首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrologic conceptual models of groundwater/surface-water interaction in a saprolite-fractured bedrock geological setting often assume that the saprolite zone is hydraulically more active than the deeper bedrock system and ignore the contribution of deeper groundwater from the fractured bedrock aquifer. A hydraulic, hydrochemical, and tracer-based study was conducted at Scott Creek, Mount Lofty Ranges, South Australia, to explore the importance of both the deeper fractured bedrock aquifer system and the shallow saprolite layer on groundwater/surface-water interaction. The results of this study suggest that groundwater flow in the deeper fractured bedrock zone is highly dynamic and is an important groundwater flow pathway along the hillslope. Deep groundwater is therefore a contributing component in streamflow generation at Scott Creek. The findings of this study suggest that hydrologic conceptual models, which treat the saprolite-fractured bedrock interface as a no-flow boundary and do not consider the deeper fractured bedrock in hydrologic analyses, may be overly simplistic and inherently misleading in some groundwater/surface-water interaction analyses. The results emphasise the need to understand the relative importance of subsurface flow activity in both of these shallow saprolite and deeper bedrock compartments as a basis for developing reliable conceptual hydrologic models of these systems.  相似文献   

2.
Geophysical and hydrochemical borehole-logging techniques were integrated to characterize hydraulic and hydrogeochemical properties of the Chalk aquifer at boreholes in Berkshire, UK. The down-hole measurements were made to locate fissures in the chalk, their spatial extent between boreholes, and to determine the groundwater chemical quality of the water-bearing layers. The geophysical borehole logging methods used were caliper, focused resistivity, induction resistivity, gamma ray, fluid temperature, fluid electrical conductivity, impeller and heat-pulse flowmeter, together with borehole wall optical-imaging. A multiparameter data transmitter was used to measure groundwater temperature, electrical conductivity, dissolved oxygen, pH, and redox potential of the borehole fluid down-hole. High permeability developed at the Chalk Rock by groundwater circulation provides the major flow horizon at the Banterwick Barn study site and represents a conduit system that serves as an effective local hydraulic connection between the boreholes. The Chalk Rock includes several lithified solution-ridden layers, hardgrounds, which imply a gap in sedimentation possibly representing an unconformity. Lower groundwater temperature, high dissolved-oxygen content, and flowmeter evidence of preferential groundwater flow in the Chalk Rock indicated rapid groundwater circulation along this horizon. By repeating the logging at different times of the year under changing hydraulic conditions, other water-inflow horizons within the Chalk aquifer were recognized. Electronic Publication  相似文献   

3.
A groundwater flow model of the Alpine valley aquifer in the Aosta Plain (NW Italy) showed that well pumping can induce river streamflow depletions as a function of well location. Analysis of the water budget showed that ~80% of the water pumped during 2 years by a selected well in the downstream area comes from the baseflow of the main river discharge. Alluvial aquifers hosted in Alpine valleys fall within a particular hydrogeological context where groundwater/surface-water relationships change from upstream to downstream as well as seasonally. A transient groundwater model using MODFLOW2005 and the Streamflow-Routing (SFR2) Package is here presented, aimed at investigating water exchanges between the main regional river (Dora Baltea River, a left-hand tributary of the Po River), its tributaries and the underlying shallow aquifer, which is affected by seasonal oscillations. The three-dimensional distribution of the hydraulic conductivity of the aquifer was obtained by means of a specific coding system within the database TANGRAM. Both head and flux targets were used to perform the model calibration using PEST. Results showed that the fluctuations of the water table play an important role in groundwater/surface-water interconnections. In upstream areas, groundwater is recharged by water leaking through the riverbed and the well abstraction component of the water budget changes as a function of the hydraulic conditions of the aquifer. In downstream areas, groundwater is drained by the river and most of the water pumped by wells comes from the base flow component of the river discharge.  相似文献   

4.
Understanding groundwater/surface-water interactions in wetlands is crucial because wetlands provide not only a high potential for agricultural production, but also sensitive and valuable ecosystems. This is especially true for the Kilombero floodplain wetland in Tanzania, which represents a data-scarce region in terms of hydrological and hydrogeological data. A comprehensive approach combining hydrogeological with tracer-based assessments was conducted, in order to develop a conceptual hydrogeological wetland model of the area around the city of Ifakara in the north-eastern region of Kilombero catchment. Within the study site, a heterogeneous porous aquifer, with a range of hydraulic conductivities, is underlain by a fractured-rock aquifer. Groundwater chemistry is mainly influenced by silicate weathering and depends on groundwater residence times related to the hydraulic conductivities of the porous aquifer. Groundwater flows from the hillside to the river during most of the year. While floodwater close to the river is mainly derived from overbank flow of the river, floodwater at a greater distance from the river mainly originates from precipitation and groundwater discharge. Evaporation effects in floodwater increase with increasing distance from the river. In general, the contribution of flood and stream water to groundwater recharge is negligible. In terms of an intensification of agricultural activities in the wetland, several conclusions can be drawn from the conceptual model. Results of this study are valuable as a base for further research related to groundwater/surface-water interactions and the conceptual model can be used in the future to set up numerical flow and transport models.  相似文献   

