首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the influence of the regional flow on the streambed vertical hydraulic conductivity (Kv) within the hyporheic zone in three stream reaches of the Weihe River in July 2016. The streambed Kv with two connected depths was investigated at each test reach. Based on the sediment characteristics, the three test reaches could be divided into three categories: a sandy streambed without continuous silt and clay layer, a sandy streambed with continuous silt and clay layer, and a silt–clay streambed. The results demonstrate that the streambed Kv mainly decreases with the depth at the sandy streambed (without continuous silt and clay layer) and increases with the depth at the other two test reaches. At the sandy streambed (with continuous silt and clay layer) where streambed Kv mainly decreases with the depth, the regional upward flux can suspend fine particles and enhance the pore spacing, resulting in the elevated Kv in the upper sediment layers. At another sandy streambed, the continuous silt and clay layer is the main factor that influences the vertical distribution of fine particles and streambed Kv. An increase in streambed Kv with the depth at the silt/clay streambed is attributed to the regional downward movement of water within the sediments that may lead to more fine particles deposited in the pores in the upper sediment layers. The streambed Kv is very close to the bank in the sandy streambed without continuous silt and clay layer and the channel centre in the other two test reaches. Differences in grain size distribution of the sediments at each test reach exercise a strong controlling influence on the streambed Kv. This study promotes the understanding of dynamics influencing the interactions between groundwater and surface water and provides guidelines to scientific water resources management for rivers.  相似文献   

2.
Many urban rivers receive significant inputs of metal‐contaminated sediments from their catchments. Restoration of urban rivers often creates increased slack water areas and in‐channel vegetation growth where these metal‐contaminated sediments may accumulate. Quantifying the accumulation and retention of these sediments by in‐channel vegetation in urban rivers is of importance in terms of the planning and management of urban river restoration schemes and compliance with the Water Framework Directive. This paper investigates sediment properties at four sites across three rivers within Greater London to assess the degree to which contaminated sediments are being retained. Within paired restored and unrestored reaches at each site, four different bed sediment patch types (exposed unvegetated gravel, sand, and silt/clay (termed ‘fine’) sediments, and in‐channel vegetated sediments) were sampled and analysed for a range of metals and sediment characteristics. Many samples were found to exceed Environment Agency guidelines for copper (Cu), lead (Pb) and zinc (Zn) and Dutch Intervention Values for Cu and Zn. At all sites, sediments accumulating around in‐channel vegetation were similar in calibre and composition to exposed unvegetated fine sediments. Both bed sediment types contained high concentrations of pseudo‐total and acetic acid extractable metal concentrations, potentially due to elevated organic matter and silt/clay content, as these are important sorbtion phases for metals. This implies that the changed sediment supply and hydraulic conditions associated with river restoration may lead to enhanced retention of contaminated fine sediments, particularly around emergent plants, frequently leading to the development of submerged and emergent landforms and potential river channel adjustments. High pseudo‐total metal concentrations were also found in gravel bed sediments, probably associated with iron (Fe) and manganese (Mn) oxyhydroxides and discrete anthropogenic metal‐rich particles. These results highlight the importance of understanding the potential effects of urban river restoration upon sediment availability and channel hydraulics and consequent impacts upon sediment contaminant dynamics and storage. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
以天津汉沽地区某挡土墙地基粉土为研究对象,首先对不同颗粒组成的粉土做固结不排水动三轴剪切试验,采用各向等压固结,周围压力等于100kPa。固结完成后在不排水条件下施加轴向激振力,试验波形为正弦波,振动频率1.0Hz,试验中以试样在周期剪切时轴向周期应变达到5%作为破坏标准,得出粉土的动强度受颗粒组成的影响。细颗粒含量越大,其动强度越小,黏粒含量为7.2%的粉土循环剪应力比CSR约为20.3%黏粒含量粉土的2倍。粉土的动强度可以用循环剪应力比和破坏振次建立的幂函数关系式较好地拟合。在剪切过程中,粉土的孔隙水压力一直没有达到所施加的围压数值,最终稳定在75%~85%围压之间。同时,试验还得出孔隙水压力的增长模式不能用统一的Seed模型拟合,孔压增长规律的影响因素较多。  相似文献   

