首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A high-resolution magnetostratigraphy (planktonic foraminiferal) biostratigraphy and cyclostratigraphy is presented for the Pliocene Trubi marls in the Punta di Maiata section on Sicily. The integrated stratigraphy of the Rossello composite section of Hilgen ([1], Newslett. Stratigr., 17, 1987) is thereby completed. This composite section provides an unprecedented high-quality reference section for the Early to early Late Pliocene, containing a continuous sequence ranging from below the Thvera Subchron into the Matuyama Chron (4.86-2.45 Ma).The Punta di Maiata section extends from the Sidufjall Subchron of the Gilbert into the Gauss Chron (4.50-3.30 Ma). Linear interpolation between paleomagnetic datum planes in this section yields first-order age estimates of 3.72 (±0.01) and 3.59 (±0.01) Ma for the last common occurrence (LCO) and the actual last occurrence (LO) of Globorotalia margaritae.In addition, this age of 3.59 Ma provides an accurate age for the Zanclean-Piacenzian (Z/P) boundary, provided the LO of G. margaritae is maintained as a criterion to define this boundary in the Mediterranean. Irrespective, however, of the criterion used, the Punta di Maiata and Punta Piccola subsections of the Rossello composite are at present the most suitable sections to be designated as stratotypes for the Z/P boundary. The global significance of the Rossello composite is further strongly enhanced by the establishment of an astronomically calibrated geomagnetic polarity time scale based on the correlation of the Trubi sedimentary cycles with the astronomical record.  相似文献   

2.
New contributions to Chinese Plio-Pleistocene magnetostratigraphy   总被引:14,自引:0,他引:14  
A new collection of over 500 orientated hand-samples (of which 180 are red clays) from a 195 m loess/red clay section near Xian (109° 12′ E, 34° 12′ N), China, has been dated by magnetic stratigraphy. Biostratigraphic and previous magnetostratigraphic investigations gave a maximum age for the Chinese loess of 2.4 Ma, implying that the underlying Red Clay Formation is Pliocene in age. The present study yields a clearly defined magnetic polarity stratigraphy in good agreement with a polarity time scale developed by earlier workers. An interpretation of this magnetostratigraphy suggests a basal age for the loess series in this region of 2.5 Ma, and a minimum age for the base of the Red Clay Formation, which is also the base of the section, of 5.0 Ma.  相似文献   

3.
We summarize the ammonoid, conodont and halobiid biochronology of the Upper Carnian to Lower Norian, based on a discussion of data in the Alps, Sicily, Balkans, Turkey, Himalayas and Timor. With this integrated biostratigraphic scale, the Pizzo Mondello section (Sicily) can be recalibrated and the Carnian-Norian boundary more precisely located there. As a result, the magnetostratigraphy of this section is now in good agreement with previous results from Turkey, although the latter series are more condensed. Cross-correlation of available magnetostratigraphic data from marine Tethyan sections allow us to construct a composite Upper Carnian to Upper Norian geomagnetic polarity time scale (GPTS). This GPTS leads us to question previously proposed magnetobiostratigraphic and chronostratigraphic correlations within the Upper Triassic Newark non-marine sedimentary sequence.  相似文献   

4.
The site of Gongwangling is among the most important early hominin sites in China due to the discovery of a partial Homo erectus cranium. Until recently the cranium has been widely accepted as ∼1.15 Ma (million years) in age based on magnetostratigraphy and loess/paleosol correlation. However, a revised magnetostratigraphic and pedostratigraphic study assigned a much older age of 1.63 Ma, making Gongwangling the second oldest hominin cranium-bearing site in Eurasia. Here we apply the isochron burial dating method as an independent check for the magnetostratigraphy. Samples from the top of a gravel bed ∼7 m below the fossil-bearing layer give an isochron burial age of 1.82 ± 0.12 Ma, in excellent agreement with the Olduvai subchron in the revised magnetostratigraphy, supporting the antiquity of the cranium.  相似文献   

