sand barriers. The change in estuary‐mouth sedimentation from a transgressive barrier‐inlet system to a regressive highstand barrier reflects regional modifications in marine sand supply and in the cross‐barrier tidal flux associated with barrier‐inlet systems. As barrier formation west of the Ouémé River led to an increasingly rectilinear shoreline, the longshore drift cell matured, ensuring voluminous eastward transport of sand from the Volta Delta in Ghana, the major purveyor of sand, to the Ouémé embayment, 200 km east. Concomitantly, the number of tidal inlets, and the tidal flux associated with a hitherto interlinked lagoonal system on this coast, diminished. Complete sealing of Lake Nokoué has produced a large, permanently closed estuary, where tidal intrusion is assured through the interconnected coastal lagoon via an inlet located 60 km east. Since 1885, tides have entered the estuary directly through an artificial outlet cut across the sand barrier. Although precluding the seaward loss of fluvial sediments, permanent estuary‐mouth closure has especially deprived the highstand estuary of marine sand, a potentially important component in estuarine infill on wave‐dominated coasts. In spite of a significant fluvial sediment supply, estuarine infill has been moderate, because of the size of the central basin. Estuarine closure has resulted in two co‐existing highstand sediment suites, with limited admixture, the marine‐derived, estuary‐mouth barrier and upland‐derived back‐barrier sediments. This situation differs from that of mature barrier estuaries characterized by active fluvial‐marine sediment mixing and facies interfingering.  相似文献   

3.
The Mono estuary is an infilled, microtidal estuary located on the wave-dominated Bight of Benin coast which is subject to very strong eastward longshore drift. The estuarine fill comprises a thick unit of lagoonal mud deposited in a ‘central basin’between upland fluvial deposits and estuary-mouth wave-tide deposits. This lagoonal fill is capped by organic-rich tidal flat mud. In addition to tidal flat mud, the superficial facies overlying the ‘central basin’fill include remnants of spits resting on transgressive/washover sand, an estuary-mouth association of beach, shoreface, flood-tidal delta and tidal inlet deposits, and a thin sheet of fluvial sediments deposited over tidal flat mud. After an initial phase of spit intrusion over the infilled central basin east of the present Mono channel, the whole estuary mouth became bounded by a regressive barrier formed from sand supplied by the Volta Delta during the middle Holocene eustatic highstand. Barrier progradation ceased late in the Holocene following the establishment of an equilibrium plan-form shoreline alignment that allowed through-drift of Volta sand to sediment sinks further downdrift. Over the same period, accretion, from fluvially supplied sediments, of the estuarine plain close to the limit of spring high tides, or, over much of the lower valley, into a fluvial plain no longer subject to tidal flooding, induced marked meandering of the Mono and its tidal distributaries in response to confinement of much of the tidal prism to these channels. The process resulted in erosion of spit/washover and regressive barrier sand, and in reworking of the tidal flat and floodbasin deposits. The strong longshore drift, equilibrium shoreline alignment and the year-round persistence of a tidal inlet maintained by discharge from the Mono and from Lake Ahémé have resulted in a stationary barrier that is reworked by a mobile inlet. The Mono example shows that advanced estuarine infill may result in considerable facies reworking, obliteration of certain facies and marked spatial imbrication of fluvial, estuarine and wave-tide-deposited facies, and confirms patterns of sedimentary change described for microtidal estuaries on wave-influenced coasts. In addition, this study shows that local environmental factors such as sediment supply relative to limited accommodation space, and strong longshore drift, which may preclude accumulation of sediments in the vicinity of the estuary mouth, may lead to infilled equilibrium or near-equilibrium estuaries that will not necessarily evolve into deltas.  相似文献   