4.
Local areas of fine-grained organic-rich sediments in Eckernforde and Kieler Forde Bays may experience disturbances which cause fluidization of the substrate and create a dense suspension (fluid mud) which exists temporarily as a component of the benthic boundary layer before becoming incorporated into the permanent bottom. Laboratory studies indicate this material behaves rheologically as a non-Newtonian substance, and both shear thinning (pseudoplastic) and shear thickening (dilatant) flow behavior can occur (ofien within the same sample) under low to intermediate shear stresses (2 - 40 Pa) and shear rates (0.46 - 122.49 s^-1). Detailed granulometric analyses (1/4 phi intervals) of the fraction 〈63 μm show differences in the silt/clay ratio (clay 〈2 μm) between the two environments. Little change in the silt/clay ratio is seen in the Kieler Forde sediments (from 0.74 to 0.95); however, at Eckernforde, the ratio changed from 0.73 to 2.19. Fine silt particles are lacking or were removed from the 4 to 16 μm fraction of the Eckernforde but not from the Kieler Forde sediments. Both shear thickening and shear thinning flow was observed in the Eckernforde sediments. Shear thickening flow behavior was not observed in the Kieler Forde sediments. Samples of organic-rich (10 to 20%) interface sediments from both areas were analyzed rheologically prior to, and atier removal of organic matter by H2O2 treatment. Reduction in ‘apparent' viscosity occurred through the entire range of shear rates and stresses, shear thickening behavior was reduced or became nonexistent, and yield stress decreased significantly compared to the natural samples. The differences in yield stress and flow behavior of dense suspensions result primarily from differences in grain size distributions but the role of organic matter on those properties is very significant and adds to the effects of the grain size distribution of the sediment.  相似文献   

5.
The entrainment of bottom deposits (silt and clay) into newly formed ice was investigated in the Amderma/Vaygach flaw lead in the southwestern Kara Sea, Siberian Arctic. Fine-grained bottom deposits and sea ice sediments (SIS) were analyzed by granulometry, scanning electron microscopy and X-ray diffractometry. On average, SIS contain by a factor of four times more silt than the shelf deposits (66.7% vs. 16.3%), and the SIS clay percentage is more than three-fold of the bottom value (31.2% vs. 9.1%). Sand-sized particles are significantly less abundant in SIS compared to bottom sediment (2.1% vs. 74.6%). The preferred entrainment of silt into ice is underpinned by the enhanced silt-to-clay-ratio in SIS compared to bottom deposits. Though silt is preferably entrained into SIS, no evidence was found for preferential ice-entrainment of any silt sub-fraction (coarse, medium or fine). However, sub-angular- and angular-discoidal silt particles are favorably entrained into local sea ice. Clay mineral assemblages in SIS and shelf surface sediments match very well revealing that no individual clay mineral is preferably enriched in SIS or reduced at the bottom. The general textural, compositional and statistical match of fine-grained shelf surface deposits and SIS proves that bottom sediment is the principle source for ice-entrained material in the study area. We propose e.g. wave action and thermohaline convection to take sediment particles upward from the bottom nepheloid layer into the well-mixed 10–40 m deep water column of the Amderma/Vaygach flaw lead, and the turbulent process of suspension freezing to bring sediment particles and frazil crystals into contact, finally leading to the formation of sediment-laden ice. The role of SIS entrainment and export for local/regional shelf erosion and coastal retreat is of minor importance in the SW Kara Sea compared to other circum-Arctic shelf seas. However, the characteristic clay mineral assemblage of local SIS and bottom deposits can help identify the origin of SIS both on regional and Arctic-wide scales.  相似文献   

6.
Seismic velocities ( V p and V s) of compressional (P-) and shear (S-) waves are important parameters for the characterization of marine sediments with respect to their sedimentological and geotechnical properties. P- and S-wave velocity data of near-surface marine sediments (upper 9 m) of the continental slope of the Barents Sea are analysed and correlated to sedimentological and geotechnical properties. The results show that the S-wave velocity is much more sensitive to changes in lithology and mechanical properties than the P-wave velocity, which is characterized by a narrow range of values. The correlation coefficients between S-wave velocity and silt and clay content, wet bulk density, porosity, water content and shear strength are higher than 0.5 while the correlation coefficients of P-wave velocity and the same parameters are always lower than 0.4. Although the relationship between V s and clay content has been widely described, the data show that V s is better correlated with silt content than with clay content for the sediments of the area investigated. However, they show different trends. While V s increases with increasing clay content, it decreases with increasing silt content.  相似文献   