5.
A much improved high-resolution magnetostratigraphy is presented for the interval between 8.5 and 12.5 Ma in the deep marine astronomically tuned Monte dei Corvi Beach section in northern Italy. This section contains the formally designated boundary between the Middle and Upper Miocene defined by the Tortonian GSSP. The natural remanent magnetization is carried by an unusual low-temperature component of primary origin. According to interpretations of isothermal remanent magnetization (IRM) acquisition curves, the palaeomagnetic signal is most probably carried by iron sulphides, such as greigite or pyrrhotite. The resultant magnetostratigraphy is reliable and can be straightforwardly calibrated to the Astronomically Tuned Neogene Time Scale (ATNTS2004) showing that the section ranges from Chron C5An.2n up to C4.2r-1. The inferred correlation of the Tortonian GSSP to the older part of Chron C5r.2n is confirmed, thereby guaranteeing global correlation potential. In addition, the Monte dei Corvi Beach section has been re-tuned to the new numerical solution La2004 for the interval between 8.5 and 12.9 Ma. This exercise shows that the characteristic cycle patterns are not consistent with a single solution with fixed values for dynamical ellipticity and tidal dissipation. For the younger part of the section, sedimentary cycles show an excellent fit with intricate details of precession/obliquity interference in the nominal La2004(1,1) solution. However, this solution produces serious mismatches between the sedimentary cycles and the precession/obliquity interference in the interval older than ∼ 10.2 Ma. For this interval changes in tidal dissipation value (while keeping dynamical ellipticity constant at its present-day value) are necessary to maintain a perfect fit. A detailed visual comparison reveals a very good to excellent fit with La2004(1,1.2) and, to lesser extent, with La2004(1,0.5). However, La2004(1,1.2) is the preferred tuning target for the moment in the interval older than 10.2 Ma. The astronomical (re)tuning on precessional scale to La2004(1,1) yielded slightly different astronomical ages for each basic cycle and, hence, also for the calcareous plankton events and magnetic reversal boundaries with uncertainties ranging within a few thousand years. The age of the Tortonian GSSP turns into 11.625 Ma instead of the previously published 11.608 Ma. Our ages should replace existing ages in the Astronomically Tuned Neogene Time Scale (ATNTS2004).  相似文献   

6.
The earthquakes of Calabria are among the strongest in the whole Mediterranean, and they all occurred between the disruptive sequences of 1638 and 1908 (6.7 ≤ M ≤ 7.2). Recent paleoseismological studies show that the return time of these events on their causative fault are larger than 1 ky, thus making ancient earthquakes not recognizable through ‘conventional’ historical research. On the other hand, in those areas characterized by highly erodible deposits, the identification and paleoseismic trenching of active seismogenetic faults has remained a challenge. In order to overcome these issues, we took an archaeoseismological approach for casting light on earthquake occurrence in one of these regions, i.e., the SE area of central Ionian Calabria (Marchesato region). The extensive traces of simultaneous and abrupt collapses in the Roman settlement of Capo Colonna (in the area of the sixth and fifth b.c. sanctuary of Hera Lacinia, near the town of Crotone) are evidence of a disruptive earthquake, which occurred possibly in the third century a.d. To the same event we ascribe the definitive collapse of the Hera Lacinia temple. Considering the seismotectonic framework of the region, this event could be tentatively associated with the active fault system which cuts from NW to SE the whole Sila massif and its Ionian slope, and which should be responsible for all the others known M > 6 earthquakes in the area.  相似文献   