4.
This first sedimentary interpretation of two incised-valley fills in the Gulf of Cádiz (southern Spain), which accumulated during the last fourth-order eustatic cycle in response to fluvial incision, changes of sea level, and correlative deposition, relates the filling of the estuarine basins and their barriers with four regional progradation phases, H1 to H4. The cases studied are the wave-dominated Guadalete, and the mixed, tide and wave-dominated Odiel-Tinto estuaries. The sequence boundary is a type-1 surface produced during the lowstand of the Last Glacial period ca. 18 000 14C yr BP. No fluvial lowstand deposits were found in the area. Due to rapid transgression the valley fills consist of transgressive and highstand sediments. The maximum landward advance of the estuarine barriers occurred ca. 6500–6000 14C yr BP during the maximum of the Flandrian transgression, but there is no evidence of sea level rising appreciably above the present. A large part of the estuaries was filled during H1 (ca. 6500–4400 14C yr BP) but ravinement by shifting tidal inlets destroyed most of the coeval barriers. During the H2 phase (ca. 4200–2550 14C yr BP) sedimentation was favoured by arid conditions and concentrated in the axial estuarine zones and the barriers. Between H2 and H3 prevailing winds changed from W to WSW, increasing spit growth to the east and south-east. Progradation of bay-head deltas and flood-plains during H3 (ca. 2300–800 14C yr BP) and H4 (500 yr ago to the present) further reduced the accommodation space in the largely-filled valleys, and sediment by-passed the estuaries and accumulated in the estuarine barriers as fast-growing spits. Arid conditions and increasing human activity have caused rapid coastal modifications.  相似文献   

5.
Deglacial sequences typically include backstepping grounding zone wedges and prevailing glaciomarine depositional facies. However, in coastal domains, deglacial sequences are dominated by depositional systems ranging from turbiditic to fluvial facies. Such deglacial sequences are strongly impacted by glacio‐isostatic rebound, the rate and amplitude of which commonly outpaces those of post‐glacial eustatic sea‐level rise. This results in a sustained relative sea‐level fall covering the entire depositional time interval. This paper examines a Late Quaternary, forced regressive, deglacial sequence located on the North Shore of the St. Lawrence Estuary (Portneuf Peninsula, Québec, Canada) and aims to decipher the main controls that governed its stratigraphic architecture. The forced regressive deglacial sequence forms a thick (>100 m) and extensive (>100 km2) multiphased deltaic complex emplaced after the retreat of the Laurentide Ice Sheet margin from the study area ca 12 500 years ago. The sedimentary succession is composed of ice‐contact, glaciomarine, turbiditic, deltaic, fluvial and coastal depositional units. A four‐stage development is recognized: (i) an early ice‐contact stage (esker, glaciomarine mud and outwash fan); (ii) an in‐valley progradational stage (fjord head or moraine‐dammed lacustrine deltas) fed by glacigenics; (iii) an open‐coast deltaic progradation, when proglacial depositional systems expanded beyond the valley outlets and merged together; and (iv) a final stage of river entrenchment and shallow marine reworking that affected the previously emplaced deltaic complex. Most of the sedimentary volume (10 to 15 km3) was emplaced during the three‐first stages over a ca 2 kyr interval. In spite of sustained high rates of relative sea‐level fall (50 to 30 mm·year?1), delta plain accretion occurred up to the end of the proglacial open‐coast progradational stage. River entrenchment only occurred later, after a significant decrease in the relative sea‐level fall rates (<30 mm·year?1), and was concurrent with the formation and preservation of extensive coastal deposits (raised beaches, spit platform and barrier sands). The turnaround from delta plain accretion to river entrenchment and coastal erosion is interpreted to be a consequence of the retreat of the ice margin from the river drainage basins that led to the drastic drop of sediment supply and the abrupt decrease in progradation rates. The main internal stratigraphic discontinuity within the forced regressive deglacial sequence does not reflect changes in relative sea‐level variations.  相似文献   