7.
Total organic carbon(TOC) and grain size distribution(sand,silt,and clay) in the ephemeral Mahi River(western India) sediments were measured to look at their effectiveness in understanding the late Quaternary monsoon conditions.Four sites spread across the alluvial zone and three sites from the estuarine zone were sampled.TOC concentration in the sediments of the alluvial and estuarine zone sites ranged between 0.04 and 0.39%and 0.04 and 0.23%,respectively.It was observed that grain size differed significantly at the alluvial zone sites,whereas an uniform trend was found in the estuarine zone sites.The study indicated that low concentration of TOC and coarse size fractions(sand) in sediments were well correlated with available records of arid/weaker palaeomonsoon periods,whereas higher concentration of TOC and fine grain size fractions(silt + clay) in sediments were well correlated with available records of enhanced palaeomonsoon periods of the ephemeral Mahi River.Uniform concentrations of TOC and fine grain size particles in sediments at the estuarine zone sites are attributed to the backwater in the system,deeper sedimentation,and/or greater decomposition processes.It is concluded that,TOC and grain size distributions in the ephemeraL river sediments are simple and effective parameters to develop an understanding about late Quaternary monsoon conditions in ephemeral rivers.  相似文献   

8.
Measurements are presented of the properties of suspended particulate matter (SPM) in the estuarine turbidity maximum (ETM) of the upper Humber and Ouse estuaries during transient, relatively low freshwater inflow conditions of September 1995. Very high concentrations of near-bed SPM (more than 100 g l−1) were observed in the low-salinity (less than 1), upper reaches. SPM within the ETM consisted largely of fine sediment (silt and clay) that existed as microfloc and macrofloc aggregates and individual particles. Primary sediment particles were very fine grained, and typically, about 20–30% was clay-sized at high water. The clay mineralogy was dominated by chlorite and illite. There was a pronounced increase in particle size in the tidal river, up-estuary of the ETM. The mean specific surface area (SSA) of near-bed SPM within the ETM was 22 m2 g−1 on a spring tide and 24 m2 g−1 on a neap tide. A tidal cycle of measurements within a near-bed, high concentration SPM layer during a very small neap tide gave a mean SSA of 26 m2 g−1. The percentage of silt and clay in surficial bed sediments along the main channel of the estuary varied strongly. The relatively low silt and clay percentage of surficial bed sediments (about 10–35%) within the ETM’s region of highest near-bed SPM concentrations and their low SSA values were in marked contrast to the overlying SPM. The loss on ignition (LOI) of near-bed SPM in the turbid reaches of the estuary was about 10%, compared with about 12% for surface SPM and more than 40% in the very low turbidity waters up-estuary of the ETM. Settling velocities of Humber–Ouse SPM, sampled in situ and measured using a settling column, maximized at 1.5 mm s−1 and exhibited hindered settling at higher SPM concentrations.  相似文献   

9.
通过Bartington MS2 和Kappabridge MFK1-FA两种仪器对黄土-古土壤、红粘土和湖相沉积物样品进行了5个频率的磁化率测试,并计算得到了4个频率磁化率.通过对比分析不同类型样品磁化率-频率变化曲线可知,当样品中细颗粒磁性矿物含量较高时,磁化率在较低频率即可达到峰值,而当样品中细颗粒磁性矿物含量较低时,磁化率在较高频率时才能达到峰值.因此,在黄土-古土壤等样品的应用中,成壤作用较强,细颗粒亚铁磁性矿物含量较高,Bartington MS2的低频(465 Hz)与Kappabridge MFK1-FA的F1(976 Hz)和F2(3905 Hz)频率均处于磁化率峰值区域,可以检测到SP/SD阀值区域颗粒的信息,但是对于红粘土和湖相沉积物等细颗粒亚铁磁性矿物含量较低的样品,磁化率峰值对应的频率较高,MS2型磁化率仪无法有效地检测其中细颗粒的含量,而MFK1-FA中F2(3905 Hz)和F3(15616 Hz)两个频率间的频率磁化率则可以较好地完成这一任务.  相似文献   

