首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
An oil-refining plant site located in southern Taiwan has been identified as a petroleum-hydrocarbon [mainly methyl tert-butyl ether (MTBE) and benzene, toluene, ethylbenzene, and xylenes (BTEX)] spill site. In this study, groundwater samples collected from the site were analyzed to assess the occurrence of intrinsic MTBE biodegradation. Microcosm experiments were conducted to evaluate the feasibility of biodegrading MTBE by indigenous microorganisms under aerobic, cometabolic, iron reducing, and methanogenic conditions. Results from the field investigation and microbial enumeration indicate that the intrinsic biodegradation of MTBE and BTEX is occurring and causing the decrease in MTBE and BTEX concentrations. Microcosm results show that the indigenous microorganisms were able to biodegrade MTBE under aerobic conditions using MTBE as the sole primary substrate. The detected biodegradation byproduct, tri-butyl alcohol (TBA), can also be biodegraded by the indigenous microorganisms. In addition, microcosms with site groundwater as the medium solution show higher MTBE biodegradation rate. This indicates that the site groundwater might contain some trace minerals or organics, which could enhance the MTBE biodegradation. Results show that the addition of BTEX at low levels could also enhance the MTBE removal. No MTBE removal was detected in iron reducing and methanogenic microcosms. This might be due to the effects of low dissolved oxygen (approximately 0.3 mg/L) within the plume. The low iron reducers and methanogens (<1.8×103 cell/g of soil) observed in the aquifer also indicate that the iron reduction and methanogenesis are not the dominant biodegradation patterns in the contaminant plume. Results from the microcosm study reveal that preliminary laboratory study is required to determine the appropriate substrates and oxidation-reduction conditions to enhance the biodegradation of MTBE. Results suggest that in situ or on-site aerobic bioremediation using indigenous microorganisms would be a feasible technology to clean up this MTBE-contaminated site.  相似文献   

2.
开封市垃圾场污染物运移模拟与控制   总被引:3,自引:0,他引:3  
张艳  何江涛  李鹏  王俊杰 《地下水》2010,32(3):15-18,27
在对开封市某典型垃圾场进行野外调查的基础上,应用Visual Modflow建立了该垃圾场污染场地的水流和溶质运移耦合模型并进行数值模拟预测,预测了20年后该污染场地垃圾渗滤液污染羽运移范围、途径及方式等特点。模拟了应用防渗墙和抽水井两种方式控制地下水污染的措施和方案,并利用计算机模型对污染控制的效果进行了模拟分析。模拟结果表明,模拟初期污染羽覆盖了3个抽水井,污染羽前缘距离村庄688 m。模拟20年后污染羽已经覆盖了7个抽水井,其中浓度超标井有3口,污染羽前缘距离村庄605 m。建议在加强污染物监测的同时协助开展其他的污染控制措施,进一步控制污染羽的扩散。  相似文献   

3.
The transformation of benzene and a series of alkylbenzenes was studied in anoxic groundwater of a shallow glacial-outwash aquifer near Bemidji, Minnesota, U.S.A. Monoaromatic hydrocarbons, the most water-soluble components of crude oil, were transported downgradient of an oil spill, forming a plume of contaminated groundwater. Organic acids that were not original components of the oil were identified in the anoxic groundwater. The highest concentrations of these oxidized organic compounds were found in the anoxic plume where a decrease in concentrations of structurally related alkylbenzenes was observed. These results suggest that biological transformation of benzene and alkylbenzenes to organic acid intermediates may be an important attenuation process in anoxic environments. The transformation of a complex mixture of hydrocarbons to a series of corresponding oxidation products in an anoxic subsurface environment provides new insight into in situ anaerobic degradation processes.  相似文献   