6.
Tampa Bay, a large, microtidal, clastic-filled estuary incised into Tertiary carbonate strata, is the largest estuary on Florida’s west coast. A total of 250 surface sediment samples and 17 cores were collected in Tampa Bay in order to determine the patterns and controlling factors governing the recent infilling and modern sediment distribution, and to examine the results in terms of current models of estuarine sedimentation and development. Surficial sediments in Tampa Bay consist of three facies types, each occurring in a distinct zone: modern terrigenous clastic muds occurring in the upper bay and around the bay periphery; relict, reworked-fluvial, quartz-rich sands occupying the open portion of the middle bay; and modern carbonate-rich, marine-derived sands and gravels occupying the lower bay. Factors controlling sediment distribution include: sediment source and supply rate; bathymetry, which is a function of the antecedent topography; and the winnowing effect of wind-generated waves that prohibits modern accumulation in the shallow middle bay. These factors also play a major role in the recent infilling history of Tampa Bay, which has progressed in four stages during the Holocene sea-level rise. Recently developed models of estuarine sedimentation are based primarily on mesotidal to macrotidal estuaries in terrigenous clastic settings in which sedimentation patterns and infilling history are a result of the relative contribution of marine and fluvial processes. Tampa Bay differs in that it was originally incised into carbonate strata, and neither fluvial or marine processes are interpreted to be major contributors to modern sediment distribution. Tampa Bay, therefore, provides an example of an unusual estuary type, which should be considered in future modeling efforts. *** DIRECT SUPPORT *** A01BY083 00004  相似文献   

7.
河海交互作用沉积与平原地貌发育*   总被引:3,自引:15,他引:3  
河流是搬运陆源泥沙的主要动力,对相邻的海岸海洋沉积动力有巨大影响。中国河流汇入海洋中的泥沙曾占全球入海泥沙的10 % ,现代中国边缘海大陆架在晚更新世时曾是海岸平原,河-海交互作用是形成海岸平原与浅海输积泥沙的主要因素。本文选择5个不同类型的河流展示其不同的泥沙运动与河口沉积的特性以及对相邻陆架之影响,包括: 1)强潮型动力的鸭绿江河口湾,形成从陆向海与从海向陆的双向水流交汇沉积,海岸形成潮流脊体系。 2)季风波浪为主导动力的滦河口,以泥沙的横向运动为主,形成沙坝环绕的双重海岸,沉积粒径自海向陆减小; 沿岸浪流携运泥沙向河口两侧分布,使沙坝具有沙咀状的复合特点。 3)弱潮型、多沙的黄河口,径流于两侧堆积指状沙咀,沙咀下风侧形成粉砂粘土淤泥湾,沿岸流携运泥沙向渤海湾延伸为淤泥舌。 4)径流与沿岸流组合作用的沉积模式,以长江口为代表,泥沙沿岸向南输运为主导,向海岸与向内陆架构成颗粒变细的带状沉积,外陆架出露残留砂。 5)充填河口湾的三角洲,以珠江为代表,河流分汊与会潮点泥沙堆积,悬移质扩散至湾外,被沿岸流携带沿海岸向SW运移,外陆架为残留砂沉积。20世纪80年代以来,上述河流均受到人为活动的改造影响,河流自然过程与河海交互作用效应均发生改变。本文主要以滦河三角洲为例阐述河-海交互作用与平原的地貌特征。  相似文献   