7.
Low-field anisotropy of magnetic susceptibility (AMS) analyses were performed on 532 samples collected in 36 (mostly lower Pliocene to lower Pleistocene) marine clay sites from the Crotone basin, a fore-arc basin located on top of the external Calabrian accretionary wedge. The Crotone basin formed since mid-late Miocene under a predominant extensional tectonic regime, but it was influenced thereafter by complex interactions with NW–SE left-lateral strike-faults bounding the basin, which also yielded post-1.2 Ma ∼30° counterclockwise block rotations. The basin is filled by continental to marine sediments yielding one of the thickest and best-exposed Neogene succession available worldwide. The deep-marine facies – represented by blue-grey marly clays gave the best results, as they both preserved a clear magnetic fabric, and provided accurate chronology based on previously published magnetostratigraphy and calcareous plankton (i.e. foraminifers and nannofossils) biostratigraphy. Magnetic susceptibility range and rock magnetic analyses both indicate that AMS reflects paramagnetic clay matrix crystal arrangement. The fabric is predominantly oblate to triaxial, the anisotropy degree low (<1.06), and the magnetic foliation mostly subparallel to bedding. Magnetic lineation is defined in 30 out of 36 sites (where the e12 angle is <35°). By also considering local structural analysis data, we find that magnetic fabric was generally acquired during the first tectonic phases occurring after sediment deposition, thus validating its use as temporally dependent strain proxy. Although most of the magnetic lineations trend NW–SE and are orthogonal to normal faults (as observed elsewhere in Calabria), few NE–SW compressive lineations show that the Neogene extensional regime of the Crotone basin was punctuated by compressive episodes. Finally, compressive lineations (prolate magnetic fabric) documented along the strike-slip fault bounding the basin to the south support the significance of Pleistocene strike-slip tectonics. Thus the Crotone basin shows a markedly different tectonics with respect to other internal and western basins of Calabria, as it yields a magnetic fabric still dominated by extensional tectonics but also revealing arc-normal shortening episodes and recent strike-slip fault activity. The tectonics documented in the Crotone basin is compatible with a continuous upper crustal structural reorganization occurring during the SE-migration of the Calabria terrane above the Ionian subduction system.  相似文献   

8.
The magnetostratigraphy of a 54-m-long section above the Cretaceous-Tertiary boundary at the sea-cliff section of Zumaia in the Basque basin (northern Spain) has been established. The section encompasses the entire Danian and the lower part of the Selandian stages as indicated by calcareous plankton biostratigraphy. The studied interval consists of (hemi)pelagic limestone-marl alternations in the form of couplets and bundles, which range from centimetre/decimetre to metre scale respectively and a few thin-bedded calcareous turbidites. The magnetostratigraphy, based on samples from about 200 stratigraphic levels, allows the identification of six reversal boundaries from chron C29r to C26r at a bed level. The spatial (or temporal) evolution of periodicities from a lithologically coded series is studied with the continuous wavelet transform technique. A preliminary age model based on the standard CK95 GPTS indicates that the basic lithologic carbonate-marl couplet corresponds to the 19-23-kyr precession cycle (21-31-cm cycle in the depth domain) and that a bundle cycle (usually groups of four to six basic couplets) with global periodicity centred at 1.22 m corresponds to the ∼110-kyr eccentricity cycle. We have tuned the bundle cycles to the Va03_R7 eccentricity orbital solution [Astrophys. J. 592 (2003) 620-630] following an initial match of a node of the ∼2.4-Ma eccentricity modulatory cycle in the target time series to particularly carbonate-rich bundles from the upper part of the Zumaia section that displays significant power of a 4.4-m-period cycle corresponding to the ∼404-kyr eccentricity cycle. Consistency between lithologic patterns and characteristics in the eccentricity target is reasonably met although the ∼404-kyr eccentricity cycle is not persistent throughout. The tuning, however, appears robust as it brings the age of the K/T boundary at ∼65.8 Ma. It is argued that a sea-level signal (tectonically driven?) is superimposed on the climatic forcing at the Milankovitch band masking the full expression of the low-frequency astronomical periods. We provide a cycle-tuned duration for all intervening Early Palaeocene polarity chrons and estimate relative ages for bioevents. The cycle-tuned chronology indicates that the CK95 GPTS overestimates the duration of chrons C28 and C27 by 20 and 26% respectively. Our data may prove useful to better constrain Early Palaeocene biostratigraphy of calcareous plankton and in the redefinition of the boundary between the Danian and Selandian stages.  相似文献   