5.
Understanding water exchange between groundwater and streams, or groundwater/surface-water relationships, is of primary importance for solving conflicts related to water use and for restoring water ecosystems. To this end, a combination of classic geochemical tools and isotopic tools were tested on the Bassée study site, located in the alluvial plain of the River Seine, to see whether they are relevant for tracing multiple and complex groundwater/surface-water relationships. The Ca/Sr ratio associated with Sr isotopes shows contrasted values and suggests that infiltration of surface water to groundwater increases when approaching the Seine. Furthermore, stable isotopes of the water molecule indicate that water from gravel-pit lakes may infiltrate into groundwater. Tritium and CFC tools confirmed surface-water influence on the Alluvial and Chalk aquifers. This geochemical approach, tested on the Bassée site, clearly demonstrates the need of using various geochemical tools for describing groundwater/surface-water relationships, and can be conclusively addressed to other case studies for helping decision makers in their management of natural water resources.  相似文献   

6.
The management of urban rivers which drain contaminated groundwater is suffering from high uncertainties regarding reliable quantification of groundwater fluxes. Independent techniques are combined for estimating these fluxes towards the Zenne River, Belgium. Measured hydraulic gradients, temperature gradients in conjunction with a 1D-heat and fluid transport model, direct flux measurement with the finite volume point dilution method (FVPDM), and a numerical groundwater flow model are applied, to estimate vertical and horizontal groundwater fluxes and groundwater–surface-water interaction. Hydraulic gradient analysis, the temperature-based method, and the groundwater flow model yielded average vertical fluxes of –61, –45 and –40 mm/d, respectively. The negative sign indicates upward flow to the river. Changes in exchange fluxes are sensitive to precipitation but the river remained gaining during the examined period. The FVPDM, compared to the groundwater flow model, results in two very high estimates of the horizontal Darcy fluxes (2,600 and 500 mm/d), depending on the depth of application. The obtained results allow an evaluation of the temporal and spatial variability of estimated fluxes, thereby helping to curtail possible consequences of pollution of the Zenne River as final receptor, and contribute to the setup of a suitable remediation plan for the contaminated study site.  相似文献   

7.
Among the advances made in analytical and numerical analysis methods to quantify groundwater/surface-water interaction, one methodology that stands out is the use of heat as an environmental tracer. A large data set of river and riverbed temperature profiles from the Aa River in Belgium has been used to examine the spatial-temporal variations of groundwater/surface-water interaction. Exchange fluxes were calculated with the numerical heat-transport code STRIVE. The code was applied in transient mode to overcome previous limitations of steady-state analysis, and allowed for the calculation of model quality. In autumn and winter the mean exchange fluxes reached ?90 mm d?1, while in spring and early summer fluxes were ?42 mm d?1. Predominantly gaining conditions occurred along the river reach; however, in a few areas the direction of flow changed in time. The river banks showed elevated fluxes up to a factor of 3 compared to the center of the river. Higher fluxes were detected in the upstream section of the reach. Due to the influence of exchange fluxes along the river banks, larger temporal variations were found in the downstream section. The exchange fluxes at the river banks seemed more driven by variable local exchange flows, while the center of the river was dominated by deep and steady regional groundwater flows. These spatial and temporal differences in groundwater/surface-water exchange show the importance of long-term investigations on the driving forces of hyporheic processes across different scales.  相似文献   

8.
Groundwater/surface-water interactions can play an important role in management of water quality and quantity, but the temporal and spatial variability of these interactions makes them difficult to incorporate into conceptual models. There are simple methods for identifying the presence of groundwater/surface-water interactions; however, identifying flow mechanisms and pathways can be challenging. More complex methods are available to better identify these mechanisms and pathways but are often too time consuming or costly. In this work, a simple method for interpreting and identifying flow mechanisms and sources using temporal variations of river response functions is presented. This approach is demonstrated using observations from two sites along the Arkansas River in Kansas, USA. A change in flow mechanisms between the rising and falling limbs of river hydrographs was identified, along with a second surface-water source to the aquifer, a finding that was validated with stable isotope analyses.  相似文献   