4.
Induced bank infiltration (BI) is commonly implemented in other countries, but remains new and unexplored in Malaysia. Increasing river pollution could affect drinking water resources. Given the threat of pollution to raw water sources, applying induced BI to sustain water management is essential. This paper presents a case study of the BI method, which evaluates the effects of groundwater pumping and BI operation on the installation of wells as well as determines the effect of pumping rate on flow paths, travel time, the size of the pumping and capture zone delineation, and groundwater mixing in a pumping well in Jenderam Hilir, Malaysia. The proposed method performs infiltration safely and achieves the ideal pumping rate. Numerical modeling packages, MODFLOW and MODPATH (particle tracking) were used. Results indicate that the migration of river water into the aquifer is generally slow and depends on the pumping rate and distance from well to the river. Most water arrives at the well by the end of a pumping period of 1–5 days at 3,072 m3/day for test wells DW1 and DW2, and during simultaneous pumping for DW2 and PW1 for a well located 36 and 18 m, respectively, from the river. During the 9.7-day pumping period, 33 % of the water pumped from the DW1 well was river water, and 38 % from DW2 throughout 4.6 days was river water. The models provide necessary information for water operators in the design and construction of pumping and sampling schedules of BI practices.  相似文献   

5.
Transformer oil leakage having large quantity of PCBs is one of the most deplorable incidents resulting in huge negative impacts on the environment. In this paper, two different models, i.e. CHEMCAN and the hydrocarbon spill screening models, were applied to the case study adapted from a real case of PCBs in transformer oil spill in Montreal. The oil migration was examined in three dimensions including site-specific data, soil characteristics and hydrogeological properties. This study aims to investigate the fate, transport and transformation rates of PCB in the soil, the unsaturated and the saturated zones. The proposed modelling concept helps to define the processes to be used in characterization of soil and subsurface environment as a receptor of transformer oil spill. This study includes the simulation techniques for assessing the effect of PCBs on groundwater and soil. Results from multimedia environmental model and HSSM model verify with each other, and both show that 92.7 % of PCBs were found in soil as compared to groundwater. Considering decay and sorption processes at spill location, concentration of PCBs in soil was >50 mg/kg. This study can serve as a basis for further analysis and assist in selection of remediation technique.  相似文献   

6.
Self potential (SP) and electrical resistivity tomography (ERT) methods are used together with the results of groundwater samples hydrogeochemical analysis to assess the impact of the water leak from the landfill garbage site at NamSon located in Northern Hanoi on causing pollution to the surrounding environment and affecting geological structure. Selected survey area covers an area of 180 × 300 m lying in the low land of the NamSon site with a slope ranging about 8 m in direction NW–SE. There are three geophysical measurements lines denoted as T1, T2 and T3. Processing 180 SP data points has allowed to draw maps of equipotential epoch in the two periods in 2015 and 2016. The maps show four zones of SP positive anomalies with maximum amplitudes of about +20 mV where the groundwater flow direction is downward and five zones of SP negative anomalies with minimum values in a range from ?180 to ?260 mV where the groundwater flow direction is upward. Resistivity values of the subsurface layers of soils and rocks have been aquired from 2D inverse model for measuring ERT in March 2015 and March 2016. The results of the ERT allowed to define the low resistivity in the range 15–20 Ωm related to leachate plume from NamSon landfill site. Results of the physico-chemical analysis of groundwater samples from the existing six boreholes show increases in concentration of the measured pollutant parameters indicating contamination of the groundwater as a result of solid waste leachate accumulation. This result is affirmative evidence for the survey results by geophysical technique. The rapid decrease in quality of groundwater over the last year is probably due to the influence of the leachate from the NamSon landfill site.  相似文献   

7.
探讨输油管道建设对鄂尔多斯盆地地下水环境的影响,根据研究区地质及水文地质特征,结合石油管道事故所设定条件,按照风险最大化原则,采用“瞬时注入示踪剂——平面瞬时点源”模型进行预测分析,结果表明:污染物在地下水中运移的1460d内,最大迁移距离呈先增大后减小的趋势,最大距离为116.05m;中心点浓度则从433.13mg/L减少至〈0.3mg/L,低于《生活饮用水卫生标准(GB5749—2006)》中石油类限值(0.3mg/L);泄漏中心点逐渐运移至下游49.64m处,对地下水敏感点不会产生明显影响。  相似文献   