9.
The overriding of the Luzon volcanic arc atop the underlying Chinese rifted‐continental margin has caused the formation of the Taiwan mountain belts and a peripheral foreland basin west of the orogen since the late Miocene. In this study, lithofacies analysis and calcareous nannofossil biostratigraphic investigations of the Dahan River section in northwestern (NW) Taiwan were performed. Our results offer insights into the temporal evolution of the sedimentary environments and the competing effects of the sedimentation and basin tectonics of the NW Taiwan foreland basin from the Pliocene to early Pleistocene. Nannofossil biostratigraphic studies showed that the upper Kueichulin Formation and the overlying Chinshui Shale can be assigned to the NN15 biozone of the Pliocene age, and the Cholan Formation pertains to NN16–NN18 of the early Pleistocene. The NN15–NN16 boundary coincides roughly with the boundary of the Chinshui Shale and Cholan Formation. We recognized three major sedimentary environments in the studied foreland succession comprising the upper Kueichulin Formation, Chinshui Shale, Cholan Formation and Yangmei Formation, in ascending order. During the deposition of the upper Kueichulin Formation in the early Pliocene, the dominant environment was a wave‐ and tide‐influenced open marine setting. During the late Pliocene, the environment deepened to an outer‐offshore setting when the sediments of Chinshui Shale were accumulated. In the Pleistocene, the environment then shallowed to wave‐dominated estuaries during the deposition of the lower Cholan Formation, and the basin was rapidly filled, generating a meandering and sandy braided river environment during the deposition of the upper Cholan to the Yangmei Formation. In summary, the evolution of sedimentary environments in the studied succession shows a deepening then a shallowing and coarsening upward trend during the period from the Pliocene to the Pleistocene, spanning the age from approximately 4 to 1 Ma.  相似文献   

10.
The Medina Wrenth in the central Mediterranean is a transform fault connecting the plate collision in northwest Africa and northern Sicily with that occurring at the Aegean plate boundary, south of Greece. The more than 800 km long crescent-shaped wrench zone is currently seismically quiet but exhibits major deformation since 5 Ma within a belt 30–100 km wide. It forms the southern boundary of two microplates moving eastward with respect to Africa and Europe. A simple plate rotation model constrained by recent paleomagnetic data indicates that a continental Iblean microplate and a hybrid continental/oceanic Ionian microplate, separated along the Malta Escarpment, have rotated anticlockwise by 11° and 12°, respectively, around poles in southern Italy. These rotations involved some 100 km of dextral eastward movement relative to Africa of the Ionian Basin north of the Medina Wrench since 5 Ma. Combining the published 26° clockwise rotation of the Peloponnesus and northwest half of the Aegean with the 12° anticlockwise rotation of the Ionian microplate results in (a) a 99% agreement between the length of the seismic Benioff Zone beneath Greece and the total convergence of the microplates, and (b) an average rate of convergence across the Aegean plate boundary southwest of the Peloponnesus of 6.6 ± 1cm a−1 since the Miocene. Relative motion between microplates in a collision zone thus may be as much as 6 times faster than convergence between the major plates which spawned them, and they can be considered rigid to the first order over the time span involved.  相似文献   

11.
塔里木盆地的高分辨率沉积记录对于理解青藏高原隆升、亚洲内陆干旱化乃至全球气候变化至关重要.建立可靠的地层年代标尺对于研究塔里木盆地晚新生代沉积环境演化、构造运动及古气候变化具有重要意义.本文对塔里木盆地东北缘库尔勒地区的两个全取心钻孔ZK3(深500 m)、ZK5(深300 m)进行详细的磁性地层学研究,结果表明,ZK3孔中更新统底界为54.8 m,下更新统底界为167.0 m,上新统底界为432.0 m,钻孔底部年龄约为6.2 Ma,属上中新统上部;ZK5孔中更新统底界为64.7 m,下更新统底界为241.5 m,钻孔底部年龄约为3.2 Ma,属上上新统.基于上述磁性地层年代标尺,通过沉积速率分析发现ZK3孔在3.0—3.6 Ma之间沉积速率明显增大,反映了塔里木盆地北部天山在此期间的快速隆升.通过东西部多个盆地地质剖面沉积速率的对比分析发现,这期构造活动在区域上具有准同期活动特征,在时代上与晚中新世以来青藏高原快速隆升的时代一致,可能与青藏高原的隆升扩展效应有关.  相似文献   