9.
Relation of streams, lakes, and wetlands to groundwater flow systems   总被引:24,自引:10,他引:14  
 Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater discharge areas, this is true primarily for regional flow systems. The superposition of local flow systems associated with surface-water bodies on this regional framework results in complex interactions between groundwater and surface water in all landscapes, regardless of regional topographic position. Hydrologic processes associated with the surface-water bodies themselves, such as seasonally high surface-water levels and evaporation and transpiration of groundwater from around the perimeter of surface-water bodies, are a major cause of the complex and seasonally dynamic groundwater flow fields associated with surface water. These processes have been documented at research sites in glacial, dune, coastal, mantled karst, and riverine terrains. Received, April 1998 · Revised, July 1998, August 1998 · Accepted, September 1998  相似文献   

10.
Identification and quantification of groundwater and surface-water interactions provide important scientific insights for managing groundwater and surface-water conjunctively. This is especially relevant in semi-arid areas where groundwater is often the main source to feed river discharge and to maintain groundwater dependent ecosystems. Multiple field measurements were taken in the semi-arid Bulang sub-catchment, part of the Hailiutu River basin in northwest China, to identify and quantify groundwater and surface-water interactions. Measurements of groundwater levels and stream stages for a 1-year investigation period indicate continuous groundwater discharge to the river. Temperature measurements of stream water, streambed deposits at different depths, and groundwater confirm the upward flow of groundwater to the stream during all seasons. Results of a tracer-based hydrograph separation exercise reveal that, even during heavy rainfall events, groundwater contributes much more to the increased stream discharge than direct surface runoff. Spatially distributed groundwater seepage along the stream was estimated using mass balance equations with electrical conductivity measurements during a constant salt injection experiment. Calculated groundwater seepage rates showed surprisingly large spatial variations for a relatively homogeneous sandy aquifer.  相似文献   

11.
Quantifying water exchange between a coastal wetland and the underlying groundwater is important for closing water, energy and chemical budgets. The coastal wetlands of the Florida Everglades (USA) are at the forefront of a large hydrologic restoration project, and understanding of groundwater/surface-water interactions is needed to comprehend the effects of the project. Four independent techniques were used to identify water exchange at varying spatial and temporal scales in Taylor Slough, Everglades National Park. The techniques included a water-budget study and measurements of hydraulic head gradients, geochemical tracers, and temperature. During the 18-month study, the four methods converged as to the timing of groundwater discharge, typically between June and September, contemporaneous with the wet season and increasing surface-water levels. These results were unexpected, as groundwater discharge was predicted to be greatest when surface-water levels were low, typically during the dry season. Either a time lag of 1?C5?months in the response of groundwater discharge to low surface-water levels or precipitation-induced groundwater discharge may explain the results. Groundwater discharge was a significant contributor (27?%) to the surface water in Taylor Slough with greater rates of discharge observed towards the coastline in response to seawater intrusion.  相似文献   

12.
《Applied Geochemistry》1998,13(2):143-153
The Cretaceous Chalk [Ulster White Limestone Formation (UWLF)] in Northern Ireland has been diagenetically altered to a hard, low porosity, low matrix-permeability rock. It subcrops extensive beneath thick horizontal Tertiary Basalt lavas, but has a restricted strip of outcrop (approximately 80 km2) around the periphery of the overlying igneous rock. Despite its nature and location, numerous springs issue from the Chalk and are used for public and local supply, although little is known about the origin of the groundwater or the type of flow within the Chalk. We have addressed these unknowns using hydrogeochemical data from both rock types and surface stream waters, and fluorescent dye tracing. We have demonstrated that leakage recharge from the basalt to the Chalk accounts for less than 20% of the total water issuing from the Chalk springs using geochemical mass balance of conservative species and discharge data. The majority of the discharge derives from streams coming off the basalt and entering sink holes in the Chalk aquifer. Field and water tracing evidence shows that groundwater flow in the Chalk is dominated by conduit and fissure flow near to the outcrop areas. Karstification has been widespread near outcrop but has not ocurred in the sub-basalt region. Beneath the basalts, the Chalk exhibits different hydraulic properties due to the reduced recharge and dissolution potential that has prevented extensive development of fissure permeability in the UWLF. The Chalk aquifer thus appears to be strongly zoned in terms of the source of water, flow regime and recharge rate.  相似文献   