10.
In this work, the deposition of clay-sized fine particles (d50 = 0.006 mm) and its subsequent influence on the dune-induced hyporheic exchange are investigated. Fine sand (D50 = 0.28 mm), coarse sand (D50 = 1.7 mm), and gravel (D50 = 5.5 mm) grains were used to form homogenous model streambeds; one control - no clay input, and two treatments - increasing clay inputs for each grain type. The results indicate that the clogging profiles of clay-sized sediments may not be predicted accurately using the previously proposed metric based on the relative sizes of infiltrating and substrate sediments. Further, the depositional patterns vary with the initial concentration of clay particles in the surface water. The assessment of clogging profiles in coarse-grained model streambeds also reveals a preferential infiltration of the clay particles in the hyporheic downwelling regions. The results from the dye tracer test suggest that the accumulation of clay particles altered the exchange characteristics in the treatment flumes. For each grain size, the treatment flumes exhibit lower hyporheic flux and higher median residence times compared to their respective control flumes. The dye penetration depths were lower in treatment flumes with fine and coarse sand compared to their respective control flumes. Interestingly, higher penetration depths were observed in treatment flumes with gravel compared to their respective control flume potentially due to the generation of preferential flow paths in the partially clogged gravel beds. The clogging altered the hyporheic fluxes and residence times in the coarse-grained model beds to a greater degree in comparison to the fine sand beds. Overall, our findings indicate that the properties of both fine and substrate sediments influence the clogging patterns in streambeds, and the subsequent influence of fine sediment clogging on hyporheic exchange and associated processes may vary across stream ecosystems.  相似文献   

11.
This study devises a new analytical relationship to determine the porosity of water-saturated soils at shallow depth using seismic compressional and shear wave velocities. Seismic refraction surveys together with soil sample collection were performed in selected areas containing water-saturated clay–silt, sand and gravely soils. Classification of clay–silt, sand and gravel dense soils provided the coefficient of experimental equation between the data sets, namely, Poisson's ratio, shear modulus and porosity values. This study presents a new analytical relationship between Poisson's ratio and shear modulus values, which are obtained from seismic velocities and porosity values of water-saturated material computed from water content and grain densities, which are determined by laboratory analysis of disturbed samples. The analytical relationship between data sets indicates that when the shear modulus of water-saturated loose soil increases, porosity decreases logarithmically. If shear modulus increases in dense or solid saturated soils, porosity decreases linearly.  相似文献   

12.
A method for collecting suspended sediment samples has been developed that pumps a discharge-weighted volume of water from fixed depths at four to 40 locations across a river and separates the suspended sediment in the sample using a continuous-flow centrifuge. The efficacy of the method is evaluated by comparing the particle size distributions of sediment collected by the discharge-weighted pumping method with the particle size distributions of sediment collected by depth integration and separated by gravitational settling. The pumping method was found to undersample the suspended sand sized particles (> 63 μm) but to collect a representative sample of the suspended silt and clay sized particles (< 63 μm). The centrifuge separated the silt and clay sized particles (< 63 μm) into three fractions. Based on the average results of processing 17 samples from the Mississippi River and several of its large tributaries in 1990, about 10% of the silt and clay sized material was trapped in a centrifuge bowl-bottom sealing unit containing the nozzle and consisted of mostly medium and coarse silt from 16 to 63 μm. About 74% was retained on a Teflon liner in the centrifuge bowl and consisted of sizes from 0–1 to 63 μm. About 9% was discharged from the centrifuge in the effluent and was finer than 0–1 μm. About 7% was lost during the processes of removing the wet sediment fractions from the centrifuge, drying and weighing. The success of the discharge-weighted pumping method depends on how homogeneously the silt and clay sized particles (< 63 μm) are distributed in the vertical direction in the river. The degree of homogeneity depends on the composition and degree of aggregation of the suspended sediment particles.  相似文献   

13.
Particulate matter samples filtered from near-bottom, 30-liter water samples collected during the GEOSECS Atlantic cruise were analyzed by the Computer Evaluated Scanning Electron Microscope Image (CESEMI-2) system. This system permitted automated discrete particle analysis for the elements Al, Si, P, S, K, Ca, and Fe by energy-dispersive X-ray spectrometry and for particle size. Approximately 2000 particles in the size range 1–20 μm, representative of several milliliters of seawater, were analyzed per sample and yielded discrete size and chemical analysis of the major classes of particulate matter—opal, calcium carbonate, and clay—as well as some regularly occurring subclasses of clay and other minor classes.The distributional patterns of the major classes matched both in chemistry and abundance their general distributional patterns in sediments. Clay particles reflected high- and low-latitude sources; opal particles, patterns of diatom productivity; and carbonate, patterns of productivity as well as the calcite saturation chemistry of the water column. Superimposed on these features was evidence for long-range transport of particles in well-defined bottom water masses such as the Antarctic Bottom Water. Such transport is believed to occur through a series of resuspension events, in which case particle distributions match the properties of the sediments. Cases were found where near-bottom particles did not match the sediments, especially in quiescent environments.  相似文献   