8.
According to the engineering features of the proposed power plant and the possible pollution accidents, the accident conditions of two kinds of polluted groundwater, such as the light diesel oil tank bottom leakage and the power plant pond bottom leakage are set up. Using the two-dimensional hydrodynamic dispersion equation of the continuous injection and instantaneous injection, the groundwater pollution in the accident condition is predicted and evaluated. The results show that, with the passage of time, the migration range of groundwater pollutants caused by sewage leakage from industrial wastewater buffer tank shows a trend of gradual expansion; however, the maximum value of pollutant concentration exceeding standard is gradually decreasing. After 10 years, the excessive pollutant migration distance has reached 390 m. If no remedial measures are taken in time, during the operation of the power plant, industrial wastewater pool sewage leakage will cause long-term pollution to the groundwater. Similarly, if the accident was diesel tank explosion, the range of diesel contamination to groundwater is also increasing over time, but the concentration of pollutants is gradually decreasing. About 25 years later, the pollutant concentration within 400 m downstream of pollution source has decreased to 0.04 mg/L, and the impact of diesel oil leakage on groundwater has largely disappeared.  相似文献   

9.
Intentional and/or accidental volatile organic compound (VOC) spill into water bodies may lead to severe contamination and health problems in water infrastructures. The importance and widespread use of petroleum products and the threats posed by these products on surface water resources in Iran necessitates the access to numerical hydrodynamic and water quality simulation models with appropriate capabilities. Simulation the fate and transport of VOC in both flowing and standing water bodies is a fairly complex problem. In this research, CE-QUAL-W2 model is modified to simulate the fate and transport of VOC [i.e., Methyl tert-butyl ether (MTBE), benzene] in standing and flowing water bodies. The performance of the modified CE-QUAL-W2 model is evaluated in a MTBE pollution spill at Khalife-Tarkhan river along the headwaters of Gheshlagh reservoir, Kordestan, Iran. The results show the modified CE-QUAL-W2 model’s capability to depict the spatial and temporal variation of MTBE in comparison with recorded data from MTBE spill event of Gheshlagh reservoir. Based on the simulation results of modified CE-QUAL-W2 model, reservoir cleanup time in different meteorological and hydrological scenarios is evaluated. The results show Gheshlagh reservoir cleanup time reduced in scenarios that included air temperature reduction, wind speed increasing, and high inflow condition.  相似文献   

10.
There is an urgent need for characterization of leachate arising from waste disposal to ensure a corresponding effective leachate management policy. Field and laboratory studies have been carried out to investigate the impact of municipal landfill leachate on the underlying groundwater at a site in West Malaysia. The solid waste was disposed of directly onto an unprotected natural soil formation. This situation was made worse by the shallow water table. The hydrochemical composition of groundwater in the vicinity of the site (background) is a dilute mixed cation, bicarbonate water. The high ionic balance error of ~13.5% reveals that the groundwater body underneath the site was a highly contaminated leachate rather than contaminated groundwater. Elevated concentration of chloride (355.48 mg/L), nitrate (10.40 mg/L as NO3), nitrite (14.59 mg/L), ammoniacal-N (11.61 mg/L), sodium (227.56 mg/L), iron (0.97 mg/L), and lead (0.32 mg/L) measured downgradient indicate that the contamination plume has migrated further away from the site. In most cases, the concentration of these contamination indicators, together with the ranges of sodium percentage (66.3–89.9%) and sodium adsorption ratio (10.1–19.7%), were found to be considerably higher than the limit values of safe water for both domestic and irrigation purposes, respectively.  相似文献   

11.
 Contamination of groundwater by petroleum-hydrocarbons is a widespread environmental problem. Natural attenuation is a passive remedial approach to degrade and dissipate contaminants in soil and groundwater. In this study, a mass flux approach was used to calculate the contaminant mass reduction and field-scale decay rate at a gasoline spill site. The mass flux technique is accomplished using the differences in total contaminant mass flux across two cross sections of the contaminant plume. The mass flux calculation shows that up to 88% of the dissolved BTEX (benzene, toluene, ethylbenzene, and xylene isomers) removal was observed by natural attenuation processes. The efficiency of intrinsic biodegradation was evaluated by the in situ tracer method. A first-order decay model was applied for the natural attenuation and intrinsic biodegradation rate calculation. Results reveal that intrinsic biodegradation process was the major cause of the BTEX reduction among the natural attenuation mechanisms, and iron reduction was the dominant biodegradation pattern within the plume. Approximately 87% of the BTEX removal was caused by intrinsic biodegradation processes. The calculated BTEX natural attenuation and intrinsic biodegradation rates were 0.24 and 0.16% l/day, respectively. Results suggest that natural attenuation mechanisms can effectively contain the plume, and the mass flux method is useful in assessing the efficiency of the natural attenuation. Received: 6 December 1999 · Accepted: 11 July 2000  相似文献   