8.
ABSTRACT An extensive seismic reflection survey has been used to gain further knowledge of Holocene stratigraphy and depositional history in the Narragansett Bay System (NBS). The early Holocene stream-dissected surface beneath the NBS is interpreted as having been flooded by the Holocene sea in a manner suggested by Oldale & O'Hara's (1980) sea-level-rise curve. The sea initially is believed to have penetrated the pre-NBS East Passage trunk valley about 9000 yr BP and subsequently spread landward via the trunk valley and its branches. The Holocene sediments display stratigraphic relationships that differ spatially. At passage mouths, the basal unconformity is inferred to be covered over with some 3 m of paralic and 5 m of marine sands and silts separated, by a transgressive unconformity. In contrast the interior sequences reveal (a) a valley section up to more than 15 m thick in which the regressional unconformity is overlain by probable lower fluvial and/or estuarine sand-silt facies that commonly grades upward to an estuarine silt-clay facies and (b) an interfluve section in which a basal transgressive unconformity is blanketed by an estuarine nearshore sand-silt facies that locally may change upward to a silt-clay facies. Primarily Holocene silt-clay accretion, produced by sedimentation processes associated with net non-tidal estuarine circulation, infilled the evolving NBS. Depositional bodies, lenticular in shape and comprised of 12 m or more of sediment, developed in lowlands near Gould Island (?9000 yr BP), in Upper Narragansett Bay (?7500 yr BP), around Hope Island (?7500 yr BP) and in Mt Hope Bay (?6250 yr BP) with an average minimal sedimentation rate of 1.6–2.2 mm yr-1. Silt-clay deposition, commonly gas-bearing, has buried the basal relief in most of the NBS upper and middle portions except for middle East Passage. A comparison of NBS sedimentation with that of Chesapeake, Delaware and Hudson Estuaries shows that the estuaries to the south have accumulated more sediment over a slightly longer period yet, with the exception of the higher rate in the Hudson Estuary, the sedimentation rates appear to be similar.  相似文献   

9.
Estuaries, the interface of interaction of fluvial discharge and marine action serve as temporary repositories of materials (solid and dissolved) before finally exporting them to sea. This interchange of material is dependant on a range of factors such as those due to tidal variation, fluvial flows and estuarine morphodynamics. The efficacy of transfer of materials to the marine environment is important for estuarine health particularly in estuaries located in highly developed areas such as the major coastal metropolitan areas of many countries. This study assesses this efficacy for three estuaries of the eThekwini Municipality (TM) of the city of Durban, South Africa which maintains an open mouth status, ensuring tidal exchange through the year. The net flux of nitrates was measured for these estuaries on a seasonal basis for both spring and neap tides. Results indicate that although there is a net export of nitrates to the nearshore, there were instances, particularly on the spring tide, when a net import of nitrates into the estuary occurred. Data analysis reveal summer and neap tide flux dominance for the Tongati and Mgeni estuaries whilst the Isipingo Estuary exhibited larger flux variance for spring tides and the spring season. The origin of the latter is likely derived from unusually high biotic decomposition at sea and/or the longshore transport of decomposing sewage outfall. This creates an added dimension for consideration in estuarine management plans. Taking all three estuaries studied into consideration, a net export of nitrates for all seasons for the TM was measured with a clear seasonal influence detected where high rainfall seasons led to greater export as a consequence of greater fluvial flows, erosion and leaching of agricultural lands and, longer ebb duration and flows.  相似文献   

10.
River mouths on the steep, high-relief coast of the French Riviera exhibit thick sequences of Holocene marine, estuarine, deltaic, and river channel-floodplain sediments that overlie basal fluvial Pleistocene gravel. Gravel is uncommon in most of the early to middle Holocene aggradational-progradational marine, estuarine, deltaic sediments, despite an ample supply from rock units in the steep adjoining uplands. River-mouth gravel is common only in late Holocene river channels and in barrier beaches perched on finer-grained nearshore sediments. Neither downslope grain-size fining on alluvial fans nor sediment stacking patterns during sea-level (base-level) rise readily account for the lack of early to middle Holocene gravel in the river-mouth sediment wedges. Holocene sea-level rise led to the storage of fine-grained sediments in shallow marine, estuarine, and deltaic environments in the present coastal zone. We infer that humid temperate conditions, a dense forest cover, landscape stabilization, and a regular quiescent river flow regime associated with the Atlantic climatic optimum limited gravel supply in the adjoining catchments and gravel entrainment downstream during the early Holocene. Sea-level stabilization in the middle and late Holocene coincided with a marked change in bioclimatic conditions toward the present Mediterranean-type regime, which is characterized by a less dense forest cover, soil erosion, and episodic catastrophic floods. The late Holocene was thus a time of downstream bedload channel aggradation, fine-grained floodplain and paludal sedimentation, and seaward flushing of clasts leading to the formation and consolidation of the gravel barrier beaches that bound the rivermouths and embayments.  相似文献   