12.
In the Central Mediterranean region, the production of chemically diverse volcanic products (e.g., those from Mt. Etna and the Aeolian Islands archipelago) testifies to the complexity of the tectonic and geodynamic setting. Despite the large number of studies that have focused on this area, the relationships among volcanism, tectonics, magma ascent, and geodynamic processes remain poorly understood. We present a tomographic inversion of P-wave velocity using active and passive sources. Seismic signals were recorded using both temporary on-land and ocean bottom seismometers and data from a permanent local seismic network consisting of 267 seismic stations. Active seismic signals were generated using air gun shots mounted on the Spanish Oceanographic Vessel ‘Sarmiento de Gamboa’. Passive seismic sources were obtained from 452 local earthquakes recorded over a 4-month period. In total, 184,797 active P-phase and 11,802 passive P-phase first arrivals were inverted to provide three different velocity models. Our results include the first crustal seismic active tomography for the northern Sicily area, including the Peloritan–southern Calabria region and both the Mt. Etna and Aeolian volcanic environments. The tomographic images provide a detailed and complete regional seismotectonic framework and highlight a spatially heterogeneous tectonic regime, which is consistent with and extends the findings of previous models. One of our most significant results was a tomographic map extending to 14 km depth showing a discontinuity striking roughly NW–SE, extending from the Gulf of Patti to the Ionian Sea, south-east of Capo Taormina, corresponding to the Aeolian–Tindari–Letojanni fault system, a regional deformation belt. Moreover, for the first time, we observed a high-velocity anomaly located in the south-eastern sector of the Mt. Etna region, offshore of the Timpe area, which is compatible with the plumbing system of an ancient shield volcano located offshore of Mt. Etna.  相似文献   

13.
Determination of the age of the Precambrian-Cambrian boundary is critical in understanding early evolution of life on Earth. SIMS U-Pb zircon analyses of the Bed 5 tuff layer of the Meishucun section were carried out closely following the guidance of cathodoluminescence images, and the majority of analyses were conducted on the oscillatory zircon grains. Thirteen measurements yield a highly reliable Concordia U-Pb age of 536.7 ± 3.9 Ma for the Bed 5 horizon. A grand mean of 206Pb/238U age of 535.2± 1.7 Ma (...  相似文献   

14.
High-resolution Pliocene and Pleistocene sequences exposed on land in New Zealand are some of the few detailed records of widepread marine bioevents and paleoclimatic changes in the Southern Hemisphere. Marine biostratigraphy calibrated in deep-sea cores by paleomagnetic reversals has been the primary basis for the chronology of these sequences. We have determined ages for several tephra beds which now provide an independent numerical age calibration for a well-studied marine and terrestrial section in Wairarapa. By using the isothermal plateau fission track (ITPFT) method on volcanic glass we have overcome the problems of partial track fading and detrital mineral contamination, which hindered earlier studies, to reveal a new chronology extending back to nearly 5 Ma.

Our ages for the Hikawera Tuff (4.91 ± 0.25 Ma) and Spooner Tuff (3.44 ± 0.13 Ma) are consistent with the appearance and disappearance of many early Pliocene foraminiferial species, validating their age calibration in New Zealand. However, some fossil occurrences, including coccoliths, differ temporally by as much as 0.55 Ma, perhaps due to local tectonic-induced recycling.