13.
A conceptual model of groundwater and surface-water interactions in areas of minor aquifers has been developed. It assesses the interplay of reach-scale subsurface flow paths (RSSF), controlled by the lateral extent of the alluvial valley, and channel unit-scale hyporheic flow paths (CUSHF), controlled by riffle and run/pool sequences, and their impacts on the spatial variability of riverbed flow and solute exchange. A network of riverbed mini-piezometers and multi-level samplers in different reach- and channel-unit scale settings of the River Don (South Yorkshire, UK) is monitored to: (1) estimate vertical hydraulic gradients (VHGs) and specific discharge; (2) discriminate subsurface flow paths from conservative natural tracers; and (3) deduce biogeochemical processes. In a constrained context (downstream end of the alluvial valley), RSSF discharge favours a homogeneous riverbed hydrochemistry with limited biogeochemical processes and shallow CUSHF. In an unconstrained (open alluvial valley) or asymmetric (bedrock outcropping on one bank) context, low VHGs favour deep CUSHF and a vertical stratification of RSSF. Reducing conditions intensify with depth, and superimpose with mixing in riffles. This good approximation of flow and solute behaviour in minor aquifers provides a practical framework to understand nutrient and contaminant fate and develop cost-effective monitoring programmes across the groundwater/surface-water interface.  相似文献   

14.
Hypersaline lakes occur in hydrologically closed basins due to evaporitic enrichment of dissolved salts transported to the lakes by surface water and groundwater. At the hypersaline Lydden Lake in Saskatchewan, Canada, groundwater/lake-water interaction is strongly influenced by the geological heterogeneity of glacial deposits, whereby a highly permeable glaciofluvial sand/gravel deposit is underlain by glaciolacustrine deposits consisting of dense clay interspersed with silt/sand lenses. Pressure head distribution in a near shore area indicates a bi-directional flow system. It consists of topographically driven flow of fresh groundwater towards the lake in the sand/gravel aquifer and density-driven, landward flow of saline groundwater in the underlying glaciolacustrine deposits. Electrical resistivity tomography, and chemical and isotopic composition of groundwater clearly show the landward intrusion of saline water in the heterogeneous unit. The feasibility of bi-directional flow and transport is supported by numerical simulations of density-coupled groundwater flow and transport. The results suggest that the geologically controlled groundwater exchange processes have substantial influences on both inputs and outputs of dissolved minerals in hypersaline lakes in closed basins.  相似文献   

15.
Remapping the Chalk of the Central Chalk Mass of the Isle of Wight between Carisbrooke (Newport), Calbourne and Shalcombe, including the Bowcombe Valley, has identified a complex series of tectonic ‘rolls’ and ‘flats’ in a region that has been interpreted to be a relay ramp between the Needles and the Sandown faults. A major new WNW trending fault at Cheverton throws the Chalk down by >50 m to the SW in a 80-100 m wide zone of faulting within which some chalk blocks have near vertical dips. The fault location and trend closely follows the edge of the Cranbourne-Fordingbridge High and could also reflect, for the first time, the surface expression of part of the Needles Fault, a major inversion reverse fault. Located along this fault zone deep Quaternary weathering of the Chalk and Quaternary gravel deposits are present. The trend of the Cheverton Fault brings it towards Gotten Leaze where a groundwater pumping station is located and groundwater springs regularly cause flooding on the Brighstone-Calbourne Road. Analyses of the jointing in the Chalk show that stratabound fracture patterns typical of the Chalk formations elsewhere in Southern England are present in the Central Mass. In addition, there are numerous small faults along which valleys have formed. Tectonic structure and lithology have had a profound influence on the geomorphology and groundwater flow in the Chalk in the Central Mass.  相似文献   

16.
The modeling of changes in surface water and groundwater in the areas of inter-basin water diversion projects is quite difficult because surface water and groundwater models are run separately most of the time and the lack of sufficient data limits the application of complex surface-water/groundwater coupling models based on physical laws, especially for developing countries. In this study, a distributed surface-water and groundwater coupling model, named the distributed time variant gain model–groundwater model (DTVGM-GWM), was used to assess the influence of climate change and inter-basin water diversion on a watershed hydrological cycle. The DTVGM-GWM model can reflect the interaction processes of surface water and groundwater at basin scale. The model was applied to the Haihe River Basin (HRB) in eastern China. The possible influences of climate change and the South-to-North Water Diversion Project (SNWDP) on surface water and groundwater in the HRB were analyzed under various scenarios. The results showed that the newly constructed model DTVGM-GWM can reasonably simulate the surface and river runoff, and describe the spatiotemporal distribution characteristics of groundwater level, groundwater storage and phreatic recharge. The prediction results under different scenarios showed a decline in annual groundwater exploitation and also runoff in the HRB, while an increase of groundwater storage and groundwater level after the SNWDP’s operation. Additionally, as the project also addresses future scenarios, a slight increase is predicted in the actual evapotranspiration, soil water content and phreatic recharge. This study provides valuable insights for developing sustainable groundwater management options for the HRB.  相似文献   