11.
Holocene deposits of the Hawkesbury River estuary, located immediately north of Sydney on the New South Wales coast, record the complex interplay between sediment supply and relative sea-level rise within a deeply incised bedrock-confined valley system. The present day Hawkesbury River is interpreted as a wave-dominated estuarine complex, divisible into two broad facies zones: (i) an outer marine-dominated zone extending 6 km upstream from the estuary mouth that is characterized by a large, subtidal sandy flood-tidal delta. Ocean wave energy is partially dissipated by this flood-tidal delta, so that tidal level fluctuations are the predominant marine mechanism operating further landward; (ii) a river-dominated zone that is 103 km long and characterized by a well developed progradational bayhead delta that includes distributary channels, levees, and overbank deposits. This reach of the Hawkesbury River undergoes minor tidal level fluctuations and low fluvial runoff during baseflow conditions, but experiences strong flood flows during major runoff events. Fluvial deposits of the Hawkesbury River occur upstream of this zone. The focus of this paper is the Hawkesbury River bayhead delta. History of deposition within this delta over the last c. 12 ka is interpreted from six continuous cores located along the upper reaches of the Hawkesbury River. Detailed sedimentological analysis of facies, whole-core X-ray analysis of burrow traces and a chronostratigraphic framework derived from 10 C-14 dates reveal four stages of incised-valley infilling in the study area: (1) before 17 ka BP, a 0–1 m thick deposit of coarse-grained fluvial sand and silt was laid down under falling-to-lowstand sea level conditions; (2) from 17 to 6·5 ka BP, a 5–10 m thick deposit composed of fine-grained fluvial sand and silt, muddy bayhead delta and muddy central-basin deposits developed as the incised valley was flooded during eustatic sea-level rise; (3) during early highstand, between 6·5 and 3 ka BP, a 3–8 m thick bed of interbedded muddy central-basin deposits and sandy river flood deposits, formed in association with maximum flooding and progradation of sandy distributary mouth-bar deposits commenced; (4) since 3 ka BP, fluvial deposits have prograded toward the estuary mouth in distributary mouth-bar, interdistributary-bay and bayhead-delta plain environments to produce a 5–15 m thick progradational to aggradational bayhead-delta deposit. At the mouth of the Hawkesbury estuary subaqueous fluvial sands interfinger with and overlie marine sands. The Hawkesbury River bayhead-delta depositional succession provides an example of the potential for significant variation of facies within the estuarine to fluvial segment of incised-valley systems.  相似文献   