12.
ICT-based remediation with knowledge information management is presented for the pump-and-treat method of contaminated groundwater. The usefulness of ICT is discussed for monitoring contaminants and groundwater level, transferring data between the remediation well and the remote remediation center, and decision support analysis for controlling the remediation well. A prototype system was developed and applied to field measurement. The prototype system performed reliably for ~600 days. As a decision support analysis, a fuzzy inference model is discussed. The membership functions were determined based on simple reliability theory. The effectiveness of the proposed method was assessed by numerical simulations. The simulation results suggest that the proposed method is likely to reduce the pumped quantity compared to PID control or an engineer’s empirical knowledge. Analysis results are also shown for cancer risks from contaminants and ground settlement risks due to excess pumping up of groundwater.  相似文献   

13.
Three years after the oil spillage and pipeline explosion that claimed about 100 human lives at Ijegun Community of Lagos–Nigeria, a combination of carefully designed 2D Electrical Resistivity Profilling and Vertical Electrical Sounding methods was deployed to map and characterise the subsurface around the contaminated site. Data acquired were processed, forward modelled and tomographically inverted to obtain the multi-dimensional resistivity distribution of subsurface. The results of the study revealed high resistivity structures that indocate the presence of contaminant (oil plumes) of different sizes and shapes around the oil leakage site. These high resistivity structures are absent in the tomograms and resistivity-depth slices computed for Iyana—a linear settlement not affected by oil spillage. The five geo-electric layers and the resistivities delineated in the area are the top soil layer, 220–670 Ωm; clayey sand layer, 300–1072 Ωm; top sand layer, 120–328 Ωm; mudstone/shale layer, 25–116 Ωm and the bottom sand layer, 15–69 Ωm. The base of the first four geo-electric layers corresponds to 3.9, 8.4, 27.2 and 34.6 m respectively. The two groundwater aquifers delineated correspond to the third and fifth geo-electric layers. The top aquifer has been infiltrated by oil plumes. The depth penetrated by the oil plume decreases from 32 m to about 24 m across the survey profiles from the two ends. It was concluded that the contaminant plumes from the oil spillage are yet to be completely degraded as at the time of the study. It is recommended that the contaminated site be remediated to remove or reduce the contaminant oil in the subsurface.  相似文献   

14.
Water table dynamics, dissolved oxygen (DO) content, electrical resistivity (ER) in monitoring wells and air pressure in the vadose zone are monitored in air sparging (AS) accompanied by soil vapor extraction (SVE) at a hydrocarbon-contaminated groundwater site in Oman, where a diesel spillover affected a heterogeneous unconfined aquifer. The formation of a groundwater mound at the early stage of air injection and potential lateral migration of contaminants from the mound apex called for an additional hydrodynamic barrier constructed as a pair of pump-and-treat (P&T) wells whose recirculation zone encompassed the AS and SVE wells. In all monitored piezometers the phreatic surface showed a rapid and distinct peak, which is attributed to the time of air breakthrough from the injection point to the vadose zone and a relatively mild recession limb interpreted as a decay of the mound. Tracer tests showed a layer of a relatively low hydraulic conductivity at an intermediate depth of the screened interval of the wells. Increased levels of DO and borehole air pressure that have been observed (as far as 50 m away) are likely mitigated by SVE and P&T. Radius of influence can be indirectly inferred from ER and DO changes in the AS operation zone. Salt tracer tests have shown that groundwater velocity within the AS zone decreases with the increase of air injection rate.  相似文献   