17.
The hydrologic and water-quality characteristics of a small tropical riverine wetland at Ulakwo, near Owerri, Imo State, Nigeria, were evaluated by analysis of stream hydrographs, the groundwater flow system, and geochemical analyses. This research is an initial step toward providing information needed to develop a programme of sustainable development of the ecosystem. The wetland is underlain by a layer of organic debris and hydromorphic soils, which in turn are underlain by an unconfined alluvial sand aquifer about 80 m thick. Horizontal and upward vertical hydraulic head gradients of about 0.002 and 0.001, respectively, and the results of a flow-net analysis suggest that considerable amounts of groundwater flow into the wetland. Low concentrations of Fe, NO3, PO4, and SO4 in the wetland water column are probably due to short-term removal of these nutrients from the surface-water by adsorption on the surficial wetland organic matter and bottom sediments. The groundwater flow system is important in the maintenance of the wetland, which probably plays an important role in the flow stabilisation and improvement of the water quality of the river. Electronic Publication  相似文献   

18.
The Andean region is characterized by important intramontane alluvial and glacial valleys; a typical example is the Tarqui alluvial plain, Ecuador. Such valley plains are densely populated and/or very attractive for urban and infrastructural development. Their aquifers offer opportunities for the required water resources. Groundwater/surface-water (GW–SW) interaction generally entails recharge to or discharge from the aquifer, dependent on the hydraulic connection between surface water and groundwater. Since GW–SW interaction in Andean catchments has hardly been addressed, the objectives of this study are to investigate GW–SW interaction in the Tarqui alluvial plain and to understand the role of the morphology of the alluvial valley in the hydrological response and in the hydrological connection between hillslopes and the aquifers in the valley floor. This study is based on extensive field measurements, groundwater-flow modelling and the application of temperature as a groundwater tracer. Results show that the morphological conditions of a valley influence GW–SW interaction. Gaining and losing river sections are observed in narrow and wide alluvial valley sections, respectively. Modelling shows a strong hydrological connectivity between the hillslopes and the alluvial valley; up to 92 % of recharge of the alluvial deposits originates from lateral flow from the hillslopes. The alluvial plain forms a buffer or transition zone for the river as it sustains a gradual flow from the hills to the river. Future land-use planning and development should include concepts discussed in this study, such as hydrological connectivity, in order to better evaluate impact assessments on water resources and aquatic ecosystems.  相似文献   

19.
In a confined alluvial aquifer located between two rivers, discrete zones of anomalously high concentrations of redox species such as iron, are thought to be a result of groundwater flow dynamics rather than a chemical evolution along continuous flow paths. This new hypothesis was confirmed at a study site located between Nan and Yom rivers in Phitsanulok, Thailand, by analyzing concentrations of redox species in comparison with dynamic groundwater flow patterns. River incision into the confined alluvial aquifer and seasonally varying river stages result in truncated flow paths. The groundwater flow dynamics between two rivers has four phases that are cyclic, including: aquifer discharge into both rivers, direct flow from one river toward another, aquifer recharge from both rivers, and reverse of river-to-river flow. The resulting groundwater flow direction has a zigzag pattern and its general trend is almost parallel to the river flow. High iron anomaly appears as discrete zones in the transition areas of the confined alluvial aquifer because the lateral recharge from rivers penetrates into the aquifer only by tens of meters. The high iron anomaly, which is nearly constant in space and time, is a result of groundwater/surface-water interactions and related groundwater flow dynamics.  相似文献   

20.
傍河水源地地下水资源评价方法述评   总被引:7,自引:0,他引:7       下载免费PDF全文
刘国东  丁晶 《水科学进展》1998,9(3):289-295
当前傍河水源地地下水资源评价的方法主要是水动力学方法和地下水管理模型,包括平面二维流模式、饱和三维流模式、饱和-非饱和流模式以及以这些水流模式为基础的地下水管理模型,其中以完整河流假设的平面二维流模式和非完整河流(实际河流)的三维流模式应用较为广泛。但平面二维流模式计算的开采量偏大,容易引起不良的环境影响,应推行使用饱和三维流甚或饱和-非饱和流模式预测傍河水源地地下水开采量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号