12.
The Gulf of Tonkin coastline migrated at an average rate of ca 60 m year?1 landward during Holocene sea‐level rise (20 to 8 ka). Due to a combination of rapid coastline migration and undersupply of sand, neither coastal barriers nor tidal sand bars developed at the mouth of the Red River incised valley. Only a 30 to 80 cm thick sandy interval formed at the base of full‐marine deposits. Thus, the river mouth represented a mud‐dominated open funnel‐shaped estuary during transgression. At the base of the valley fill, a thin fluvial lag deposit marks a period of lowered sea‐level when the river did not reach geomorphic equilibrium and was thus prone to erosion. The onset of base‐level rise is documented by non‐bioturbated to sparsely bioturbated mud that occasionally contains pyrite indicating short‐term seawater incursions. Siderite in overlying deposits points to low‐salinity estuarine conditions. The open funnel‐shaped river mouth favoured upstream incursion of seawater that varied inversely to the seasonal strongly fluctuating discharge: several centimetres to a few tens of centimetres thick intervals showing marine or freshwater dominance alternate, as indicated by bioturbational and physical sedimentary structures, and by the presence of Fe sulphides or siderite, respectively. Recurrent short‐term seawater incursions stressed the burrowing fauna. The degree of bioturbation increases upward corresponding to increasing marine influence. The uppermost estuarine sediments are completely bioturbated. The estuarine deposits aggraded on average rapidly, up to several metres kyr?1. Siphonichnidal burrows produced by bivalves, however, document recurrent episodes of enhanced deposition (>0·5 m) and pronounced erosion (<1 m) that are otherwise not recorded. The slope of the incised valley affected the sedimentary facies. In steep valley segments, the marine transgressive surface (equivalent to the onset of full‐marine conditions) is accentuated by the Glossifungites ichnofacies, whereas in gently sloped valley segments the marine transgressive surface is gradational and bioturbated. Marine deposits are completely bioturbated.  相似文献   

13.
钱塘江下切河谷充填物沉积序列和分布模式   总被引:1,自引:1,他引:0       下载免费PDF全文
以最新钻取的SE2孔沉积物为重点研究对象,对晚第四纪以来钱塘江下切河谷充填物的沉积特征和沉积相进行了精细研究,重建了研究区地层结构和层序地层格架,总结了强潮型钱塘江河口湾和下切河谷的沉积模式。钱塘江下切河谷充填物自下而上依次发育河床、河漫滩、古河口湾、近岸浅海和现代河口湾5种沉积相类型,表现为一个较完整的Ⅰ型层序,其内部层序界面、初始海泛面、最大海泛面、海侵和海退潮流侵蚀面、体系域内海侵面发育。钱塘江下切河谷充填物自海向陆可划分为海向段、近海段、近陆段和陆向段4段,各段沉积序列和海陆相互作用程度不同。在钱塘江下切河谷充填物中海陆过渡部位首次明确划分出了古河口湾相,并对其沉积特征和分布模式进行了初步探讨;其形成时间在9000 a BP左右,具有与现代河口湾不同的沉积特征,表现为中部为潮道砂体沉积,向陆渐变为受潮流影响的河流沉积,两侧被潮坪或盐沼沉积包围,沉积物在平面上自陆向海呈现粗-细-粗的分布模式。现代河口湾平面上自陆向海依次发育受潮流影响的河流沉积、粉砂质砂坎、潮道-潮流砂脊复合体和湾口泥质沉积区,沉积物呈现粗-细-粗-细的分布模式,与大多数河口湾常见的粗-细-粗的分布格局明显不同。  相似文献   

14.
Assessments of coupled barrier island-estuary storm response are rare. Hurricane Sandy made landfall during an investigation in Barnegat Bay-Little Egg Harbor estuary that included water quality monitoring, geomorphologic characterization, and numerical modeling; this provided an opportunity to characterize the storm response of the barrier island-estuary system. Barrier island morphologic response was characterized by significant changes in shoreline position, dune elevation, and beach volume; morphologic changes within the estuary were less dramatic with a net gain of only 200,000 m3 of sediment. When observed, estuarine deposition was adjacent to the back-barrier shoreline or collocated with maximum estuary depths. Estuarine sedimentologic changes correlated well with bed shear stresses derived from numerically simulated storm conditions, suggesting that change is linked to winnowing from elevated storm-related wave-current interactions rather than deposition. Rapid storm-related changes in estuarine water level, turbidity, and salinity were coincident with minima in island and estuarine widths, which may have influenced the location of two barrier island breaches. Barrier-estuary connectivity, or the transport of sediment from barrier island to estuary, was influenced by barrier island land use and width. Coupled assessments like this one provide critical information about storm-related coastal and estuarine sediment transport that may not be evident from investigations that consider only one component of the coastal system.  相似文献   