14.
Surface infiltration and internal drainage properties of five soil types from arid drylands of South Africa were studied under double ring infiltrometer, rainfall simulation plots (1 m2) and instantaneous drainage plots (9 m2). Changes in soil water content during 40 minute rainfall simulation for a rainstorm with average intensity of 1.61 mm min?1 and 30 day drainage period were measured at various depths by 1.5 m long capacitance soil water measuring (DFM) probe. Different (P < 0.05) mean surface steady infiltration rate ranged from 0.05 to 4.47 mm min?1 and had a negative power relationship (R 2 = 0.65) with horizon clay plus fine silt content. Power regression (R 2 ≥ 86%) described rainstorm infiltration and obtained steady rates within an average time of 15 minutes. Mean total infiltrated soil water content was lowest (P < 0.05) from surface horizons with either 47.7% clay plus fine silt content or bulk density of 1.91 g cm?3 and exchangeable sodium of not less than 44 mg kg?1. Surface horizons with lower surface bulk density and total sand fraction of more than 72% had infiltrated depth and mean total infiltrated soil water content up to 40 cm deeper and 0.55 mm mm?1 greater, respectively. Drainage rate at drained upper limit calculated from the Wilcox drainage model (R 2 ≤ 0.97%) was 0.2 mm day?1 or less were from underlying horizons with either clay plus fine silt of 45% or soft calcium carbonate. Higher drainage rate with accumulative drainage amount greater than 60 mm were from soil profile horizons with clay plus fine silt content of less than 20% and above unity steady infiltration rates. Rainstorm infiltration and drainage rates was shown to depend on permeability and coarseness of the respective soil surface and subsurface horizons; a phenomenon critical for harnessing rain and flood water to recharge groundwater. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Western Namibia is a significant global source of atmospheric mineral dust. We investigate the relationship between dust and source sediments, assessing the sustainability of dust flux. Remote sensing studies have highlighted specific ephemeral fluvial systems as important contributors to dust flux, including highlighting sections of valleys that are the origins of dust plumes in the period 2005–2008. Little is known however about the specific within‐valley dust sediment sources, particularly whether dust is derived from modern ephemeral channel floors or older valley fill sediments, many of which have been reported in the region. As part of a region‐wide analysis of aeolian dust flux, we investigate the sediment properties of atmospheric dust samples and valley sediments from the Huab valley, one of the principal regional dust sources. Trapped dust samples contain up to 88% very fine sand and silt when collected samples are disaggregated prior to analysis. Valley fill surface samples comprise 80% very fine sand and silt, and the surface of the modern ephemeral channel 30%. Valley fill sediments were sampled at depths up to 3.6 m below the present surface and reveal Holocene depositional ages from 0.6 ± 0.03 ka back to 9.79 ± 0.73 ka. These sediments contain 30% to 6% very fine sand and silt, with levels decreasing with depth and age. Aeolian bedforms in the valley system (nebkhas on the fill surface and climbing dunes on valley margins) indicate that aeolian processes under the influence of strong seasonal easterly winds likely result in dust being winnowed out of the valley fill surfaces, with sandy bedforms being constructed from the coarser component of the fill sediments. The volume of valley fill sediment suggests dust sourced from Holocene sediments is likely to continue into the future regardless of flow conditions in the modern channel system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Softening and strength loss of sands with increasing excess pore water pressure under repeated loads is well-known. However, extensive damage to the built environment also occurs at the sites underlain by fine grained soils during seismic shaking. The primary objective of this study is to investigate the factors affecting cyclic behavior of saturated low-plastic silt through laboratory testing. For this purpose, an extensive laboratory testing program including conventional monotonic and cyclic triaxial tests was carried out over reconstituted silt samples. The effects of the inherent soil properties and the effects of loading characteristics on the cyclic response of saturated low-plastic reconstituted silt samples were examined separately. Based on the test results, a model was introduced to estimate the effect of initial shear stress on the cyclic response. Besides, liquefaction susceptibility of the samples was examined via current liquefaction susceptibility criteria.  相似文献   