Four Pleistocene tephra beds (Potaka tephra (1.00 ± 0.03 Ma), Kaukatea tephra (0.87 ± 0.05 Ma), Rangitawa tephra (ca. 0.35 Ma) and Kawakawa tephra (ca. 0.22 Ma)) are now recognised in the Wairarapa sequence via stratigraphic and new geochemical and age data. These beds allow direct correlation to other marine and terrestrial basins, as well as volcanic regions in New Zealand, and will ultimately aid in a regional paleoenvironmental reconstruction where bioevents are absent. The tephra ages indicate that the marine sediment accumulation rates varied from 90 to 250 m/Ma between different sections of the Pliocene and reached ca. 350 m/Ma in the last 2.4 Ma, when the sequence displays pronounced glacioeustatic cyclic deposition. In the terrestrial realm, the oldest loess in New Zealand is now constrained to between 1.00 and 0.87 Ma.  相似文献   


15.
Wang  Jia  Chang  Fengming  Li  Tiegang  Sun  Hanjie  Cui  Yikun  Liu  Tianhao 《中国科学:地球科学(英文版)》2020,63(11):1714-1729

Meridional heat transport of the western Pacific boundary current (the Kuroshio Current) is one of the key factors in global climate change. This current is important because it controls the temperature gradient between low latitudes and the North Pacific and so significantly influences mid-latitude atmosphere-ocean interactions. Here we reconstruct changes in hydrological conditions within the mid-latitude mainstream of the Kuroshio Current based on faunal analysis of planktonic foraminifera in core DSDP 296 from the Northwest Pacific Ocean. This approach enabled us to deduce evolutionary processes within the Kuroshio Current since the Pliocene. A total of 57 species in the coarser section (>150 µim) were identified; results indicate that planktonic foraminiferal faunal evolution has mainly been characterized by three major stages, the first of which comprised mixed-layer warm-water species of Globigerinoides ruber which first appeared between 3.5 and 2.7 Ma and then gradually increased in content. Percentages of another warm-water species of G. conglobatus also gradually increased in number over this interval. Variations in warm-water species indicate a gradual rise in sea surface temperature (SST) and imply initiation of Kuroshio Current impact on the Northwest Pacific Ocean since at least 3.5 Ma. Secondly, over the period between 2.7 and 2.0 Ma, thermocline species of Globigerina calida, Neogloboquadrina humersa, Neogloboquadrina dutertrei, and Pulleniatina obliquiloculata started to appear in the section. This fauna was dominated by G. ruber as well as increasing G. conglobatus contents. These features imply a further rise in SST and its gradually enhanced influence on thermocline water, suggesting strengthening of the Kuroshio Current since 2.7 Ma. Thirdly, between 2.0 Ma and present, increasing contents of thermocline species (i.e., G. calida, N. dutertrei and P. obliquiloculata) indicate a gradual rise in seawater temperature at this depth and also imply more intensive Kuroshio Current during this period. On the basis of comparative records from cores ODP 806 and DSDP 292 from the low latitude Western Pacific, we propose that initiation of the impact of the Kuroshio Current in the Northwest Pacific and it subsequent stepwise intensifications since 3.5 Ma can be closely related to the closure and restriction of the Indonesian and Central American seaways as well as variations in the Western Pacific Warm Pool (WPWP) and equatorial Pacific region.

  相似文献   

16.
Early Miocene sediments of the Morozaki Group in central Japan contain deep-sea fossils that have been dated using biostratigraphic and radiometric data. In this study, we utilize magnetostratigraphy to provide a more precise age for mudstones from just below the layer containing the fossils. Rock magnetic experiments suggest that both magnetic iron sulfide and Ti-poor titanomagnetite carry the remanent magnetization of the mudstones. Two different stratigraphic sites have normal polarity directions with a northeastern declination, which can be correlated with Chronozone C5Dn. Given their magnetostratigraphic position near the C5Dn/C5Dr chronozone boundary (17.466 Ma) and a high sedimentation rate, the estimated age for both the sites and the deep-sea fossils is ~17.4 Ma. The northeasterly-directed site-mean directions suggest clockwise tectonic rotation, most likely due to the Early Miocene clockwise rotation of Southwest Japan associated with the back-arc opening of the Japan Sea. The deep-sea fossils, dated at ~17.4 Ma, represent organisms deposited within a submarine structural depression formed by crustal extension during the back-arc opening stage.  相似文献   