15.
Eighteen coastal-plain depositional sequences that can be correlated to shallow- to deep-water clinoforms in the Eocene Central Basin of Spitsbergen were studied in 1 × 15 km scale mountainside exposures. The overall mud-prone (>300 m thick) coastal-plain succession is divided by prominent fluvial erosion surfaces into vertically stacked depositional sequences, 7–44 m thick. The erosion surfaces are overlain by fluvial conglomerates and coarse-grained sandstones. The fluvial deposits show tidal influence at their seaward ends. The fluvial deposits pass upwards into macrotidal tide-dominated estuarine deposits, with coarse-grained river-dominated facies followed further seawards by high- and low-sinuosity tidal channels, upper-flow-regime tidal flats, and tidal sand bar facies associations. Laterally, marginal sandy to muddy tidal flat and marsh deposits occur. The fluvial/estuarine sequences are interpreted as having accumulated as a series of incised valley fills because: (i) the basal fluvial erosion surfaces, with at least 16 m of local erosional relief, are regional incisions; (ii) the basal fluvial deposits exhibit a significant basinward facies shift; (iii) the regional erosion surfaces can be correlated with rooted horizons in the interfluve areas; and (iv) the estuarine deposits onlap the valley walls in a landward direction. The coastal-plain deposits represent the topset to clinoforms that formed during progradational infilling of the Eocene Central Basin. Despite large-scale progradation, the sequences are volumetrically dominated by lowstand fluvial deposits and especially by transgressive estuarine deposits. The transgressive deposits are overlain by highstand units in only about 30% of the sequences. The depositional system remained an estuary even during highstand conditions, as evidenced by the continued bedload convergence in the inner-estuarine tidal channels.  相似文献   

16.
The subaerial delta of the Yellow River has undergone a notable reshaping process with drastic changes in erosion and accretion patterns both temporally and spatially. These morphological changes not only have significant impact on the long-term evolution of delta but also pose severe threat to the existing infrastructures adjacent to the eroding delta lobe. This paper presents a data-based study of waves, currents, sediments and subaqueous bedforms including the application of Principal Component Analysis (PCA) to the measured coastal profiles in order to understand qualitative and quantitative processes that are responsible for the observed changes. The results demonstrated that the Yellow River Delta has recently been dominated by recession process due to the reduced sediment supply from the Yellow River in the recent decades. A critical threshold of river sediment discharge was formulated and used to explain the observed morphodynamic processes. It was found that the coast of the Yellow River Delta could be broadly divided into three geomorphic zones: the area near abandoned delta, the estuarine area, and Laizhou Bay. At the nearshore zone of the abandoned delta, waves are the main agent for bed erosion and sediments suspension. The tidal current is effective in transporting suspended sediments and exerts the main control on the depths of the erosion–accretion balance zone on the coastal profiles. The area near the present estuary has seen rapid deposition with the progradation rate being governed by the relative intensity of fluvial and marine processes while the coasts in Laizhou Bay are stable and the particular characteristics of the tidal current field prevent the sediments supplied by the Yellow River from reaching this area.  相似文献   

17.
Many coastlines are retreating in response to sea level rise, compounded by glacial–isostatic subsidence in areas marginal to former ice sheets. The resulting barrier and estuarine deposits are dominated by transgressive stratigraphy. Where supplied primarily from relict glacial deposits, this “paraglacial” sediment input may rise and fall, increasing as a new source such as a drumlin headland is exposed to erosion but declining as the source becomes exhausted. Conrads Beach, on the Atlantic coast of Canada, has experienced a succession of barrier growth and reworking as sediment supply from several drumlin sources has varied over the past 3000 years. In the context of long-term regional transgression, there have been intervals of years to centuries characterized by local stability or progradation. Ground-penetrating radar profiles and refraction seismic data were used to image the facies architecture of Conrads Beach to depths of 6–8 and 10–24 m, respectively. Thirteen vibracores provided a record of lithofacies characteristics and geometry. Results show evidence of an estuarine basin at ~2800 years BP. As the outer coast retreated, erosion of drumlins provided multi-century sediment pulses to adjacent beaches and embayments. Locally increased sediment supply fed a prograding beach ridge complex from >600 to ~150 years BP and tidal channels feeding sediment to back-barrier flood delta deposits. This study documents the complexity of coastal adjustment to time- and source-varying sediment supply under long-term rising sea level. It expands and refines previous models, providing guidance required for effective management and hazard mitigation on transgressive paraglacial coasts.  相似文献   