15.
The convective transfer of 137Cs and 90Sr by groundwater on the territory of the Russian Research Centre Kurchatov Institute (RRCKI) was modeled. Geological data on the RRCKI site and possible sources of radionuclides show that the uppermost aquifer, composed of Quaternary sediments, is the most probable region of spreading of radioactive contamination. Since the lateral migration of radionuclides is predominant, a 2D horizontal model was used for the forecasting of spreading of radioactive contaminants in the subsurface medium. Transient or long-term repositories of radioactive materials at the RRCKI site (concentrated sources) and aquifer rocks contaminated in the course of removal of radionuclides from these repositories (distributed source) are responsible for groundwater pollution. The initial 137Cs and 90Sr distributions used in the forecasting of radionuclide migration were determined from their contents in core samples taken from wells drilled in contaminated areas of the RRCKI site. The zone of radionuclide migration is limited by poorly permeable moraine loam from below and by the water table from above. To determine the upper and lower boundaries, these surfaces were mapped in plan view. The data of meteorological observations over a long period were used to map the intensity of precipitation in the studied territory. The density of rocks in the uppermost aquifer and partition coefficients of radionuclides between rocks and groundwater were estimated from the data of laboratory examination of the core samples. The available data on the permeability of rock samples and the results of test pumping out of some wells were involved in the consideration. The results obtained and the data on the water table allowed us to define a gauge problem for determining the distribution of the filtration coefficient in the uppermost aquifer. This problem was solved taking the intensity of precipitation into account. The properties of the uppermost aquifer and the initial radionuclide distribution therein were used as initial data for modeling 137Cs and 90Sr migration on the territory of the RRCKI over 50 years.  相似文献   

16.
Considering the importance of groundwater resources in water-supply demands in arid and semiarid areas such as Iran, it is essential to investigate the risk of groundwater pollution. Nitrate is one of the main pollutants that penetrate into the groundwater from various sources such as chemical fertilizers, pesticides, and domestic and industrial sewage. Unfortunately currently, nitrate contamination of the aquifers is a serious problem in Iran. The Karaj aquifer is not exempted, and the nitrate pollution zone, with concentrations far beyond the permitted limit (50 mg/L), expands fast. In this paper, the long-term groundwater-quality data (from 2000 to 2013) collected from Alborz Province Water and Wastewater Company were analyzed using ArcGIS10 and statistical software, and the spatial and temporal patterns of nitrate pollution in drinking-water wells in the Karaj plain and effective parameters (such as depth to groundwater level, hydraulic gradient, land use, precipitation, and urban, agricultural and industrial wastewater) were investigated. The authors also investigated the status of nitrate concentration variation using the concepts of geostatistics, based on determinations from 62 to 194 surveyed wells with a suitable distribution across the plain. With respect to the relationship between quality parameters, hydrogeological status of the aquifer and land usage, causes of the increase in the concentration of nitrate in the water and its trend were investigated as well. Results revealed that the nitrate levels in the northern portion of the study area were the highest with maximum concentrations of 181.7 mg/L from 2000 to 2013. Based on nitrate concentration distribution maps, the levels of nitrate increased from 2006 onwards to 26–100 mg/L. Unfortunately from 2008 to 2012, a pollution zone with a nitrate water concentration of 101–150 mg/L has been observed and even a concentration of 180 mg/L has been determined. In 2000, the entire aquifer area has been drinkable but with the increase in nitrate concentration, the area with undrinkable water has expanded to 21% in 2003, 24% in 2005, 33% in 2007, 39% in 2009, 43% in 2011 and 44% in 2013. The results of this study could provide valuable information with on the status of nitrate water concentrations in the Karaj plain which demands proper strategies and qualitative approaches in the future.  相似文献   

17.
This study investigates the influence of two factors—geological heterogeneity and variability in water infiltration—on non-aqueous phase liquid (NAPL) migration in the unsaturated zone. NAPL migration under three-phase flow conditions resulting from a ground surface spill is modeled for multiple heterogeneous realizations of a porous medium with various water infiltration scenarios. Increased water infiltration before the spill has two counteracting effects: NAPL relative permeability (k rn) increases with increasing water saturation (S w) for a given NAPL saturation, while higher S w in the soil near the NAPL source zone leads to less NAPL mass infiltration. It is found that the former effect is overwhelmed by the latter effect, the net effect being that with longer infiltration durations before the spill, both the infiltrated NAPL mass and the depth of the front migration decrease. Simulation results also show strong effect of the medium heterogeneity. Results suggest that total infiltrated mass, front depth and plume spread increase with an increasing standard deviation of log-permeability. Also variability in modeling results among realizations is largely impacted by the log-permeability standard deviation. Spatial correlation in permeability also strongly influences NAPL infiltration. An increase in the isotropic correlation length from 0.75 to 1.5 m leads to a decrease in total infiltrated mass, plume migration depth as well as vertical spread. Lateral spread in this case is not shown to be affected by the correlation length.  相似文献   