17.
Abstract Global carbonate accumulation rates on the surface of the earth, including not only platforms but also continental margin slopes and deep-sea from the Cretaceous to Present, are estimated by compiling previous geologic studies. These rates are revised, taking account of the erosional effect of the sediments on the platform and deep-sea. Long-term model carbonate fluxes from the ocean to the crust are calculated on the basis of the carbon cycle model (GEOCARB of Berner 1991 ). The rates based on the actual geologic data indicate much lower values than model fluxes, excluding the Pliocene and Quaternary. The discrepancy could be attributed to the two misunderstandings, namely an overestimate of carbonate accumulation rate for the Quaternary and an incorrect use of the higher Quaternary rate for a boundary condition of the model. The carbonate accumulation rate for the Pliocene to Quaternary is lowered from 29.8 × 1018 mol/Ma (modified from Opdyke & Wilkinson 1988 ) to 14.8 × 1018 mol/Ma in the present study, assuming that the rate from Quaternary to Pliocene is almost the same as the Miocene value. New model fluxes are recalculated with the new boundary condition in the Quaternary (14.8 × 1018 mol/Ma). Revised model fluxes show general trends of high rates in 120 Ma or 130 Ma, and a low rate in 0 Ma, and are in agreement with the accumulation rate pattern.  相似文献   

18.
The age of the Permian-Triassic boundary   总被引:1,自引:0,他引:1  
The 5 cm boundary clay bed in the Chinese stratotype section through the Permian-Triassic boundary has been recognised as a bentonite. SHRIMP ion microprobe dating of zircons in the bentonite indicates a magmatic age of 251.2 ± 3.4 Ma (2σ); this is the first direct constraint on the numerical age of the Permian-Triassic boundary.Future refinements of ages at this important, but poorly constrained, level of the Phanerozoic timescale may depend on re-analysis of this uniquely placed volcanic horizon, and other bentonites in the fossiliferous Chinese Upper Permian and Lower Triassic. The utility of defining the Permian-Triassic boundary in the Chinese stratotype section, in the vicinity of known dateable horizons, should be considered.  相似文献   

19.
A comparison of the most used magnitude-intensity relations is carried out, with reference to a spatial window coinciding with Calabria and northeastern Sicily, evaluating their consistency with different data sets taken from several catalogues. M values indicated in the catalogues and the corresponding average value have been used choosing the relation to be adopted on the basis of the level of their adaptability to points, rather than prearranged models.  相似文献   

20.
Palaeomagnetic and palaeontological studies on samples withdrawn from a 250-m-long unorientated core from Reggio di Calabria, Italy (38°N, 16°E) are described. The lower 200 m of core penetrated off-shore clays and visual examination of the split sections of core indicated no obvious breaks in deposition. After alternating field demagnetization in 200 Oe the palaeomagnetic inclination log shows the Brunhes/Matuyama boundary at 110 m below which the Jaramillo and Olduvai Events within the Matuyama Epoch are identified. This interpretation of the magnetostratigraphy is supported by palaeontological evidence. The rate of accumulation of clay is estimated to have ranged between about 60 and 190 mm/kyr with an overall average through the Matuyama Epoch of about 90 mm/kyr. Assuming that this average rate continued through the Brunhes Epoch, the age of the top of the clay unit is estimated to be about 90,000 yr B.P. About 5 m from the unconformable top surface of the clay, a split sequence of reversed inclinations is interpreted as a record of the Blake Event, and the overall average deposition rate implies that its duration may have been as long as 50,000 yr. No other reversed event is recorded by the palaeomagnetic inclination log through the Brunhes Epoch, though there are four horizons where shallow positive inclinations are recorded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号