18.
A tidally averaged model of estuarine dynamics is used to estimate sediment transport in the Hudson River estuary over the period 1918 to 2005. In long-term and seasonal means, along-channel gradients in sediment flux depend on the estuarine salinity gradient and along-channel depth profile. Lateral depth variation across the estuary affects the near-bottom baroclinic circulation and consequently the direction of net sediment flux, with generally up-estuary transport in the channel and down-estuary transport on the shoals. Sediment transport capacity in the lower estuary depends largely on river discharge, but is modified by the timing of discharge events with respect to the spring–neap cycle and subtidal fluctuations in sea level. Sediment transport capacity also depends on the duration of high-discharge events relative to the estuarine response time, a factor that varies seasonally with discharge and estuarine length. Sediment fluxes are calculated with the assumption that over long periods, the system approaches morphological equilibrium and sediment accumulation equals sea level rise. The inferred across- and along-channel distributions of sediment erodibility correspond with observations of bed properties. Equilibrium is assumed at long time scales, but at annual to decadal time scales the estuary can develop an excess or deficit of sediment relative to equilibrium. On average, sediment accumulates in the estuary during low- and high-discharge periods and is exported during moderate discharge. During high-discharge periods, maximum export coincides with maximum sediment supply from the watershed, but the nearly cubic discharge dependence of fluvial sediment supply overwhelms the roughly linear increase in estuarine transport capacity. Consequently, sediment accumulates in the estuary during the highest flow conditions. Uncertainty remains in the model, particularly with sediment properties and boundary conditions, but the results clearly indicate variability in the sediment mass balance over long time scales due to discharge events.  相似文献   

19.
This paper examines sediment transport, sedimentation and properties of suspended matter and sediments in the Ra?a River estuary, a small, rock-bounded, microtidal, low-wave-energy karstic estuary in the north-eastern Adriatic. The Ra?a River is characterized by large variation in water flow and variable load of mineral particles. More than 90% of this load is brought into the estuary as fine-grained suspended matter, consisting of only 24–36% of carbonates, the rest being clays. Sedimentation occurs at the salt wedge, resulting in a prograding estuarine delta. Salt-induced flocculation is the predominant process of sediment deposition. The Ra?a estuary is infilling with sediment, and classifies as a disequilibrium estuary. We propose a modification of Cooper's (1993) classification scheme to include river-dominated, disequilibrium estuaries, with the Ra?a River as an example.  相似文献   

20.
The lowest part of the Ebro River is a microtidal salt-wedge estuary. Penetration of the salt-wedge is largely controlled by the fluvial discharge and the morphology of the river bed, although sea level variations caused by tides and atmospheric conditions can also play significant roles. The concentration and distribution of suspended particulate matter in this part of the river and the fluvial sediment discharge are strongly influenced by the dynamics of the salt-wedge. Damming of the river has caused sediment to be trapped in reservoirs and has regulated the fluvial discharge. Intrusion of the salt wedge has thus also been regulated. At present, sediment discharge is between 1 and 1·5 × 105 tons per year, which is less than 1% of the sediment that the Ebro River discharged into the sea before construction of the dams. This extreme reduction in sediment supply has allowed marine erosional processes to dominate in the delta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号