18.
Groundwater is inherently susceptible to contamination from anthropogenic activities and remediation is very difficult and expensive. Prevention of contamination is hence critical in effective groundwater management. In this paper an attempt has been made to assess aquifer vulnerability at the Russeifa solid waste landfill. This disposal site is placed at the most important aquifer in Jordan, which is known as Amman-Wadi Sir (B2/A7). The daily-generated leachate within the landfill is about 160 m3/day and there is no system for collecting and treating this leachate. Therefore, the leachate infiltrates to groundwater and degrades the quality of the groundwater. The area is strongly vulnerable to pollution due to the presence of intensive agricultural activity, the solid waste disposal site and industries. Increasing groundwater demand makes the protection of the aquifer from pollution crucial. Physical and hydrogeological characteristics make the aquifer susceptible to pollution. The vulnerability of groundwater to contamination in the study area was quantified using the DRASTIC model. The DRASTIC model uses the following seven parameters: depth to water, recharge, aquifer media, soil media, topography, impact on vadose zone and hydraulic conductivity. The water level data were measured in the observation wells within the disposal site. The recharge is derived based on precipitation, land use and soil characteristics. The aquifer media was obtained from a geological map of the area. The topography is obtained from the Natural Resources Authority of Jordan, 1:50,000 scale topographic map. The impact on the vadose zone is defined by the soil permeability and depth to water. The hydraulic conductivity was obtained from the field pumping tests. The calculated DRASTIC index number indicates a moderate pollution potential for the study area.  相似文献   

19.
地下水苯系物微生物降解及其碳同位素标记   总被引:1,自引:1,他引:0       下载免费PDF全文
微生物降解是地下水中有机物自然衰减评估的关键,单体稳定同位素是一种有效的评估方法。在对某油罐泄露场地地下水流场识别的基础上,刻画不同地下水中污染物、微生物及电子受体特征,发现随着与污染源水力联系的减弱,污染物浓度明显减小,微生物群落结构和电子受体氧化还原作用类型与源相似的程度也逐渐减弱,呈现出“污染源-下游源区-下游污染羽-上游源区-侧翼污染羽”的空间变化规律。甲苯、间/对二甲苯碳的同位素标记结果发现,降解程度“侧翼污染羽﹥下游污染羽﹥下游源区”,与电子受体表征降解量的排序相反;该场地微生物降解符合一般化学反应“勒沙特列原理”:污染物浓度越高,降解量越大,但降解程度相对减小。  相似文献   

20.
Ground-source geothermal systems are drawing increasing attention and popularity due to their efficiency, sustainability and being implementable worldwide. Consequently, design software and regulatory guidelines have been developed. Interaction with the subsurface significantly affects the thermal performance, sustainability, and impacts of such systems. Reviewing the related guidelines and the design software, room for improvement is evident, especially in regards to interaction with groundwater movement. In order to accurately evaluate the thermal effect of system and hydrogeological properties on a borehole heat exchanger, a fully discretized finite-element model is used. Sensitivity of the loop outlet temperatures and heat exchange rates to hydrogeological, system and meteorological factors (i.e. groundwater flux, thermal conductivity and volumetric heat capacity of solids, porosity, thermal dispersivity, grout thermal conductivity, background and inlet temperatures) are analyzed over 6-month and 25-year operation periods. Furthermore, thermal recovery during 25  years after system decommissioning has been modeled. The thermal plume development, transport and dissipation are also assessed. This study shows the importance of subsurface thermal conductivity, groundwater flow (flux > 10?7 m/s), and background and inlet temperature on system performance and impact. It also shows the importance of groundwater flow (flux > 10?8 m/s) on thermal recovery of the ground over other factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号