17.
Ten large volume water samples were taken from the Rhône River (Switzerland-France) in November, 1989 for recovery of total suspended sediment by continuous flow centrifugation. the samples were freeze-dried and analysed for particle size, organic carbon, total nitrogen, and carbonate. for comparative purposes, four bed sediments collected in July, 1989 are also described. the Rhône can be subdivided into three sections on the basis of the origins of the water. the first section is the Upper Rhône River draining into Lake Geneva. Waters are derived from glaciers, with low temperature and conductivity and high turbidity. Suspended sediment is coarse, has a bimodal distribution, and is low in both organic matter and carbonate. the second reach is from Lake Geneva to the confluence with the Saône at Lyon and has warmer water with higher conductivity and very low turbidity. Suspended sediment is higher in organic matter, with high carbonate originating from the lake. the final section is from Lyon to Arles, with warmer water and higher conductivity and turbidity due to modification by the Saône. Sediment is rich in organic matter, which May, account for an observed decline in oxygen in the river waters downstream from Lyon. Carbonate in these sediments also decreases due to increased turbidity from the Saône. Suspended sediments other than from the Upper Rhône show a remarkable consistency in grain size, predominantly in the fine silts (mode 9-11 μm). This consistency indicates a high degree of suitability for geochemical analysis. Bed sediments were bimodal throughout, with a dominant coarse population in two out of the four samples. Grain size statistical parameters could be easily explained by application of the theory of mixing of two major populations in the sand size (bed traction load) and the fine silt/clay size (suspended sediment load).  相似文献   

18.
Simulated rainfall experiments were performed on bare, undecomposed litter layer and semi-decomposed litter layer slopes with litter biomasses of 0, 50, 100 and 150 g m−2, respectively, to evaluate the effect of the undecomposed layer and semi-decomposed layer of Quercus variabilis litter on the soil erosion process and the particle size distribution of eroded sediment. The undecomposed layer and semi-decomposed layer of litter reduced the runoff rate by 10.91–27.04% and 12.91–36.05%, respectively, and the erosion rate by 13.35–40.98% and 17.16–59.46%, respectively. The percentage of smaller particles (clay and fine silt particles) decreased and the percentage of larger particles (coarse silt and sand particles) increased with an increased rainfall duration on all treated slopes, while the extent of the eroded sediment particle content varied among the treated slopes with the rainfall duration, with bare slopes exhibiting the largest variability, followed by undecomposed litter layer slopes and finally semi-decomposed litter layer slopes. The clay and sand particles were transported as aggregates, and fine silt and coarse silt particles were transported as primary particles. Compared with the original soil, sediment eroded from all treated slopes was mainly enriched in smaller particles. Furthermore, the loss of the smaller particles from the undecomposed litter layer slopes was lower than that from the semi-decomposed litter layer slopes, indicating that the undecomposed litter layer alleviated soil coarsening to some extent. The findings from this study improve our understanding of how litter regulates slope erosion and provide a reference for effectively controlling soil erosion.  相似文献   

19.
Airborne silt and clay containing calcium carbonate, quartz, clays, marine nannoplankton, and aquatic diatoms are trapped among stems of mosses in the Negev Highlands Desert. The mosses were studied in an area with 70 mm mean annual rainfall. They grow over the particles covering them and trap additional dust as it comes, resulting in the accumulation of loess sediments. The mosses protect the accumulated soil from erosion by wind or water. Remnants of the moss leaves and stems were found at a depth of 15 mm and more. No particles or minerals typical to basalt were found in the moss-trapped soil. The function of cushiony mosses may be used to explain the processes of loess trapping and protection in larger areas in moister areas such as the Northern Negev. Microscopic fossils in the dust may be used as guides to the origin of the (aeolian) sediments.  相似文献   

20.
Electrical conductivity of alluvial sediments depends on litho‐textural properties, fluid saturation and porewater conductivity. Therefore, for hydrostratigraphic applications of direct current resistivity methods in porous sedimentary aquifers, it can be useful to characterize the prevailing mechanisms of electrical conduction (electrolytic or shale conduction) according to the litho‐textural properties and to the porewater characteristics. An experimental device and a measurement protocol were developed and applied to collect data on eight samples of alluvial sediments from the Po plain (Northern Italy), characterized by different grain‐size distribution, and fully saturated with porewater of variable conductivity. The bulk electrical conductivities obtained with the laboratory tests were interpreted with a classical two‐component model, which requires the identification of the intrinsic conductivity of clay particles and the effective porosity for each sample, and with a three‐component model. The latter is based on the two endmember mechanisms, surface and electrolytic conduction, but takes into account also the interaction between dissolved ions in the pores and the fluid‐grain interface. The experimental data and their interpretation with the phenomenological models show that the volumetric ratio between coarse and fine grains is a simple but effective parameter to determine the electrical behaviour of clastic hydrofacies at the scale of the representative elementary volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号